
Precise Android API Protection Mapping
Derivation and Reasoning

Yousra Aafer
Purdue University
yaafer@purdue.edu

Guanhong Tao
Purdue University
taog@purdue.edu

Jianjun Huang
Renmin University of China

hjj@ruc.edu.cn

Xiangyu Zhang
Purdue University

xyzhang@purdue.edu

Ninghui Li
Purdue University

ninghui@purdue.edu

ABSTRACT

The Android research community has long focused on building
an Android API permission specification, which can be leveraged
by app developers to determine the optimum set of permissions
necessary for a correct and safe execution of their app. However,
while prominent existing efforts provide a good approximation of
the permission specification, they suffer from a few shortcomings.
Dynamic approaches cannot generate complete results, although
accurate for the particular execution. In contrast, static approaches
provide better coverage, but produce imprecise mappings due to
their lack of path-sensitivity. In fact, in light of Android’s access
control complexity, the approximations hardly abstract the actual
co-relations between enforced protections. To address this, we pro-
pose to precisely derive Android protection specification in a path-
sensitive fashion, using a novel graph abstraction technique. We
further showcase how we can apply the generated maps to tackle
security issues through logical satisfiability reasoning. Our con-
structed maps for 4 Android Open Source Project (AOSP) images
highlight the significance of our approach, as ∼41% of APIs’ protec-
tions cannot be correctly modeled without our technique.

CCS CONCEPTS

• Security and privacy → Mobile platform security;

KEYWORDS

Access Control; Permission Model; Android

ACM Reference Format:

Yousra Aafer, Guanhong Tao, Jianjun Huang, Xiangyu Zhang, and Ninghui
Li. 2018. Precise Android API ProtectionMapping Derivation and Reasoning.
In 2018 ACM SIGSAC Conference on Computer and Communications Security

(CCS ’18), October 15–19, 2018, Toronto, ON, Canada. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3243734.3243842

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’18, October 15–19, 2018, Toronto, ON, Canada

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00
https://doi.org/10.1145/3243734.3243842

1 INTRODUCTION

One keystone of the Android’s access control model is permis-

sions, which an app must request to access sensitive resources in
the framework. The code that implements a security or privacy
relevant API would enforce corresponding permissions. That is,
the code would check whether the calling app has the required
permissions, and throw an exception if the app does not. When
developing an app, developers need to know what permissions
are required by the API calls that are used in the app, and request
these permissions. Doing so requires an accurate specification of
API to permission mapping. However, in light of the framework’s
codebase size and access control complexity, it is challenging to de-
mystify the permission specification of the Android APIs. This has
naturally led developers to make mistakes causing various security
problems such as component hijacking [25, 37, 39] and permission

over-privilege [11, 37]. To address these issues, the research com-
munity has long focused on developing methods that can create
a permission map for the Android framework APIs. This permis-
sion map, mostly incomplete in the official Android documentation,
can be used by app developers to determine the optimum set of
permissions necessary for a correct and safe execution of their app.

Prominent efforts of providing permission maps include Stow-
away [11], PScout [6] and more recently Axplorer [7]. Stowawy
used feedback-directed API fuzzing and unit testing to observe
the required permissions of framework API calls. PScout statically
performed reachability analysis between API calls and permission
checks to produce a specification that lists the permissions required
by each Android API. Axplorer built on top of new insights to
address important challenges of statically analyzing the Android
framework and retrieved a more precise permission map compared
to the previous approaches. The generated permission maps have
been a valuable input to address various Android security prob-
lems. First, the map can be used to study whether an app follows
the principle of least privilege, that is, the app is not requesting
more permissions than it actually needs. Permission over-privilege

can increase the impact of a bug/vulnerability found in the target
app. Second, the permission map can be used to detect component

hijacking where a malicious app gains access to a security-sensitive
resource without holding the corresponding permission and thus
escalates its privilege.

Clearly, the quality of the generated permission maps can greatly
influence the detection results. In fact, while the existing approaches
provide effective approximations for API permission specifications,
they suffer from a number of shortcomings. Although accurate for a

Session 6B: Mobile 1 CCS’18, October 15-19, 2018, Toronto, ON, Canada

1151

https://doi.org/10.1145/3243734.3243842
https://doi.org/10.1145/3243734.3243842


particular execution, dynamic approaches do not achieve complete
code coverage, and hence generate incomplete mappings. Besides,
this approach involves extensive manual efforts in generating valid
inputs. The static approaches do not have the coverage problem,
but they have the following limitations.

First, due to their lack of path-sensitive analysis, existing static
analyses assume that all permissions ever identified for a particular
API are indeed required. However, this assumption is not necessarily
correct and may lead to inaccurate mappings. Particularly, the
existence of one or more permission enforcements in an API’s
implementation does not imply they are unconditionally required.
Often, the permissions checks are disjoint rather than conjoint, i.e.,
if a specific condition holds, permission A is enforced, otherwise,
permission B is enforced.

Furthermore, existing static approaches overlook an important
aspect of Android access control. The permission enforcements are
often conducted together with other security features: UID checks
and User checks. On one hand, UID privilege checks are leveraged
to verify if the caller is privileged enough or entitled to perform an
operation without holding a permission. On the other hand, User
checks are pertinent to the multi-user feature and aim to enforce
privilege separation between multiple users sharing an Android
device.

In this work, we propose to derive a precise protection speci-
fication for Android APIs. Our proposed solution, called Arcade,
constructs the map in a path-sensitive fashion. Specifically, it first
builds a control flow graph starting from each public Android API.
Since the CFG includes information that is not pertinent to access
control, it transforms the CFG into an Access-control Flow Graph
(AFG) that abstracts all security checks along with the conditions
that determine which checks ought to be performed, and in the
meantime respects the original control flow. It then processes the
constructed AFG to extract the access control conditions enforced
by the API and their correlations (e.g., conjunction and disjunction),
which can be concisely represented as a first-order logic formula,

We further leverage our generated mapping to tackle the widely
studied overprivilege and component hijacking issues. Since our
map is presented in the form of a first-order logic formula, it is
not straightforward to use it for this purpose. To this end, we
propose to translate the detection problems into a logical reasoning
problem. To detect permission overprivilege, we conduct logical
satisfiability reasoning to extract the least privileged permission(s)
the app needs to hold, given its invoked APIs and related contextual
information (e.g., parameter values). We then compare this set
with the requested permissions. Similarly, to detect component
hijacking, we test whether the enforced protection configuration
of a component satisfies our generated map for the invoked APIs.

We have used Arcade to derive protection maps for 4 Android
AOSP codebases. A breakdown of the maps reveals that ∼41% of
APIs apply conditional protection checks, thus highlighting the
significance of our approach. Furthermore, we have employed our
maps to detect permission overprivilege and component hijacking.
Compared with other approaches that rely on the permission maps
produced by Axplorer (considered to be best performing), we
are able to detect on average 43% more unneeded permissions
and reduce false alarms in detecting component hijacking by 11
components on average (per image).

Contributions. We make the following contributions:
• Wederive a precise protection specification for Android APIs,
using path-sensitive analysis and a novel graph abstraction
technique.

• We propose a logical reasoning based solution that leverages
our map to detect permission overprivileges and component
hijacking.

To allow other researchers to benefit from our work, we pub-
lish Arcade’s generated protection maps at https://arcade-android.
github.io/arcade

2 MOTIVATION

In this section, we explain the limitations of existing static analyses
based permission map generation techniques and motivate our
method.

2.1 Permissions as a Set Are Imprecise

Existing approaches construct the permission specification for a
given framework API through identifying permission checks in
the implementation of the API. The extracted set of permissions,
which might occur on different program paths, are all treated as
required by the API. In other words, all the identified permissions
are treated as having an AND relation, which might not reflect the
actual requirement. In fact, these permissions are often not a simple
conjunction. They may have other relations such as OR, dictated by
the various program paths. As a result, an app invoking the analyzed
API might not require the full set of extracted permissions.

To illustrate how path-insensitivity could lead to inaccurate per-
mission mapping, consider the following motivating example in Fig-
ure 1. The code snippet depicts an extract of the access control im-
plementation of the public API listen in the TelephonyRegistry
service, retrieved from the AOSP codebase (API level 25).

