
Android Implicit Information Flow Demystified

Wei You, Bin Liang∗, Jingzhe Li, Wenchang Shi
Renmin University of China, Beijing, P. R. China

{youwei, liangb, lijingzhe, wenchang}@ruc.edu.cn

Xiangyu Zhang
Purdue University, Indiana, USA
xyzhang@cs.purdue.edu

ABSTRACT
In this paper, a comprehensive analysis of implicit infor-
mation flow (IIF) on the Android bytecode is presented to
identify all potential IIF forms, determine their exploitabil-
ity, and mitigate the potential threat. By applying control-
transfer-oriented semantic analysis of the bytecode language,
we identify five IIF forms, some of which are not studied by
existing IIF literature. We develop proof-of-concepts (PoCs)
for each IIF form to demonstrate their exploitability. The
experimental results show that all these PoCs can effectively
and efficiently transmit sensitive data, as well as successful-
ly evade the detection of a state-of-the-art privacy monitor
TaintDroid. To mitigate the threat of IIF, we propose a so-
lution to defending against IIF leveraging a special control
dependence tracking technique and implement a prototype
system. The evaluation shows that the prototype can effec-
tively detect information leak by all the identified IIF forms
and also real-world malware with an acceptable overhead. In
summary, our study gives in-depth insight into Android IIF
from both offensive and defensive perspectives, and provides
a foundation for further research on Android IIF.

Categories and Subject Descriptors
D.4.6 [Operating System]: Security and Protection

Keywords
implicit information flow; exploitation; mitigation; Android

1. INTRODUCTION
Information flow analysis (IFA) is an important technique,

which aims to track the propagation of information between
program variables. Information flow occurs from a source
object x to a target object y, if the information stored in
object x can be revealed by the value of object y. Informa-
tion flow can be explicit or implicit [4]. Explicit information

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS’15, April 14–17, 2015, Singapore..
Copyright c© 2015 ACM 978-1-4503-3245-3/15/04 ...$15.00.
http://dx.doi.org/10.1145/2714576.2714604.

flow (EIF) results from data dependence; and implicit infor-
mation flow (IIF) results from control dependence.

Intuitively, a program with the pattern low = high; ex-
hibits privacy leakage via EIF. Confidential data stored in
variable high is directly passed to variable low whose value
can be observed from outside. On the other hand, the fol-
lowing code snippet contains IIF from high to low. Although
there is no direct data flow between these two variables, one
can still learn something about high by observing low.

1 i f (high == 0) low = 0 ;
2 else i f (high > 0) low = 1 ;
3 else low = −1;

In general, IIF is more difficult to be tracked than EIF.
Most existing IFA techniques [10, 12] concentrate mainly on
EIF, ignoring the impact of IIF. As a result, it is possible for
malware to leverage IIF to evade detection. A recent anti-
IFA study [2] has demonstrated the feasibility of evasion for
C programs. To mitigate the threat of IIF, some approaches
[1, 9] are proposed to selectively track control dependence.
For example, the study in [1] tracks only a special type of
control dependence whose nature highly resembles data de-
pendence. However, the existing studies only consider IIF
resulted from regular conditional structures. Little attention
is paid to IIF resulted from other language structures.

Information leak is the most commonly seen malicious be-
havior on Android [14]. Most existing malware samples steal
sensitive information through EIF such that the existing de-
fense schemes on Android focus on tracking only EIF [6, 13].
However, as we found in the wild, sophisticated malware s-
tarts to leverage IIF to evade the existing defense systems.
We envision such attacks will become more popular in near
future due to the difficulty of defending against IIF. Hence,
there is a pressing need to study IIF on Android.

To better understand the possible attack and the corre-
sponding defense on Android, there are three open research
questions to be answered: 1) How many IIF forms there may
exist; 2) Given an IIF form, is it exploitable, allowing to ef-
fectively transmit sensitive information; 3) How to defend
against information leak through such IIF forms with an ac-
ceptable overhead. In this paper, we answer these questions
by theoretical analysis as well as empirical experiments.

Our study begins with a control-transfer-oriented analysis
of Android’s Dalvik bytecode in a formal structured oper-
ational semantic model. With this model, 54 instructions
are identified that may cause control dependence. IIF can
be constructed by using any of these instructions. Identi-
fying all these IIF inducing instructions is meaningful for
conducting a sophisticated IIF attack or performing a com-

585

prehensive IIF detection. We find that besides conditional
structures (i.e., if and switch), there are other instructions
(i.e., throw, exception-prone instructions and polymorphism
related instructions) that can also be used to construct IIF
attacks. Details are shown in Section 2.

We develop proof-of-concepts (PoCs) for the identified IIF
forms and examine their exploitability. Without loss of gen-
erality, we respectively integrate these PoCs to a real-world
application FMajor, which leaks phone number via EIF. We
modify the original apk, inserting an additional propagation
step leveraging IIF forms to transmit data. We evaluate the
PoCs on an emulator equipped with TaintDroid [6], a state-
of-the-art IFA-based privacy monitor for Android. We find
that all PoCs can effectively steal phone number and suc-
cessfully evade the detection of TaintDroid. In other words,
these PoCs can be easily turned into real attacks. Indeed,
by manually analyzing the samples provided by the Android
Malware Genome Project [14], we found two samples lever-
aging IIF in a way similar to some of our PoCs. We believe
more real malware samples similar to our (other) PoCs will
be found in the future. Details are shown in Section 3.

Compared with exploiting IIF, it is more difficult to de-
fend against it. In general, it is intractable to perform sound
and complete tracking of IIF. In this paper, we reduce the
problem to tracking a special kind of control dependence
called strict control dependence (SCD). Observe that prac-
tical IIF attacks most likely have to leverage SCD, we hence
enhance an existing runtime SCD tracking algorithm [1] to
detect IIF. The algorithm selectively taints a predicate if it
has strong correlation with sensitive information. All assign-
ments guarded by such a tainted predicate are tainted. For
better efficiency, we improve the SCD detection algorithm by
adopting a lazy tainting policy, which postpones the taint-
ing of control dependence to the post-dominator of a con-
trol structure. More importantly, our technique formulates
the various Dalvik instructions vulnerable to IIF exploits to
SCD, such that our technique can detect all possible IIF
forms on Android. We implement a prototype system. The
evaluation results show that the prototype can successfully
detect all the PoCs and the real-world malware samples with
acceptable overhead. Details are shown in Section 4.

2. SEMANTICS OF DALVIK BYTECODE
IIF is caused by control dependence, which is determined

by control transfer relationship between instructions. Hence
in this section, we study the semantics of Android’s Dalvik
bytecode (DVML) to identify all the control transfer instruc-
tions that can be exploited to construct IIF. The goal is to
assist in conducting a sophisticated IIF attack or performing
a comprehensive IIF detection. To get a concise and precise
semantic specification, we abstract an imperative language
DVMLI from DVML and present it with a structured opera-
tional semantic (SOS) model. This model focuses on control
transfer behavior of DVMLI instructions.

Note that in order to exploit IIF, the attacker should be
able to infer a value from the control transfer determined by
the value. Hence, if an instruction always transfers control
to a definite target address, or in other words, the target is
not determined by any runtime value, there is no IIF. We call
the control flow instructions whose targets are determined
by runtime values as indirect control transfer (ICT) instruc-
tions. ICT instructions are the building blocks of various
forms of IIF, and hence the focus of our discussion.

2.1 The SOS Model
The SOS model focuses on the control-transfer related se-

mantics of DVMLI and leaves out other unnecessary details.
A DVMLI program consists of classes. Each class contains
a set of fields and a set of methods. Without loss of gener-
ality, we do not distinguish static fields (or methods) from
instance fields (or methods). Besides, we assume that the
first instruction of a method locates at offset 0 and the offset
difference between two consecutive instructions is 1.

2.1.1 Memory Model and Execution State
A DVMLI program has a local memory space RegisterAr-

ray that stores local variables of the current method, and a
global memory space Heap that stores dynamically allocated
objects. A configuration 〈cm, off,H, V 〉 describes execution
state with cm the current method, off the offset of the cur-
rent instruction inside the method, H the heap and V the
register array. Note that the current program counter can
be denoted as pc = 〈cm, off〉.