1 public void listen(.., PhoneStateListener listener, int events) {
2 ...
3 if ((events & LISTEN_CELL_LOCATION) != 0)
4 enforceCallingPermission(ACCESS_COARSE_LOCATION) ;
5 if ((events & LISTEN_DATA_CONNECTION_STATE) != 0)
6 if(checkCallingPermission(READ_PRIVILEGED_PHONE_STATE) !=

PERMISSION_GRANTED)
7 enforceCallingPermission(READ_PHONE_STATE) ;
8 if ((events & LISTEN_PRECISE_CALL_STATE) != 0)
9 enforceCallingPermission(READ_PRECISE_PHONE_STATE) ;
10 if ((events & LISTEN_OEM_HOOK_RAW_EVENT) != 0)
11 enforceCallingPermission(READ_PRIVILEGED_PHONE_STATE) ;
12 if ...
13 // do the actual work ...
14 }

Figure 1: Motivating Example for Path-Sensitivity

As illustrated, listen allows registering a listener object to re-
ceive notifications of changes in desired telephony states, specified
by the input events. Depending on the supplied events value(s), the
API enforces different permission checks. An app that wishes to
invoke the API should request a subset of the enforced permis-
sions depending on the supplied events value. For example, if events
= 00010000 (where the bit represents LISTEN_CELL_ LOCATION
state), then the calling app needs the permission ACCESS_COARSE_
LOCATION (lines 3-4 in Figure 1). Similarly, if events = 10010000, i.e.,
it includes the two states (LISTEN_CELL_LOCATION | LISTEN_DATA_
CONNECTION_STATE), then two permissions are required.

Session 6B: Mobile 1 CCS’18, October 15-19, 2018, Toronto, ON, Canada

1152

https://arcade-android.github.io/arcade
https://arcade-android.github.io/arcade


Further complicating the situation is the conditional permis-
sion enforcement applied in lines 5 to 7. If one of the bits in events

matches LISTEN_DATA_CONNECTION_STATE, either permission READ
_PRIVILEGED_PHONE_STATE or READ_PHONE _STATE is sufficient.

As such, the precise permission mapping for the API listen(..,
int events) is represented by a first-order logic formula shown
in Figure 2, where ACCESS_COARSE is a shorthand for Android
permission ACCESS_COARSE_LOCATION, READ_PRIV for permission
READ_ PRIVILEGED_PHONE_STATE and READ_PHON for permission
READ_ PHONE_STATE , CELL for the telephony event LISTEN_CELL_
LOCATION and DATA for the event LISTEN_DATA_CONNECTION_STATE.
Please note that we only present the permission mapping for lines
3-7 in Figure 1 for simplicity.

{(events&CELL , 0) ∧ ¬(events&DATA , 0)
∧Perm = ACCESS_COARSE }
∨
{¬(events&CELL , 0) ∧ (events&DATA , 0)∧
(Perm = READ_PRIV ∨ Perm = READ_PHON )}
∨
{(events&CELL , 0) ∧ (events&DATA , 0)
∧Perm = ACCESS_COARSE_∧
(Perm = READ_PRIV ∨ Perm = READ_PHON )}
∨...

event = 00010000

event = 10000000

event = 10010000

Figure 2: First-order Logic Representation of Permission

Map for Listen(..); boxes and tags are to facilitate under-

standing

Now, let us consider the permission map for this API provided
by Axplorer [7] 1:

TelephonyRegistry.listen(...)::
[ ACCESS_COARSE_LOCATION, READ_PHONE_STATE ,
READ_PRECISE_PHONE_STATE , READ_PRIVILEGED_PHONE_STATE].

Basically, Axplorer’s map states that the API requires all these
permissions, which is imprecise, leading to the following problems:
Wrong Specifications to Developers. The official site for An-
droid developers [35] provides the Android SDK and documentation
for app developers. However, its permission related information
is incomplete [11]. Under these limitations, developers resort to
other efforts devoted to building a more precise permission map-
ping. However, the lack of accurate mapping (e.g., providing a set
of permissions while only a subset is needed) may cause developer
confusion. Consequently, in an attempt to make their application
work, they will add many unneeded permissions, leading to per-
mission overprivilege.
False Positives in Detecting Component Hijacking. To vet
apps for component hijacking, state-of-art approaches first identify
sensitive resources reachable by an Android component. Once such
resources are found, the solutions compare the corresponding per-
missions (based on the map) to the security protection enforced at
the level of the component’s declaration. The detection results can
be influenced by the existing protection map. Under this scenario,

1retrieved from https://github.com/reddr/axplorer/blob/master/ permissions/api-
25/framework-map-25.txt

treating an OR as an AND relationship can trigger false alarms.
Consider the following app code snippet:

1 public class EmailService extends Service {
2 mBinder = new IRemoteService.Stub() {
3 // exposed servie method
4 public string getUniqueId{
5 return mTelephonyManager.getImei();

1 <service android:name=".EmailService"
android:permission="android.permission.READ_PHONE_STATE" >

Figure 3: False Alarms in Component Hijacking

The above app component EmailService exposes a method
getUniqueId, which retrieves the device’s Imei through invok-
ing the framework API TelephonyManager.getImei. Based on
a mapping generated without path-sensitive analysis, the above
component is not correctly protected, as the mapping wrongly con-
cludes that for getImei, two permissions are needed: READ_PRIVI
LEGED_PHONE_STATE and READ_PHONE_STATE. However, a path- sen-
sitive analysis (on the implementation of getImei, which is omitted
here for brevity) reveals that either one is sufficient, thus, the above
component is actually safe. Our experiment reveals that, using the
existing permission maps, on average 11 instances of component
hijacking are false alarms (per image).

2.2 Additional Access Control Dimension

In addition to (explicit) Android permissions, Android frameworks
also have other access control mechanisms, including UID checks

and User checks. Existing permission map generation approaches
do not account for these additional checks, which may lead to both
false positives and false negatives in security analysis.

1 public void setUidCleartextNetworkPolicy(int uid, int policy) {
2 if (Binder.getCallingUid() != uid)
3 enforceCallingOrSelfPermission(CONNECTIVITY_INTERNAL) ;
4 // do the actual work ...
5 }

Figure 4: Motivating Example For UID checks

UID Checks. UID checks can affect API permission requirements
in two ways. First, some specific UIDs are treated as privileged
such that apps with those UIDs can access certain APIs without the
need to hold corresponding permissions. Second, when the calling
UID is the same as the UID of the process affected by the API call,
then certain permission requirements are waived. The above code
snippet extracted from the NetworkManagementService is an ex-
ample of the latter case. It denotes a disjunction of two checks: if
the caller attempts to invoke setUidCleartextNetworkPolicy on
a UID that does not match his own, it needs to hold the permis-
sion CONNECTIVITY_INTERNAL. The permission map by Axplorer
would just indicate that the API needs permission CONNECTIVITY_
INTERNAL. An app may invoke the API without the permission
when it updates its own network setting, which is completely legit-
imate. But using Axplorer’s map, a developer will unnecessarily
request CONNECTIVITY_INTERNAL, thus violating the principle of
least privilege. Furthermore, our analysis have identified many
APIs that do not require any explicit permissions, but rather just

Session 6B: Mobile 1 CCS’18, October 15-19, 2018, Toronto, ON, Canada

1153



UID checks. We believe that it is important to provide a protec-
tion mapping for these APIs as well, as they may be invoked by
app developers and lead to component hijacking if not correctly
protected.
User Checks. With the introduction of the Android multi-user
feature, Android APIs have been incrementally updated to include
User checks to separate the functionalities and privileges of multiple
users. Under the multi-user scenario, two access control aspects
are usually implemented. First, a user should be able to perform op-
erations in her own context. For example, a user can only uninstall
her own apps. Second, a user in the background should not be able
to affect active users. For instance, a background user cannot turn
on/off wifi while another user is logged in.

We believe that physical user check should be considered in
the generation of APIs protection mapping. In fact, one of the top
conditional access control enforcement pattern is adopted to enforce
users separation. Prominently, the permission INTERACT_ACROSS_
USERS is usually checked in disjunction with a user id check. That
is, when the user is attempting to perform an operation for another
user, the above permission is enforced.

Existing statically-derived efforts present a permission map as a
set of permissions. Using the map in security analysis is straight-
forward as the analysis only needs to compare the map of the APIs
invoked with the permissions requested (for overprivilege detec-
tion) or enforced (for component hijacking detection). Considering
path sensitivity and the additional dimension of checks requires
not only novel techniques to model access control behaviors on the
framework side, but also sophisticated analysis on the app side as
we can no longer use simple set comparison.

We aim to build a protection specification for Android APIs. We
call it protection map, to differentiate from the permission map by
existing works, indicating it is muchmore than just permissions.We
also aim to develop techniques to use protection maps in security
analysis.