2.1.2 Instruction Set and Operational Semantics
The DVMLI instruction set is abstracted from the DMVL

instruction set by grouping the DMVL instructions with sim-
ilar semantics into a single DVMLI instruction. The opera-
tional semantic rule of DVMLI is of the form:

instruction ∧ computation

〈current configuration〉 ⇒ 〈next configuration〉

Rules are read from top to bottom, left to right. Given an
instruction, we search for an applicable rule that matches the
instruction, and apply the computation given in the top of
the rule. The execution state of the program will transform
from the current configuration to the next configuration.

For example, instruction invoke m vthis (vi)
n
1 has a rule:

I=invoke m vthis (vi)
n
1 ∧ loc=V [vthis] ∧ o=H(loc) ∧

m′=methodDispatch(m,o) ∧ pushState(〈cm,off,V 〉) ∧

V ′=loc::(V [vi])
n
1

〈cm,off,H,V 〉 =⇒ 〈m′,0,H,V ′〉 Invoke

The instruction is used to conduct a polymorphic invocation.
When executing the instruction, dynamic method dispatch-

ing is performed to determine which polymorphic version m
′

of the method should be invoked. The method dispatching is
based on the dynamic type of the receiver object, which can
be accessed via the object reference stored in register vthis.
The current program state is pushed onto an internal execu-
tion stack for restoring at return site. The instruction execu-
tion results in a new program state where the register array
stores the receiver object reference concatenated with the
parameters (i.e., loc :: (V [vi])

n
1) and the program counter is

set to the start of the invoked method (i.e., pc= 〈m′, 0〉).
An instruction may trigger a runtime exception, if run-

time values of its operands violate related constraints. Such
instruction is called exception-prone instruction. It has two
execution rules: one for the normal execution, the other for
the exceptional execution. When executing an exception-
prone instruction, checks are conducted on its operands to
determine which rule is applied. For example, instruction
binop op vA vB vC is an exception-prone instruction. At
runtime, a check is conducted to examine whether the oper-
ator op is division and the divisor vC is 0. If so, an exception
is thrown and the control is transferred to the corresponding
exception handler. Otherwise, the binary operation is per-
formed and the control is transferred to the next instruction.

586

2.2 ICT Instructions
For identifying indirect control transfer instructions, we

examine all DVMLI instructions. The exception-prone in-
structions have two execution rules. Different rules transfer
the control to different target addresses, and the rule applied
is determined by runtime checks. Therefore, all exception-
prone instructions can cause indirect control transfer. For
an instruction with a single execution rule, if the program
counter of the next configuration is dynamically dependent
on some operands, it can cause indirect control transfer.

By examining all the DVMLI instructions, we identify 12
ICT instructions. These ICT instructions correspond to 54
DMVL instructions, and can be divided into five categories
according to their related control structures, as shown in
Table 1. We can see that besides the common conditional
structures (i.e., if and switch), there are three other con-
trol structures (i.e., throw, exception-prone instructions and
polymorphism related instructions) can also cause IIF.

2.3 IIF Forms
In practice, given an ICT instruction, there are various

ways to leverage it to construct IIF. In this paper, we focus
on IIF in which the attacker can uniquely determine a high-
confidentiality value from the observable low-confidentiality
value. In other words, we focus on IIF that induces a one
to one (1-2-1) mapping between the two values. Specifical-
ly, we consider IIF in which sensitive data is used as the
operand that distinctively determines the target address of
the instruction, i.e., different values of operand vH will lead
to different control transfer targets. Besides, there is an ob-
servable variable vL that will be assigned with a distinctive
value in each target. Consequently, adversaries can directly
deduce the value of vH by examining the value of vL.

IIF instances can be categorized into five forms, each based
on one of the identified control structures. Leveraging the
switch structure is straightforward. The attacker can use a
branch for each possible value of vH and assign vL with a u-
nique value in each branch. For the if structure, it has only
two branches thus can distinguish only two possible values.
The attacker can use multiple if structures in nesting, or
use a single if structure multiple times in looping.

Other control structures are analogous to the if structure
or the switch structure. For example, the exception-prone
structure can be treated as a special if structure, which
tests whether a runtime exception is triggered. Another ex-
ample is the polymorphism structure. It can be modeled as
a special switch structure, which tests the runtime type of
a receiver object to determine the most appropriate version
of a polymorphic method to be invoked.