3 SYSTEM DESIGN

Figure 5 presents the high level work-flow of our proposed sys-
tem, Arcade. As depicted, it consists of two modules: a framework

analysis component and an application analysis component.
The framework analysis module statically analyzes the Android

framework in order to construct a precise and path-sensitive API
protection mapping. Specifically, It first identifies the public entry
points (or APIs) in the exposed interfaces of the framework system
services. Then, for each identified API, it builds the Control Flow
Graph (CFG). Depending on the API’s code complexity, the CFG
could be quite complex. Since the CFG contains a lot of nodes irrel-
evant to enforcing access control (e.g., nodes performing the actual
functionality of the API), Our analysis transforms the CFG to an
Access-Control Flow Graph (AFG) which preserves the access con-
trol logic while respecting the original control flow and abstracting
away implementation details irrelevant to access control. Finally,
the AFG is processed to produce a succinct representation of the
access control conditions enforced by the API, taking the form of a

Build CFG

Abstract CFG to 
AFG

Generate Path 
Conditions

M = 
{Perm= A v B ^ UID = 1000}

Input API

Protection
Mapping

Invoked 
API

Security Analysis

Contextual 
Constraint

Extract Contextual 
Information

App 
AnalysisFramework

Analysis

Solution

Configuration

Figure 5: Arcade Design Overview

first-order logic formula on API call arguments and other contex-
tual information. We call the mapping from each API call to such a
first-order logic formula the protection map.

Our application analysismodule leverages the constructed protec-
tion map to address two well-known security problems: permission

over-privilege and component hijacking. The protection map are rep-
resented using first-order logic formulas, which is not straightfor-
ward to use. To this end, the application analysis module proceeds
as follows:

To tackle permission overprivilege, it first extracts the app’s
invoked APIs and the corresponding contextual information (e.g.
UIDs and arguments values) for each API invocation. Then, based
on the API invocation information and our protection map, it con-
ducts boolean satisfiability reasoning to extract the least privileged
permission(s) the app needs to hold. Detecting overprivileges is
then possible through comparing the app’s requested permissions
to the generated permissions.

Detecting component hijacking is similarly performed through
logical reasoning. The application analysis first extracts the pro-
tection configuration a component applies at its declaration site. It
then conducts reachability analysis to extract the APIs invoked by it
(as well as other contextual information). Last, detecting hijacking
vulnerability translates into testing whether the enforced protec-
tion configuration satisfies our generated map for the invoked APIs.
If not, a malicious app could invoke the component with weak
protection to invoke APIs requiring stronger permissions.

Session 6B: Mobile 1 CCS’18, October 15-19, 2018, Toronto, ON, Canada

1154



4 EXTRACTING FRAMEWORK ACCESS

CONTROL

In the following, we explain the details of the individual steps, using
the public API setComponentEnabledSetting from the Package
ManagerService as an illustrative example.

4.1 Abstracting CFG to Access-Control Flow

Graph (AFG):

Given the CFG for an API function, not all of the nodes in the
CFG are of interest in the construction of protection map. For
instance, the CFG of setComponentEnabledSetting contains a
huge number of nodes and edges as its implementation is fairly
complicated. To extract the precise protection, we are interested in
the instructions that perform security checks, and the instructions
that change the values of variables that are used in the security
checks. Dependencies of security checks are important because
different access control may be enforced depending on different
input conditions. Figure 1 in Section 2 depicts such a case: different
permissions are enforced depending on the supplied input events.
We want to point out that simply performing backward program
slicing to extract the data/control dependence transitive closure
starting from the permission checks results in the inclusion of
code unnecessary for building the protection map. For instance,
the backward slice would include all code that could affect the
control flow before reaching the access control related logic, such
as input validation checks, which can be quite complex. Since such
code is not part of the access control logic, we need to exclude it
through our analysis. Moreover, tracking data dependencies alone
is not sufficient because conditionals that determine the different
permissions along different paths need to be included.

To precisely capture the access control logic, we introduce the
concept of Access-Control Flow Graph (AFG), which contains only
the instructions and control structures needed for building the
protection map. AFG is defined as follows.

Definition 4.1. An Access-Control Flow Graph (AFG) is an ab-
stracted Control Flow Graph. A node in an AFG is a security check
instruction or an instruction that is along a program dependence
path leading from some API parameter to a security check, preclud-
ing those performing input validation. There are also two special
nodes Exception and Granted used to denote the possible exits of an
AFG: security exception and access granted. An edge from node n
tom is introduced to abstract a control flow path between the two
nodes in the program. If n is a conditional statement, the edge also
has an annotation (T / F) to distinguish the branch outcome.

Example. Figure 6(A) depicts a code snippet extracted from
setComponentEnabledSetting’s implementation. This API is for
setting the enabled-setting for a package or its component (such as
an activity, receiver, etc). The implementation is as follows. Line
2 ensures that the supplied user id exists. Then, lines 5 to 6 ver-
ify whether it is dealing with a package level or component level
state update. The subsequent lines enforce various security checks.
If the caller is trying to update the given component for another
user and the caller is not SYSTEM, the code enforces the permission
INTERACT_ACROSS_USERS (lines 7 to 9). Then, the code enforces
another layer of access control: if the caller does not own the given

Algorithm 1 Constructing AFG.
Require:

1: CFG = (N , E) where N is a set of nodes and E is a set of edges.
2: isSec(n) = function that checks if a given node n is a security check
3: isSecRelated(n) = check if n is a node on which some security check is dependent.
4: isPred(n) = check if n is a predicate statement.
5: pathExists(n ,m,G , N ) = check if there exists a path from n tom inG that does

not include any node in N other than n andm.
Ensure:

6: AFG = (N ′, E′) where N ′ is node set and E′ edge set.

7: function constructAFG
8: N ′ = {Granted, Exception}

▷ Step I: Adding nodes

9: for all each node n ∈ N do

10: if isSec(n) then
11: N ′ = N ′ ∪ {n}
12: if isSecRelated(n) then
13: if isPred(n) and there is a path from n to an exceptionm along which

there is no security check then

14: continue
15: N ′ = N ′ ∪ {n}

▷ Step II: Adding edges

16: for all each pair (n,m) ∈ N ′
do

17: if pathExists(n,m, CFG , N ′) then
18: E′ = E′ ∪ {(n,m)}

▷ Step III: Adding edges to the two special nodes

19: for all each node n ∈ N ′
do

20: if isPred(n) and n has less than two edges in AFG then

21: E′ = E′ ∪ {(n, Granted )}
22: if isSec(n) then
23: E′ = E′ ∪ {(n, Exception)}
24: if isSec(n) and n has less than two edges then
25: E′ = E′ ∪ {(n, Granted )}

component, it enforces the permission CHANGE_COMPONENT_ENABLED
_STATE (lines 10 to 12). Once the security checks succeed, the actual
functionalities of the API are carried out (lines 13 and onward).

The actual CFG of the code for setComponentEnabledSetting
is quite complicated due to its implementation complexity. For sim-
plicity, we construct the CFG for the code snippet (Figure 6(A)).
Figure 6(B) depicts the constructed CFG. We label each node with a
number indicating the corresponding line number in the code snip-
pet. For instance, node 2 corresponds to the user id input validation.
Nodes 7 to 12 represent the access control enforcement logic and
may lead to the raise of an exception (the red node on the left) if
the enforcement does not hold.

Figure 6(C) depicts our constructed AFG for the same API. It only
contains the security enforcement nodes (e.g., nodes 9 and 12) and
those providing values to be used in the enforcement (e.g., nodes 7
and 10). The input validation node (node 2) and other nodes which
do not affect the security enforcements (nodes 5 and 6) are pruned
and abstracted with a single edge (linking node 1 to 7). Observe
that although node 2 is in the program slice of the security checks
(nodes 9 and 12) as the checks are transitively control dependent
on node 2, it is not part of the AFG as there is no data dependency
on node 2. Nodes 13 and 14 are also removed and abstracted with
an edge to the special node Granted. Intuitively, they belong to the
situation in which the access is granted. Clearly, the abstracted AFG
is much more concise and depicts the access control mechanism. 2

Algorithm 1 outlines our process for constructing the AFG from
a given CFG. It takes the CFG(N ,E) and produces the correspond-
ing AFG denoted by (N ′, E ′). To facilitate discussion, we define a

Session 6B: Mobile 1 CCS’18, October 15-19, 2018, Toronto, ON, Canada

1155



Construct Access Control 
Flow Graph (AFG)

Generate Protection Map

A. Input API

C. AFG

D. First Order Logic Representation of Protection Map

B. Control Flow Graph of API 

Construct Control Flow
Graph

pkgSetting.getEnabled(x4) == x3

pkgSetting.setEnabled(..)
F

SetComponentEnableSetting

sUserManager.exists(x4)

x1.getClassName == null

x4== UserHandle.getUserId(uid)uid ==  SYSTEM_UID

uid = Binder.getCallingUid()

Enforce(INTERACT_
ACROSS_USERS)

packageSetting = mPackage.get(x1)

F

F

F

T
T

T

uid == packageSetting.uidF

F

Enforce
(CHANGE..STATE)

T
T

F

F

T

T

isApp = True

F

2

5

6

7

8

10

12

13

11

9

8

14

1

SetComponentEnableSetting

x4== UserHandle.getUserId(uid)

uid ==  SYSTEM_UID

uid = Binder.getCallingUid()

Enforce(INTERACT_
ACROSS_USERS)

packageSetting = mPackage.get(x1)

uid == packageSetting.uid

F

F

F
F

F

Enforce
(CHANGE..STATE)

T
T

T

T
T

Success
Exception

7

8

8

9

10

11

12

1

Granted

Figure 6: Proposed Approach for Extracting a Protection Map for an API; Blue Nodes Denote Security Checks

number of auxiliary functions in lines 1-5. The algorithm consists
of three steps.

It first initializes the AFG with the two special nodes (line 8). In
lines (9-15), it adds nodes to the AFG. Lines 10-11 adds all nodes
that perform security check (i.e., UID check, User id check, and
permission enforcement). Lines 12-15 add the nodes on which se-
curity checks depend. Line 13 excludes input validation checks.
Specifically, given a predicate n that some security check directly/-
transitively depends on, if there is a path from n to some exception
(including return with error code), and there is not any security
check along the path. It must be an input validation check. In-
tuitively, the exception must be caused by something other than
security checks (such as line 2 in Figure 6(A)). In contrast, if the
path from n to exception has some security check (e.g., lines 8 and
11 in Figure 6(A)), n is access control related and hence added to
AFG. Note that nodes on which security checks are data dependent
on (e.g., line 7 in Figure 6(A)) are always included.

In the second step, the algorithm adds edges to AFG to abstract
the original control flow. Specifically, lines 16-18 connect each pair
of nodes in AFG as long as there exists a path in the original CFG
and along the path, there are no other AFG nodes. That is, there is

reachability between the two and they are the closest. For example,
the paths between lines 1 and 7 are abstracted as an edge.

In the third step, the algorithm connects nodes to the two special
nodes Exception and Granted (lines 19-25). Particularly, lines 20-21
add an edge from a predicate n to Granted if n currently has only
one edge in the AFG. Specifically, the presence of n in the AFG
indicates that it must have a path to some security check in the
AFG. Therefore, the other (missing) branch of n must correspond to
cases in which access is granted. For example, after steps one and
two, line 11 in Figure 6(A) is added to the AFG and it has only one
edge to line 12. The other branch corresponds to that the access
is granted so that the API can proceed with its functionalities. As
such, we add an edge from line 11 to Granted. Since each security
check itself is essentially a predicate, lines 22-25 add edges from
security checks to the special nodes.

In our algorithm, statements that perform normal functionalities
such as lines 13-14 in Figure 6(A) are completely abstracted away.
Also observe that an AFG is a well-formed control flow graph (i.e.,
each predicate has two edges). Intuitively, one can think of it as a
simplified version of the original API code.

Session 6B: Mobile 1 CCS’18, October 15-19, 2018, Toronto, ON, Canada

1156



Algorithm 2 Generating Protection Map.
Require:

1: AFG = (N , E) with N the node set and E the edge set.
2: isPred(n)= checks if n is a predicate.
3: isSec(n)= checks if n is a security check.
4:
Ensure:

5: p = the current path condition
6: M = the protection map
7:

8: function DFS(n, p)
9: if n == Granted then

10: M = M ∨ p
11: if isPred(n) or isSec(n) then
12: for all ⟨n,m ⟩ ∈ E do

13: if ⟨n,m ⟩ denotes the true branch then

14: p = p ∧ {the condition denoted by n}
15: if ⟨n,m ⟩ denotes the false branch then

16: p = p ∧ ¬ {the condition denoted by n}
17: DFS(m, p)
18: else ▷ Must be an assignment
19: Let n be an assignment x = e with e an expression
20: p = (p ∧ x = e )
21: Letm be the successor of n
22: DFS(m, p)

DFS(AFG .root , f alse )
M = LogicalFormulaReduction((M ))

4.2 Generating Protection Map

Given the AFG of an API, its protection map is constructed by
extracting the path conditions of all the paths from the entry to
the Granted node. Specifically, each path denotes a way to acquire
the needed access. Hence, the protection map is a first-order logic
formula formed by the disjunction of all these path conditions.

Algorithm 2 outlines our process for generating protection map.
It takes the AFG and produces a protection map M that is a first-
order logic formula.

The algorithm performs a depth first traversal of the AFG starting
from the root ( i.e. function entry) to node Granted. It collects
a condition p along each path. The map M is the disjunction of
the p of individual paths (lines 9-10). During the traversal of each
distinct path, if the node n is a predicate or a security check which is
essentially a predicate as well (line 11), the current path condition is
conjoined with the condition denoted by n or its negation (lines 13-
16). Otherwise, n must be an assignment. In this case, p is conjoined
with an assertion denoting the assignment (line 20). Then, the
traversal is conducted recursively (lines 17 and 22).

After recursion,M is in the following logical form.
M := [p1 ∨ ... ∨ pk ];

where each pi is represented as follows:
pi := [(y1 = e1) ∧ ... ∧ (yn = et )]

While the above generated logical formula suffices for precise
representation of the access control semantics, it might have an
arbitrary complicated structure and could be difficult for develop-
ers to understand. Thus, we further simplify the logical formula
through reducing its number of terms and clauses (function call
LoдicalFormulaReduction in Algorithm 2). This is done using the
Quine–McCluskey algorithm [30].

Example. To generate the protection map for the sample API set
ComponentEnabledSetting, we perform a DFS traversal of the
AFG in Figure 6(C) starting from the root node. The traversal reveals
6 disjoint unique paths leading to Granted. Each path condition is
constructed by conjoining the predicates and assignments along
the way. We use variable Perm to denote the needed permission(s),
U ID to denote the enforced UID and variables xi to denote the ith
parameter of the API.

M := [p1 ∨ ..p6];
p1 := [¬x4 = U serHandle .дetU ser Id∧

¬U ID = SYST EM∧
Perm ∋ I NT ERACT _..U SERS )∧
¬U ID =mPackaдes .дet (x1).pkд .uid∧
Perm ∋ CHANGE_..._STAT E];

p2 := [¬x4 = U serHandle .дetU ser Id∧
U ID = SYST EM∧
¬U ID =mPackaдes .дet (x1).pkд .uid∧
Perm ∋ CHANGE_..._STAT E];
...

Observe that the above formula is complicated and verbose.
Nonetheless, our reduction step produces a succinct representation
as in Figure 6(D).

5 USING PROTECTION MAPPING TO

IDENTIFY SECURITY PROBLEMS

The existing Android permission maps have been a valuable input
to address classic Android security problems, particularly, permis-

sion over-privilege and component hijacking. Intuitively, since the
existing statically-derived efforts [6, 7] present an API’s required
protection as a single set of conjoint permissions, using such per-
mission sets to identify the aforementioned two problems is quite
straightforward. Simply put, to detect overprivilege, they extract the
set of permissions an app possesses and compare it with the invoked
API’s permission map. Similarly, to infer whether an app’s com-
ponent is correctly protected, the solutions compare the enforced
component protection with the permission set of its control-flow
reachable APIs.

Since Arcade uses first-order logic formulas to precisely model
access control mechanisms, using our protection map requires
sophisticated analysis of the apps and detecting security issues
requires reasoning about satisfiability of logic formulas. In the fol-
lowing subsections, we describe how we analyze apps and use
protection maps to detect security problems.

5.1 Over-Privilege Detection

As discussed in the previous section, our constructed protection
map for each Android API is a first-order logic formula (as illus-
trated in Figure 6(D)), which essentially denotes a disjunction of
the path conditions leading from the entry point of the API to the
Granted node in the AFG. In order to invoke a protected Android
API, a calling app needs to satisfy at least one of the path condi-
tions. To detect over-privilege problems, we identify the weakest
permissions the app needs to possess. We translate the problem
into a logic inference problem.