3. EXPLOITABILITY
We develop proof-of-concepts (PoCs) for the identified IIF

forms and examine their exploitability. Our PoCs exploit IIF
to precisely transmit confidential data from a secret variable
high to a public variable low, so that we can unambiguously
infer high from low. In other words, our PoCs exploit IIF to
generate a 1-2-1 mapping from high to low.

3.1 PoCs
Without loss of generality, each of our PoCs takes a sensi-

tive 8-bit digital character as input, and leverages different
IIF forms to transmit it to the publicly accessible output.

Table 1: Identified ICT Instructions.
DVMLI DVML Instruction(s) Structure

if
if-eq, if-ne, if-lt, if-le, if-gt, if-ge,

if
if-eqz, if-nez, if-ltz, if-lez, if-gtz, if-gez

switch packed-switch, sparse-switch switch

invoke
invoke-virtual, invoke-virtual/range

polymorphism
invoke-interface, invoke-interface/range

throw throw throw

binop div-int, div-long, rem-int, rem-long exception-prone

check cast check cast exception-prone

fget
iget, iget-wide, iget-object, iget-byte,

exception-prone
iget-short, iget-char, iget-boolean

fput
iput, iput-wide, iput-object, iput-byte,

exception-prone
iput-short, iput-char, iput-boolean

new array new array exception-prone

array length array length exception-prone

aget
aget, aget-wide, aget-object, aget-byte,

exception-prone
aget-short, aget-char, aget-boolean

aput
aput, aput-wide, aput-object, aput-byte,

exception-prone
aput-short, aput-char, aput-boolean

3.1.1 If-Based IIF
The if statement is a common control structure for con-

structing IIF. A single if statement is not sufficient to trans-
mit 8-bit information. In PoC 1, multiple nested if state-
ments are used to enumerate the possible values of high. In
PoC 2, a loop is used to traverse the range of the value of
high. After execution, low will hold the same value as high.

1 i f (high == ’ 0 ’) low = ’ 0 ’ ;
PoC 12 else i f (high == ’ 1 ’) low = ’ 1 ’ ;

3

1 for (low = ’ 0 ’ ; low != high ; low++); PoC 2

3.1.2 Switch-Based IIF
The switch statement is another common structure for

constructing IIF. PoC 3 uses sufficient amount of case branch-
es to explicitly enumerate the possible values of high.

1 switch (high) {
2 case ’ 0 ’ : low = ’ 0 ’ ; break ;
3 case ’ 1 ’ : low = ’ 1 ’ ; break ; PoC 3
4
5 }

3.1.3 Exception-Prone-Based IIF
An exception-prone statement is analogous to an if state-

ment that tests whether a runtime exception is triggered.
PoC 4 uses a loop to iterate on variable low over the value
range of high. In each iteration, a division operation is per-
formed with the difference between high and low as divisor.
An arithmetic exception will be thrown when high == low.

1 for (low = ’ 0 ’ ; low <= ’ 9 ’ ; low++){
2 try { int tmp = 1 / (high − low) ;}

PoC 4
3 catch (Exception e) {break ;}
4 }

3.1.4 Throw-Based IIF
A throw statement can throw exception of different types,

which can be caught by different handlers. It is essentially
equivalent to a switch statement that tests the type of the
exception variable. In PoC 5, the array excepts has different
elements of different types. The value of high decides which
array element is assigned to the exception variable except.
Different types of except lead to different handlers to be
taken, which in turn lead to different values assigned to low.
As such, we get a 1-2-1 mapping from high to low.

587

1 Exception except = excepts [high − ’ 0 ’] ;
2 try { throw except ; }{
3 catch (Except ion 0 e) { low = ’ 0 ’ ;} PoC 5
4 catch (Except ion 1 e) { low = ’ 1 ’ ;}
5

3.1.5 Polymorphism-Based IIF
Polymorphism is an essential feature for Object Orient-

ed languages. In Android programs, polymorphism includes
four manners: virtual invocation, reflective invocation, mes-
sage dispatching, and event dispatching.

PoC 6 demonstrates the IIF via virtual invocation. Method
f () has different versions that return different values to low.
The value of high decides the runtime type of the receiver
object poly, which in turn decides which version of f () to be
executed. As such, we get a 1-2-1 mapping from high to low.