Recall that our protection map formula contains several con-
textual factors affecting subsequent enforced security protection.
That is, different protections might be enforced depending on the
contextual condition an app holds. Intuitively, the context of an

Session 6B: Mobile 1 CCS’18, October 15-19, 2018, Toronto, ON, Canada

1157



API invocation within an app contains (1) a number of implicit se-

curity properties of the app including the app’s UID, User ID, and
system settings; these properties cannot be inferred by analyzing
the source code of the app, rather, they are implicitly encoded in
various configuration files; and (2) the values of API parameters that
can be explicitly determined by analyzing the app source code using
traditional data flow analysis. Formally, we model contextC = I ∧ P .
I is the implicit set of conditions and P the set of explicit conditions.

Intuitively, I is a conjunction of individual implicit conditions,
such as i1 ∧ i2 ∧ ... ∧ in , where it represents an implicit condition.
For example, to represent that an app’s UID is 1000, we have it
being (U ID = 1000). Similarly, P is a conjunction of individual
explicit conditions, such as e1 ∧ e2 ∧ ... ∧ en , where ei represents
the condition for the ith API parameter. For example, if the first
parameter may have values 1 and 2, we have e1 being x1 = 1∨x1 = 2
with x1 denoting the first API parameter in our protection map.
For the cases where we cannot extract the value(s) of an explicit
condition (e.g., the parameter value is provided at runtime), we
conservatively assume it can be any value.
Example. Let us revisit the example API of TelephonyRegistry.
listen(...) in Section 2, in which events is the 3rd parameter
of the API. The system app GmsCore.apk (version 6.0-2166767)
invokes the API as follows.

1 mTelephony.listen(.., LISTEN_CELL_LOCATION | LISTEN_DATA_CONNECTION_STATE | ...)

We extract the explicit condition for parameter events (e3) from
the above call site.

events = LIST EN _CELL_LOCAT ION
| LIST EN _DATA_CONNECT ION _STAT E |... 2

Given the context C for an API at a specific call site and the
protection mappingM of the API, we query a constraint solver for
the solution of variable Perm, which denotes the needed permis-
sion(s), in order to satisfyC ∧M . Intuitively, the permission(s) need
to satisfy both the contextual condition and the protection map.
Since there may be multiple solutions, we enumerate the possible
solutions one by one as follows. Assume the first solution is S1, in
order to acquire the second solution, we queryC ∧M ∧ Perm , S1.
Assume the second solution is S2, in order to acquire the third solu-
tion, we query C ∧M ∧ Perm , S1 ∧ Perm , S2, and so on until it
is unsatisfiable (UNSAT). Since the number of solutions is limited,
the process quickly terminates.
Example Continued. The permission map M of the previous API
is in Figure 2. Inferring a possible permission Perm that GmsCore
should satisfy to invoke listen under the contextual condition C
= {e3} entails solving the conjunction of C ∧M . The solver returns
two solutions S1 and S2.

S1 := Perm = {ACCESS .. , READ_PRIV .. }
S2 := Perm = {ACCESS .. , READ_PHON .. } 2

Given the multiple solutions, each denoting some permission
configuration, we need to identify the weakest one. Note that in
Android, different permissions have various privilege levels. Accord-
ing to [2], these permissions can be classified into four categories,
whose strength can be ordered as follows. System = Signature >

Dangerous > Normal. Based on this partial order, we can determine
the weakest condition(s) from the multiple solutions returned by
the solver.

In our example, the returned solutions S1 and S2 correspond to
different privilege levels. Since READ_PRIVILEGED_PHONE_STATE
and READ_PHONE_ STATE fall into the System and Dangerous protec-
tion levels, respectively, the first solution S1 is more privileged than
the second one S2. Hence, requesting S1 would lead to a permission
over-privileged problem.

5.2 Component Hijacking Detection

Classic solutions [25, 37] detect whether a component is correctly
protected through comparing its enforced permission at its manifest
declaration to the permission sets of its control-flow reachable
APIs. If the former is weaker than the latter, a flag is raised. Given
our protection map structure, we translate detecting this class of
vulnerabilities into a boolean satisfiability problem.

Specifically, we define the same constraints C and M as in the
previous section, where C is the contextual condition an app’s
component holds at its control-flow reachable API and M is our
extracted protection map. In addition, we need to define one more
constraint D denoting the enforced permission at the component’s
declaration. Now, detecting whether the target component is not
safe is therefore a test of satisfaction of D ⇒C ∧M . Intuitively, we
are testing if D is equally strong or stronger than C ∧M .
Permission Normalization.However, the above test may lead to false
positives if not carefully designed due to the following app devel-
opment practice: Any permissions in the signature class indicate
the same level of protection. As such, if a component is meant to
provide a privileged functionality exclusively to other apps signed
by the same developer, an arbitrary signature level permission may
be used, which may not appear in its invoked API protection map.
The practice is safe since the target components are actually overly

protected. However, without encoding the strength of permissions,
the solver would return UNSAT, leading to false positives.

To handle such cases, we first classify the permissions in both
M and D to the four categories mentioned in the previous section.
We further encode the partial order of categories as part of the
formula. As such, the solver could correctly compare the different
permissions. Details about such normalization are omitted as it is
not our contribution.

6 EVALUATION

We implement Arcade on top of Wala [19], which is a comprehen-
sive analysis infrastructure for Java and Dalvik code and can handle
large code bases. It has been used in a number of Android analysis
projects (e.g., [2, 16–18, 24, 25]). It provides a rich set of analysis
primivitves such as alias analysis, dependence analysis, and entry
point recogniztion for Android apps. We have also implemented a
simplified version of Android IPC resolver similar to [2, 32]. We use
Z3 [26] as our solver. For each Android image under study, Arcade
extracts and processes its framework class files. As different images
might pack the code differently, we employ several existing tools
to handle each format gracefully [1, 4, 8, 31].

6.1 Analysis of API Protection Map

Our proposed path-sensitive analysis of the Android framework
produced a protection map that correlates APIs with a set of disjoint
protection paths dictated by input conditions. Each path is further

Session 6B: Mobile 1 CCS’18, October 15-19, 2018, Toronto, ON, Canada

1158



denoted with a set of conjoint conditions.While the achieved results
of our tool Arcade partially align with a subset of the prior permis-
sion maps (e.g., when the protection map has a single permission),
they also demonstrate differences for a significant percentage of An-
droid framework APIs (∼ 41%), indicating the potential inaccuracy
of existing mappings.

In this section, we discuss the characteristics of our constructed
API protection mapping and compare the results to the permission
specification produced by the most recent effort Axplorer [7].

6.1.1 Codebases.
AOSP codebases. We use Arcade to extract the protection map-
ping for 4 Android versions: 6.0 and 6.0.1, 7.0 and the recent release
7.1. Table 1 (rows 2 to 5) summarizes the statistics generated for the
analyzed images. As shown, the framework complexity increases
between major versions: the number of exposed framework APIs
(column 3) is larger in the latest releases.
Custom codebases. Our analysis mainly aims to generate pro-
tection specifications for AOSP images, since 3rd party and AOSP
system-app developers mostly invoke AOSP’s documented APIs.
However, we propose to further analyze custom Android images
for two reasons. First, we aim to provide new insights about the ef-
fect of customization on our generated maps. Second, since vendor
apps, accounting for the majority of preloaded apps [37], do invoke
custom APIs, we believe that providing protection references for
vendor APIs can be quite valuable. Table 1 lists our collected cus-
tom images. We select representative images from major vendors:
Samsung Galaxy S6 Edge (6.0.1), S8 (7.0), Sony Xperia XZ (7.0) and
LG Q6 (7.1). As shown, it is obvious that the vendors conduct heavy
customization. The number of exposed APIs drastically increases
in the custom images.
Performance. Column 2 in Table 1 reports the time consumed by
Arcade to process and analyze our collected images. As shown, it
takes on average 36.5 min to conduct our analysis, with Samsung S7
incurring the longest time (47 min). Since this is a one time effort,
the time is acceptable.

6.1.2 API Protection Mapping Breakdown.
Table 1 further presents a breakdown of our generated API pro-

tection mapping. The 4th column reports the number of APIs where
at least one Android protection path has been identified. That is,
there is access control in these APIs. Please note that this reported
number is slightly larger than what has been reported byAxplorer;
e.g., for AOSP 7.0, Axplorer reports 1640 protected APIs, while
Arcade reports 1776. This is because Arcade considers more pro-
tection features (UID checks, etc).