1 class Poly 0 extends Poly {
2 char f () {return ’ 0 ’ ;}{
3 }

PoC 6
4
5 Poly poly = polys [high − ’ 0 ’] ;
6 low = poly . f () ;

PoC 7 demonstrates the IIF via reflective invocation. The
name of the method to be invoked is determined by the value
of high. Different methods return different values to low. As
such, we get a 1-2-1 mapping from high to low.

1 class R e f l e c t {
2 stat ic char method 0 () {return ’ 0 ’ ;}
3
4 } PoC 7
5 St r ing name = ”method ” + high ;
6 Method m = R e f l e c t . class . getMethod (name) ;
7 low = m. invoke (null) ;

PoC 8 demonstrates the IIF via message dispatching. D-
ifferent values of high cause different message handlers to be
executed, which assign different values to low. As such, we
get a 1-2-1 mapping from high to low.

1 class Handler 0 extends Handler {
2 void handleMessage (Message msg) { low = ’ 0 ’ ;}
3 }
4 PoC 8
5 Handler handler = handle r s [high − ’ 0 ’] ;
6 Message message = handler . obtainMessage () ;
7 handler . sendMessage (message) ;

PoC 9 demonstrates the IIF via event dispatching. Multi-
ple Button components are attached with different listeners,
which assign different values to low. The value of high de-
cides which Button to obtain the focus. The event of focus
changing will be dispatched to the listener of the focused
Button. As such, we get a 1-2-1 mapping from high to low.

1 class L i s t e n e r 0 extends L i s t en e r {
2 void onFocusChange () { low = ’ 0 ’ ;}
3 }

PoC 9
4
5 Button button = buttons [high − ’ 0 ’] ;
6 button . requestFocus () ;

3.2 Evaluation of PoCs
To evaluate these PoCs, we respectively integrate them to

a real-world application FMajor, which leaks phone number
via EIF. We modify the original apk, inserting an additional
propagation step leveraging IIF to transmit data. The evalu-
ation is performed on an emulator equipped with TaintDroid
[6] and run on a computer with Intel(R) Core(TM) 2.50 GHz

Table 2: Performance of PoCs.
PoC ∆ Size ∆ Mem t(PN) t(1M)

if -based (nesting)
0.4 KB 11.3 KB

42 ms 294 ms
(0.06%↑) (0.18%↑)

if -based (looping)
0.3 KB 8.2 KB

45 ms 303 ms
(0.05%↑) (0.13%↑)

switch-based
0.4 KB 10.2 KB

37 ms 283 ms
(0.06%↑) (0.16%↑)

exception-prone-based
0.4 KB 28.7 KB

51 ms 391 ms
(0.06%↑) (0.46%↑)

throw-based
0.9 KB 55.3 KB

49 ms 314 ms
(0.14%↑) (0.89%↑)

polymorphism-based 1.1 KB 69.6 KB
47 ms 310 ms

(virtual invocation) (0.17%↑) (1.12%↑)
polymorphism-based 0.7 KB 78.8 KB

49 ms 596 ms
(reflective invocation) (0.11%↑) (1.27%↑)
polymorphism-based 1.4 KB 84.0 KB

57 ms 844 ms
(message dispatching) (0.21%↑) (1.35%↑)
polymorphism-based 1.9 KB 109.6 KB

96 ms 1126 ms
(event dispatching) (0.29%↑) (1.76%↑)

CPU and 2G memory. All PoCs can effectively leak phone
number and successfully evade the detection of TaintDroid.

We evaluate the performance of each PoC from four as-
pects: size increment, memory increment, time consumption
in transmitting a small amount of data (i.e., phone number)
and a large amount of data (i.e., 1M randomly-generated
data). The evaluation result is shown in Table 2. The PoCs
incur less than 0.3% size increment, and less than 2% mem-
ory increment. All PoCs can efficiently transmit data. The
time consumption in transmitting phone number is less than
0.1 second. For transmitting 1M data, even the least efficient
PoC can finish in about 1 second.

3.3 Real-World Threat
We want to note that IIF is not only a theoretical threat.

It has been used in the real world either inadvertently or
by design. Indeed, we found two samples (i.e., DroidKung-
Fu3 and AnserverBot) from the Android Malware Genome
Project [14] leveraging IIF in a way similar to some of our
PoCs. Although we have not found other IIF forms in mal-
ware samples, we believe they are likely to be leveraged by
malware in the future due to their effectiveness.

3.3.1 IIF of DroidKungFu3
DroidKungFu3 will send certain bits of the victim’s inte-

grated circuit card identifier (i.e., ICCID) to a remote server.
Instead of directly sending ICCID, it adopts IIF to encode
each bit. The following shows the highly simplified IIF-
related code of DroidKungFu3. We can see that it leverages
the if -based IIF in a way similar to PoC 1.

1 i f (high . equa l s (”0 ”)) low = 0 ;
2 else i f (high . equa l s (”1 ”)) low = 1 ;
3

3.3.2 IIF of AnserverBot
AnserverBot will send the victim’s international mobile

equipment identity (IMEI) string to a remoter server. In-
stead of directly sending IMEI, AnserverBot adopts IIF to
encode each character as the index of its occurrence in a
character map value. The encoding is implemented by in-
voking method String.indexOf(), whose highly simplified
code is shown in the following. We can see that it leverages
if -based IIF in a similar way to PoC 2.

1 for (low = 0 ; low < l ength ; low++)
2 i f (va lue [low] == high) break ;

588

1. Static Analysis

CFG
PDT
SSA

2. Instrumentation

SCD Tracking
Code

Traditional
DTA Code

Original
Apk/Lib

Instrumented
Apk/Lib

Figure 1: Overview of our IIF mitigation solution.

4. MITIGATION
From the above discussion, we can see that IIF poses seri-

ous threat to data confidentiality. In theory, it is intractable
to perform sound and complete IIF tracking. In this pa-
per, we propose a solution concentrating on tracking 1-2-1
IIF, since such IIF can precisely transmit sensitive data and
hence is more likely to be exploited by real-world malware.

A key observation is that 1-2-1 IIF can be formulated
as a special kind of control dependence called strict control
dependence (SCD) [1]. A statement s is strictly control de-
pendent on a predicate statement with vp as predicate vari-
able, if the execution of s can precisely infer the value of vp.
The branch leading to the execution of s is called the SCD
branch. Consider the code snippet in Section 1. There is
an SCD between the assignment statement at line 1 and the
if statement at the same line. If the true branch (i.e., SCD
branch) of the if statement is taken, the attacker can pre-
cisely infer that the value of the predicate variable high is 0.
As a counter example, the control dependence between the
assignment statement at line 2 and the if statement at the
same line is not an SCD. Because from the execution of this
assignment statement, we can only infer that the predicate
variable high is larger than 0. Little information is revealed.

4.1 Overview
The overview of our solution is shown in Figure 1. Given

an application or a library, we first perform static analysis
on its bytecode to compute control flow graph (CFG), post
dominator tree (PDT), and static single assignment (SSA).
The computed information is used in generating SCD track-
ing code. Then we instrument the application or library with
both traditional DTA tracking code and SCD tracking code.
The static analysis and instrumentation are performed on a
desktop computer. The instrumented application or library
will be installed and executed on the smartphone device.

4.2 SCD-Based Tracking
The basic idea of SCD-based tracking is to propagate the

taint of the predicate variable of a control structure to the
variables that are assigned in an SCD branch. To this end,
we first identify the SCD branches of each control structure.
Then we adopt a lazy tainting policy that is equally effective
as the original SCD tracking algorithm [1] but more efficient.

4.2.1 Identifying SCD Branches
We perform static analysis to identify SCD branches. Cur-

rently, the analysis only focuses on SCDs caused by equiv-
alence testing. For an if structure, if it is an equivalence
predicate, the true branch is an SCD branch; if it is a non-
equivalence predicate, the false branch is an SCD branch.
For a switch structure, if a branch can be reached from only
one case value, it is an SCD branch.

Rule Event Instrument

T1
Encoutering a predicate statement:

t = τ(x)
x is the predicate variable.

T2

Encoutering a post-dominator:

τ(x) = τ(x) | tvariable x is assigned in an SCD branch i;
@j 6= i: x is assigned in branch j

and |xi| = |xj |.