The 5th column presents the number of APIs where an absolute

permission(s) enforcement is detected. That is, it denotes the APIs in
which there is only one path leading from the entry to the Granted
node in the AFGs. There may be multiple security checks along the
path, meaning thatmultiple permissions are required. The following
protectionmaps are examples of absolute permission checks: Perm =
{MANAGE_FINGERPRINT}, Perm ={ RECEIVE_SMS, SEND_SMS}.
Please note that the APIs having absolute permission mapping must
have the same requested permissions reported in Axplorer as well,
since this latter constructs the permission mapping required for an
API as a set of permissions.

The 6th column reports the number of APIs where a permis-
sion is conditionally enforced (i.e., different security checks are
required in different paths leading to Granted in AFGs). As such,
these APIs should have at least 2 disjoint protection paths. The
following protection maps illustrate such cases: Perm = {INTER-
ACT_ACROSS_USERS}∨x1 =UserId, Perm= {SCORE_NETWORKS}
∨ Perm = {BROADCAST_NETWORK_PRIVILEGED}.

We report similar analysis results for two other protection fea-
tures: UID and User Id checks. Columns 7 and 8 present the number
of APIs where absolute and conditional UID checks are present,
respectively. An example of absolute UID check is UID = SYS-
TEM_UID, while an example of conditional UID check is UID =
SYSTEM_UID ∨ Perm = {MANAGE_APP_TOKENS}, meaning that
the caller needs to be either SYSTEM or holds the permission MAN-
AGE_... to invoke the API. Columns 9 and 10 depict the results for
the User checks. Please note that the conditional UID or UserId
checks paths might (partially) overlap with the conditional permis-
sion enforcement paths.
Significance of Path-Sensitive Analysis. The last column of
Table 1 presents the ratio of detected conditional protection en-
forcement. As depicted, it constitutes on average ∼41% of the en-
forced checks (for AOSP). Since they do not perform path-sensitive
analysis, existing static analysis approaches (e.g., PScout and Ax-
plorer) would not be able to accurately generate permission maps
for this significant portion, rather, their solutions are an approxi-
mation. This result clearly highlights the need for our conducted
path-sensitive analysis.
Importance of Other Security Features. Although not as sub-
stantial as absolute permissions checks, Absolute UID or UserId
checks constitute∼6.9% of total checks for AOSP. Their conditional
enforcements are more substantial (∼28%). Hence, to generate an
accurate protection map, these features should be considered.
Effect of Customization. Although the sample LG and Sony
images have a similar conditional security checks ratio to AOSP,
Samsung’s protection map demonstrates that vendor customization
may affect this number. Samsung exhibits the highest conditional
checks ratio: Up to 51%, which further proves the need for path-
sensitive analysis in the construction of protection maps.

6.1.3 Protection Mapping Complexity.
As discussed, our protection map consists of disjoint protection

paths. Intuitively, the count of disjoint paths identified per API (i.e.,
paths to Granted node in AFGs) reflects the complexity level for
the adopted access control. The more paths are detected, the more
complex the access control is. Figure 7 presents the distribution of
protection paths count generated for AOSP 6.0.1 and 7.0.

As illustrated, the protection path count ranges from one single
path to as many as more than 8 paths for a few APIs, with one being
the most dominant. The next dominant path count is 2 protections
paths followed by 4 paths. Observe that there is also an increase in
complexity between versions 6.0.1 and 7.0.

6.1.4 Conditional Protection Characteristics.
In an effort to provide some insights about the nature of condi-

tional protection enforcements, we report the most common disjoint
protection paths generated by Arcade. Recall that disjoint protec-
tion paths A and B denote the cases where either A or B is satisfied,

Session 6B: Mobile 1 CCS’18, October 15-19, 2018, Toronto, ON, Canada

1159



Table 1: Breakdown of API Protection Mapping Results

Image Analysis Time (min) # Exposed APIs # Protected APIs

# Permission Checks # UID Checks # User Checks Conditional Checks

Ratio (%)Absolute Conditional Absolute Conditional Absolute Conditional

AOSP 6.0 27 4117 1510 842 564 68 227 36 180 40.11
AOSP 6.0.1 28 4189 1519 844 570 69 235 36 186 40.31
AOSP 7.0 35 5073 1776 875 648 71 281 49 309 42.55
AOSP 7.1 35 5274 1832 882 680 88 301 49 313 43.53

S6 Edge (6.0.1) 44 9184 2566 1030 1107 292 541 104 629 51.8
S8 (7.0) 47 8616 2743 1091 1172 332 581 115 669 51.79

LG Q6 (7.1) 37 6676 1988 988 779 166 292 55 369 44.09
Sony Xperia XZ (7.0) 38 8383 2022 1059 776 118 377 69 421 42.29

Table 2: Most Common Disjoint Protections Paths

Category Protection Path 1 Protection Path 2

Perm = android.permission.INTERACT_ACROSS_USERS_FULL xi = UserId
Perm = android.permission.INTERACT_ACROSS_USERS_FULL UID = SYSTEM_UID
Perm = android.permission.INTERACT_ACROSS_USERS_FULL UID = ROOT_UID

User Checks Perm = android.permission.INTERACT_ACROSS_USERS_FULL Perm = android.permission.INTERACT_ACROSS_USERS
Perm = android.permission.INTERACT_ACROSS_USERS xi = UserId
Perm = android.permission.INTERACT_ACROSS_USERS UID = SYSTEM_UID
Perm = android.permission.INTERACT_ACROSS_USERS UID = ROOT_UID

UID = SYSTEM_UID xi = UserId
UID = ROOT_UID xi = UserId
UID = ROOT_UID UID = SYSTEM_UID

Perm = android.permission.UPDATE_DEVICE_STATS PID = Process.myPid
UID Checks Perm = android.permission.MANAGE_APP_TOKENS PID = Process.myPid

Perm = android.permission.UPDATE_APP_OPS_STATS PID = Process.myPid
Perm = android.permission.SET_KEYBOARD_LAYOUT PID = Process.myPid
Perm = android.permission.UPDATE_APP_OPS_STATS xi = UID
Perm = android.permission.READ_PHONE_STATE Perm = android.permission.READ_PRIVILEGED_PHONE_STATE

Perm = android.permission.ACCESS_FINE_LOCATION Perm = android.permission.ACCESS_COARSE_LOCATION
Perm = android.permission.GET_TASKS Perm = android.permission.REAL_GET_TASKS

Permission Checks Perm = android.permission.DEVICE_POWER Perm = android.permission.UPDATE_DEVICE_STATS
Perm = android.permission.SCORE_NETWORKS Perm = android.permission.BROADCAST_NETWORK_PRIVILEGED
Perm = android.permission.WRITE_SETTINGS Perm = android.permission.CHANGE_NETWORK_STATE

Figure 7: Distribution of Protection Paths Count for AOSP 6.0.1 &

7.0

the access is granted. To this end, we examine the generated dis-
joint protection paths and group them into possible pairs. if a pair
exists in our protection map, we increase the corresponding count.
Table 2 lists the most common disjoint paths as generated by our
analysis (for AOSP 7.0). Each row denotes a pair.

As shown, we can group the disjoint protection paths into 3
categories. The 1st category denotes a cross user interaction check.
This category has been added into the framework to implement the
multi-user access control, i.e., enforce that the user has the right to
perform certain operations. As listed, user checks consist of either

one of the following: verifying if the supplied user id is equivalent
to the calling user id (meaning the user is performing a functional-
ity for herself and thus is allowed to do so), holding either one of
the permissions INTERACT_.._FULL, or INTERACT_.._USERS or be-
longing to a privileged UID (meaning the user is privileged enough
to perform operations for another user).

The 2nd category denotes access control where a privileged caller
is exceptionally allowed to perform an operation without holding
a permission. Such disjoint checks always include a privileged UID
/ PID check.

The last category includes disjoint permission enforcements,
where a permission is required for one path while another is needed
for the other path. Our analysis revealed that the condition deciding
which permission to enforce is often related to a supplied parameter.

These associated security checks disclose the access control de-
sign patterns in Android.

6.2 Applications of Protection Mappings

We leverage the generated protection mapping of Arcade to ad-
dress permission overprivilege and component hijacking problems.
We follow our proposed reasoning of the satisfiability of logic for-
mulas to vet Android apps for these security issues. Following, we
describe our collected apps and then present our achieved detection
results.
Collected Apps. Our app dataset (Table 3) consists of a large
corpus of Android system apps (total 12043 apps) extracted from
62 custom ROMs, which we have collected from various resources

Session 6B: Mobile 1 CCS’18, October 15-19, 2018, Toronto, ON, Canada

1160



[33, 34] and a few physical devices. The images belong to 12 distinct
vendors and operate Android versions 6.0.1 to 7.1.

Table 3: Collected System Apps

Vendor # Images # System Apps Avg # of Apps per Image

Samsung 20 5919 295
LG 1 201 201
HTC 5 781 156
Advan 1 137 137
Kata 3 350 116

Lenovo 11 1505 136
Xiaomi 2 240 120
Mobicel 7 861 123
Oppo 5 1040 208
Sony 1 235 235

Wileyfox 5 633 126
ZTE 1 139 139
Total 62 12043 167

Please note that we focus on system apps because of the fol-
lowing two reasons. First, the usage of System and Signature level
permissions, contributing to a significant percentage of the API
map, is not relevant in the context of 3rd party apps. Second, any
vulnerability detected in system app has a bigger impact as it is
automatically present in the corresponding victim images.

6.2.1 Permission Overprivilege Problem.
Across all vendors, we identified that 61.5% of apps are over-

privileged, with Oppo exhibiting the highest % of overprivileges (∼
74%) and HTC having the lowest (∼ 43%). Fortunately, the situation
seems to have improved since the overprivilege results (85.78%)
reported by [37] for system apps (Android 2.3 to 4.1).

Our conducted app analysis abstracts the context of invoked
APIs in an app and selects accordingly the least privileged access
control path from its protection mapping, generated by Arcade.
This intuitively implies that our set of required permissions per
app would be smaller than the ones produced through leveraging
PScout’s or Axplorer’s mappings. To demonstrate whether this
indeed leads to capturing more overprivileges instances than other
tools, we further perform overprivilege detection using Axplorer’s
permission mapping. Table 4 reports the average number of un-
needed permissions per app as produced by our mappings and by
the approach relying on Axplorer’s.

On average, using Arcade’s mapping, we can exclusively de-
tect 2.5 more unneeded permissions per overprivileged app, an
average increase of 43.8% over the other approach, which clearly
demonstrates the strengths of our conducted path-sensitive anal-
ysis. Due to the lack of a ground truth, we manually verified the
flagged permissions that were reported as unneeded by our ap-
proach. Specifically, we inspected the apps to locate invocation
sites to APIs requiring these flagged permissions. Then, for each
API, we checked whether the app indeed does not need to hold the
permission because of its implicit properties or the specific parame-
ters passed to the APIs. This verification process involves extensive
manual work and thus cannot scale to cover a large number of
apps. Thus, we performed the manual verification on 120 randomly
sampled apps. Our manual analysis revealed that in 112 apps, the
flagged permissions are indeed unneeded (92%). For the remaining
8 apps, we could not confirm the result as it was not possible to
infer the implicit parameters passed to the APIs.

Furthermore, through our manual inspection, we noticed that
the permissions responsible for the observed detection differences

Table 4: Permission Overprivilege across Vendors

Vendor

Avg # of Unneeded Permissions

Arcade Axplorer

Samsung 7.8 5.3
LG 5.5 3.5
HTC 6.5 4.3
Advan 11.8 8.8
Kata 6.6 4.5

Lenovo 9.8 6.3
Oppo 10.4 8.1
Xiaomi 9.8 6.8
Mobicel 7.9 5.1
Sony 8.4 5.9

Wileyfox 6.2 4.2
ZTE 8.5 5.8
Total 8.3 5.7

are unsurprisingly the permissions appearing in Table 2. They
were not captured as unneeded by the other approaches, due to
their lack of path-sensitive analysis. For example, the permissions
INTERACT_ACROSS_USERS_FULL, INTERACT_ACROSS_USERS, READ_
PRIVILEGED_PHONE_STATE and ACCESS_FINE_LOCATION were all
deemed as needed by other approaches, while they were the main
reason for the overprivileges detected by our tool.

6.2.2 Component hijacking Vulnerability.

Table 5: Component Hijacking

Vendor

Avg % of Vulnerable Apps Avg #(%) of Additional FP

Arcade Axplorer Components by Axplorer
1

Samsung 2.7 3.4 7 ( 9.3 %)
LG 3.8 4.4 9 ( 14.1 %)
HTC 1.4 1.5 4 ( 31.2 %)
Advan 2.7 3.4 11 ( 23.3 %)
Kata 3.9 4.5 12 ( 15.1 %)

Lenovo 3.8 4.7 11 ( 14.4 %)
Oppo 4.6 5.8 14 ( 20.2 %)
Xiaomi 1.8 2.3 8 ( 22.7 %)
Mobicel 3.1 4 23 ( 32.3 %)
Sony 1.3 1.7 5 ( 16.6 %)

Wileyfox 3.1 3.9 18 ( 18.7 %)
ZTE 2.7 3.5 19 ( 21.2 %)
Total 2.9 3.4 11.8 ( 19.8 %)

1. Due to the lack of ground truth, we cannot automatically identify the FP for our
tool. Manual inspection on 70 components reported show that 13% are FPs. Note
that these FPs are common for both our tool and Axplorer, while the FPs reported
in the last column are unique to Axplorer.

Our analysis for component hijacking detection led to the results
depicted in Table 5. As reported by our tool (Column 2), the average
% of vulnerable apps per vendor ranges from 1.3 % (Sony) to 4.6 %
(Oppo). Fortunately, compared to previous reports on component
hijacking vulnerabilities [37], the situation seems to be getting
better for most vendors (reported 6.77%).

To compare with approaches relying on Axplorer, we further
conduct the detection analysis using Axplorer’s permission map-
ping. As depicted in Column 3, the other approach reports a higher
% of vulnerable apps. Specifically, while we report 2.9% vulnerabili-
ties, the other approach reports 3.4 %.

To verify whether the reported vulnerabilities by the other ap-
proach are false positives, we conducted an additional analysis. We
automatically filtered out the app components uniquely flagged as
vulnerable by the other approach and investigated the APIs that
triggered the hijack-enabling flow from the component’s entry
point. Unsurprisingly, these APIs had conditional protections in Ar-
cade’s generated mappings (such that the component satisfied the

Session 6B: Mobile 1 CCS’18, October 15-19, 2018, Toronto, ON, Canada

1161



strongest protection), which justifies why our analysis did not flag
them as vulnerable. We present the average number of components
that are additionally flagged as vulnerable by the other approach,
per analyzed image. Note that they are all FPs. As shown in the last
column, on average 11.8 components are additionally flagged and
hence false alarms per image (out of 64 average reported compo-
nents), reaching up to 23 components (out of 71) in Mobicel and 19
in ZTE (out of 89).

It should be noted that, due to specific static analysis limitations,
our implementation of the component hijacking detection (using
Arcade’s generated map as well as using Axplorer’s map) might
intrinsically lead to false alarms (common to both of the two ap-
proaches). Due to the lack of ground truth, we manually verified
70 randomly sampled components. We identified that 9 cases (i.e.,
13%) are false positives. An important thing to note is that they
are FPs for both approaches (i.e., using Arcade and Axplorer)
while the last column of Table 5 shows the additional FPs produced
if relying on Axplorer’s mapping. The false positives were due
to infeasible code paths that the analysis did not understand. For
example, while the analysis discovered a feasible hijacking flow
from an entry point to a target sink API, the path contains invoca-
tions to native functions that render the path infeasible at runtime.
We believe though that our false positive rate is acceptable in a
vulnerability filtering scenario.

Although not significant, our approach has also detected some
hijacking cases that cannot be detected at all by approaches relying
on other mappings. The cause behind this is they did not consider
other security features. The following two case studies demonstrate
this:
Case Study 1: Denying Bluetooth Discovery for other users.

Our analysis reveals a component hijacking vulnerability in several
tablet models running versions prior to 7.0, allowing a background
user to deny bluetooth discovery and usage for the logged-in users.
Specifically, the custom setting app in these devices includes a broad-
cast receiver BluetoothDiscoverableTimeoutReceiver that in-
vokes theAPI btservice.AdapterService.setScanMode(..), al-
lowing to turn off/on bluetooth discovery. Given this bluetooth
related functionality, the receiver is protected with the permission
BLUETOOT_ADMIN. However, Arcade generates the following pro-
tection map for the API: (UID = SYSTEM ∨ UserId = current)
∧ Perm = {BLUETOOTH_ADMIN}. Our tool correctly detects the hi-
jacking vulnerability. Specifically, the above map implies that in
addition to the permission, the caller needs to be either SYSTEM or
belong to an active user, implying that the component is actually
weakly protected. In other words, the app should also enforce a UID
check, a User check or something equivalent. Otherwise, it could
be exploited. We have confirmed the vulnerability by successfully
disabling active user’s bluetooth using a background user app.