T3

Encoutering a statement s:

τ(x) = τ(x) | ts is contained in an SCD branch;
s may immediately propagate the value
outward to a global variable x.

Figure 2: Rules for lazy SCD-based tainting. Here,
τ(x) is the taint of variable x, and |xi| denotes the
value assigned to variable x at branch i.

Our solution also features the capability of handling oth-
er IIF inducing structures. It explicitly converts them to if
structures or switch structures, depending on the number of
their branches. For example, an exception-prone instruction
is converted to an explicit if structure that tests whether the
specific condition triggering a runtime exception is satisfied.
Another example is the polymorphism structure, which is
converted to an explicit switch statement that tests the dy-
namic type of the receiver object. The explicit if or switch
statements are then instrumented to track SCD at runtime.

4.2.2 Lazy Tainting Policy
For better performance, we propose lazy tainting policy,

instead of the original on-the-fly SCD-based tainting. The
rules for lazy SCD-based tainting are shown in Figure 2.
When encountering a predicate statement, the taint of the
predicate variable is stored in a temporary variable (Rule
T1). At each immediate post-dominator, the algorithm ex-
amines each variable that is assigned in an SCD branch to
check whether its value is distinctive from other branches.
If so, it will propagate the taint of the current control struc-
ture to the identified variable (Rule T2).There is a special
consideration for the lazy tainting policy. An SCD branch
may contain some assignment statements whose values may
immediately escape the branch (e.g. assignments to global
variables). When encountering these statements in an SCD
branch, we propagate taints immediately (Rule T3).

4.3 Evaluation of Mitigation Solution
We implement a prototype system and deploy it in HTC

T528w smartphone equipped with Android-4.0. The proto-
type tracks both data dependence and strict control depen-
dence. It can successfully detect all the aforementioned 1-2-1
IIF exploit PoCs, as well as real-world malware samples.

We evaluate the performance of our prototype with the
FMajor application, the DroidKungFu3 and AnserverBot
malware samples, and some popular applications collected
from serveral markets. We compare the code size before and
after instrumentation, and find that the instrumented ver-
sions are averagely 40% larger than the original ones. We
also compare the execution times of the native runs (without
tracking), the runs with DD-only tracking, and the runs with
DD+SCD tracking. The DD+SCD runtime overhead is ap-
proximately 65% on average compared with the native runs.
Comparing with the DD-only tracking, the DD+SCD track-
ing increases the overhead by 30% at most. As a compari-
son, Dytan [3], which blindly tracks IIF, brings approximate
50x performance overhead. We argue that the performance
overhead of our prototype system is acceptable.

589

5. RELATED WORKS
Information flow analysis (IFA) has been studied for a long

time. It can be static or dynamic. Static IFA approaches [7,
8] infers the dependencies between variables via data flow
analysis and control flow analysis. However, the existing
techniques do not have sufficient supports for tracking in-
formation flow caused by object oriented features, such as
polymorphism. On the other hand, dynamic IFA approach-
es [10, 12], also known as dynamic taint analysis (DTA),
provides the ability to track information flow at runtime.
However, most DTA frameworks can only handle explicit
information flow (EIF), resulting in under-tainting [11].

Recent studies trend to combine dynamic taint analysis
with static analysis to track implicit information flow (IIF).
Dytan [3] statically identifies control dependence structures,
and propagates the taint of predicate variables to variables
assigned in each branch without discrimination. As an im-
provement, DTA++ [9] only tracks IIF within information-
preserving transformations, such as data conversion from
one format to another. Similarly, the study in [1] only track-
s strict control dependence (SCD), a special kind of control
dependence whose nature highly resembles data dependence.
Although neither sound nor complete, these studies provide
a cost-effective approach to tracking IIF. Our mitigation so-
lution is based on the concept of SCD. We improve the o-
riginal SCD detection algorithm by adopting a lazy tainting
policy to improve efficiency. In addition, our solution can
handle all IIF inducing control structures on Android, with
many not covered by the existing IIF tracking techniques.

Recent years, with the widespread usage of smartphones,
some studies are concentrated on information flow tracking
of mobile apps. PiOS [5] conducts static information flow
analysis on iOS apps to detect privacy leakage. TaintDroid
[6] and DroidScope [13] conduct dynamic taint analysis on
Android apps with the same goal. Unfortunately, all of them
only consider EIF, ignoring the impact of IIF. However, our
experiments show that it is feasible to leverage IIF to ef-
fectively and efficiently transmit sensitive data and evade
the existing IFA-based detection. Moreover, we find that
real-world smartphone malware starts to leverage IIF. It in-
dicates that IIF is not only a theoretical threat but a reality.
To the best of our knowledge, we are the first to propose and
implement practical mitigation solution to defending against
IIF on smartphone.

6. CONCLUSION
This paper presents a comprehensive study of Android

implicit information flow (IIF). We propose a systematical
method to identify potential IIF forms. With the method,
we find that in addition to the commonly studied condition-
al structures, there are other control structures on Android
that can also be used to construct IIF. We develop proof-
of-concepts (PoCs) for each identified IIF form and exam-
ine their exploitability. The experimental result shows that
these PoCs can effectively and efficiently transmit sensitive
data and evade the detection of a state-of-the-art informa-
tion flow tracking system TaintDroid. Moreover, we find two
real-world malware samples leveraging IIF in a way similar
to some of our PoCs. We believe all of our identified IIF
forms are likely to be leveraged by malware in the future due
to their effectiveness. In theory, it is intractable to perform
sound and complete IIF tracking. We propose a practical

mitigation solution concentrating on a subclass of IIF that
can precisely transmit sensitive data hence poses the most
serious threat to data confidentiality. Based on the solution,
we develop a prototype system that tracks both data depen-
dence and strict control dependence. The evaluation of our
prototype shows that it can successfully detect all PoCs and
real-world malware samples with an acceptable overhead.

7. ACKNOWLEDGMENT
The authors would like to thank the anonymous review-

ers for their insightful comments. The work is supported by
National Natural Science Foundation of China under grants
61170240, 91418206, and 61472429, and Beijing Natural Sci-
ence Foundation under grant 4122041.

8. REFERENCES
[1] T. Bao, Y. Zheng, Z. Lin, X. Zhang, and D. Xu. Strict

control dependence and its effect on dynamic informa-
tion flow analyses. In Proceedings of ISSTA, 2010.

[2] L. Cavallaro, P. Saxena, and R. Sekar. On the limits of
information flow techniques for malware analysis and
containment. In Proceedings of DIMVA, 2008.

[3] J. A. Clause, W. Li, and A. Orso. Dytan: a generic
dynamic taint analysis framework. In Proceedings of
ISSTA, 2007.

[4] D. E. Denning and P. J. Denning. Certification of
programs for secure information flow. Commun. ACM,
20(7):504–513, 1977.

[5] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS:
Detecting privacy leaks in ios applications. In
Proceedings of NDSS, 2011.

[6] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. Sheth. TaintDroid: An informa-
tion flow tracking system for realtime privacy moni-
toring on smartphones. In Proceedings of OSDI, 2010.

[7] S. Genaim, R. Giacobazzi, and I. Mastroeni. Modeling
secure information flow with boolean functions. In
Proceedings of ITS, 2004.

[8] S. Genaim and F. Spoto. Information flow analysis for
java bytecode. In Proceedings of VMCAI, 2005.

[9] M. G. Kang, S. McCamant, P. Poosankam, and
D. Song. DTA++: Dynamic taint analysis with
targeted control-flow propagation. In Proceedings of
NDSS, 2011.

[10] L. Lam and T. Chiueh. A general dynamic
information flow tracking framework for security
applications. In Proceedings of ACSAC, 2006.

[11] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you
ever wanted to know about dynamic taint analysis and
forward symbolic execution (but might have been
afraid to ask). In Proceedings of S&P, 2010.

[12] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced
policy enforcement: A practical approach to defeat a
wide range of attacks. In Proceedings of the USENIX
Security Symposium, 2006.

[13] L. Yan and H. Yin. DroidScope: Seamlessly
reconstructing the OS and dalvik semantic views for
dynamic android malware analysis. In Proceedings of
the USENIX Security Symposium, 2012.

[14] Y. Zhou and X. Jiang. Dissecting Android malware:
Characterization and evolution. In Proceedings of
S&P, 2012.

590