This vulnerability cannot be discovered by approaches relying
on other permission maps: Since UID / User Id checks are not
considered, the maps consider BLUETOOTH_ADMIN as the only pro-
tection needed, which is equal to the enforced protection by the
component.
Case Study 2: Manipulating Display Colors. In the second case,
our analysis discovered a component hijacking problem that cannot
be identified by other tools relying on the existing mappings. In a
few Samsung devices, we found out that manipulating screen colors

(setting it to negative, change color theme, etc) is possible through
exploiting a privileged exposed component. Given the privileges of
this functionality, the corresponding API setmDNIeAccessibility
Mode in the AccessibilityService is protected with a SYSTEM
UID check. However, we found a broadcast receiver component
AccessibilityReceiver in SettingsReceiver.apk that exposes
this privileged API without any protection. Our solver consequently
returned UNSAT. We have identified other vulnerable components
that are caused by this pattern. Prominently, cases allowing to set
firewall rules without any privileges in a few Samsung devices. Due
to the lack of devices, we could not confirm those.

7 LIMITATIONS

Leveraging Arcade’s generated protection map to detect permis-
sion overprivilege and component hijacking has an inherent lim-
itation. As our protection map requires understanding of certain
contextual factors an app holds at a specific API invocation, failing
to infer these conditions will lead to inaccurate detection results.
Specifically, due to the nature of static analysis, our conducted de-
tection might not be able to resolve runtime parameters necessary
to deduct the exact protection path an app needs to match. For
instance, inferring an API’s argument corresponding to the current
user identifier or to a system-wide setting is not statically possible.
Our detection process conservatively assumes such parameter could
be anything and thus can lead to false positives. Arcade makes
use of existing static analysis primitives such as alias analysis and
inter-component communication analysis and hence inherits their
limitations.

8 RELATEDWORK

Permission Specifications. Stowaway [11] has paved the path
for Android permission specification analysis. It extracts the map-
pings using feedback directed API fuzzing and dynamically logs
all permission checks for an API execution. Their mappings are
thus accurate but incomplete due to limited code coverage. Com-
pared to our work, each reported permission set by Stowaway for
a particular API execution should correspond to one distinct path
in Arcade’s produced protection mapping.

PScout [6] addresses the code coverage problem of dynamic
analysis by statically analyzing the framework and reporting the
reachable permission checks from an API. However, their results
are conservative: an API may not require the reported permissions
in every context.Axplorer [7] produces improved mappings based
on a more accurate static analysis of the framework that addresses
prominent challenges uniquely characterizing Android. The gen-
erated protection mapping of our tool Arcade is similar to that
of Axplorer’s permission mapping for 60% of the APIs (basically,
where an API has one single protection path). However, the rest
APIs exhibit different mappings as ours are broken down into dis-
joint protection enforcement paths.
Analysis of Additional Android Protection Mechanisms. A
prominent Android research direction questions the consistency of
Android’s protectionmodel. Kratos [32] compares the set of security
checks in multiple APIs leading to the same resource and reports
inconsistent security enforcements. Similar to our work, Kratos
also considers other non-traditional security checks; particularly,

Session 6B: Mobile 1 CCS’18, October 15-19, 2018, Toronto, ON, Canada

1162



the UID checks and thread status checks. Some of their reported
inconsistencies are due to enforcements containing these checks,
which highlights the importance of these features. AceDroid [2]
normalizes permissions and security checks (along different paths)
to a canonical form that is a tuple of security perspectives, such as
app and user, each perspective having a small set of canonical values
with partial order. This enables comparison of multiple protection
schemes that have implementation differences. Arcade leverages
AceDroid’s normalization idea in app analysis. However, our work
is different as we focus on generating protection maps that de-
note the various security enforcements under different contexts.
The maps are used to address security problems in the app space
whereas AceDroid focuses on detecting inconsistencies within the
framework. Our maps can also be used in guiding developers. Fur-
thermore, our technique is based on graph abstraction and logic
reasoning.
Vulnerability Detection. Android permission mappings have in-
spired researchers to identify vulnerabilities at both the framework
and application layer. Prominent examples include the re-delegation
problem [12, 25], content provider leaks [15], issues in push-cloud
messaging [23], in the app uninstallation process [38], crypto mis-
use in apps [9, 20] and others [3, 10]. In addition, Whyper [28]
and AutoCog [29] check the inconsistency between the required
permissions and the description of apps. AAPL [24] examines incon-
sistent behaviors within similar functionalities of similar apps to
detect privacy leaks. Our app analysis module aligns well with the
works aiming to detect permission re-delegation and permission
overprivilege. However, our contribution with this regards lies in
our logical reasoning solution aiming to apply our protection map
for the detection purpose.
Static analysis on Android. Static analysis techniques have been
proposed to address the special characteristics of Android platform.
Particularly, FlowDroid [5], DroidSafe [14], AndroidLeaks [13],
Amandroid [36] and BidText [17] have employed static taint anal-
ysis on Android apps for tracing information flow and detecting
privacy leaks. Other tools such as Epicc [27], Didfail [21] and Ic-
cTA [22] handle other particular challenges of Android’s ICC. Our
analysis focuses on the access control aspect and abstracts API
implementations to AFGs.

9 CONCLUSION

We propose a novel approach to precisely generate Android API pro-
tection specification. Our solution statically analyzes the framework
to derive a precise protection specification, using path-sensitive
analysis and a novel graph abstraction technique. We further pro-
pose a logical reasoning based solution that leverages our maps to
detect security issues. Our results demonstrate the strengths of our
approach as a significant percentage of our generated specifications
cannot be correctly modeled without our proposed analysis.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their constructive com-
ments. This research was supported, in part, by DARPA under con-
tract FA8650-15-C-7562, NSF under awards 1748764 and 1409668,
ONR under contracts N000141410468 and N000141712947, Sandia

National Lab under award 1701331, and ARO under grant W911NF-
16-1-0127. Any opinions, findings, and conclusions in this paper are
those of the authors only and do not necessarily reflect the views
of our sponsors.

REFERENCES

[1] Baksmali: a disassembler for Android’s dex format. 2017. (2017). Retrieved May
2, 2018 from https://github.com/JesusFreke/smali

[2] Yousra Aafer, Jianjun Huang, Yi Sun, Xiangyu Zhang, Ninghui Li, and Chen
Tian. 2018. AceDroid: Normalizing Diverse Android Access Control Checks for
Inconsistency Detection. In 25th Annual Network and Distributed System Security

Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018. The
Internet Society.

[3] Yousra Aafer, Nan Zhang, Zhongwen Zhang, Xiao Zhang, Kai Chen, XiaoFeng
Wang, Xiaoyong Zhou, Wenliang Du, and Michael Grace. 2015. Hare Hunt-
ing in the Wild Android: A Study on the Threat of Hanging Attribute Refer-
ences. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and

Communications Security (CCS ’15). ACM, New York, NY, USA, 1248–1259. DOI:
http://dx.doi.org/10.1145/2810103.2813648

[4] Smali: an assembler for Android’s dex format. 2017. (2017). https://github.com/
JesusFreke/smali

[5] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI ’14). New York, NY,
USA, 11. DOI:http://dx.doi.org/10.1145/2594291.2594299

[6] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout:
Analyzing the Android Permission Specification. In Proceedings of the 2012 ACM

Conference on Computer and Communications Security (CCS ’12). ACM, New York,
NY, USA, 217–228. DOI:http://dx.doi.org/10.1145/2382196.2382222

[7] Michael Backes, Sven Bugiel, Erik Derr, PatrickMcDaniel, Damien Octeau, and Se-
bastian Weisgerber. 2016. On Demystifying the Android Application Framework:
Re-Visiting Android Permission Specification Analysis. In 25th USENIX Security

Symposium (USENIX Security 16). USENIX Association, Austin, TX, 1101–1118.
[8] ART compiler. 2017. (2017). https://source.android.com/devices/tech/dalvik/
[9] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel.

2013. An Empirical Study of Cryptographic Misuse in Android Applications.
In Proceedings of the 2013 ACM SIGSAC Conference on Computer &#38; Com-

munications Security (CCS ’13). ACM, New York, NY, USA, 73–84. DOI:http:
//dx.doi.org/10.1145/2508859.2516693

[10] Sascha Fahl, Marian Harbach, Marten Oltrogge, Thomas Muders, and Matthew
Smith. 2013. Hey, You, Get Off of My Clipboard. Springer Berlin Heidelberg, Berlin,
Heidelberg, 144–161. DOI:http://dx.doi.org/10.1007/978-3-642-39884-1_12

[11] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
2011. Android permissions demystified. In Proceedings of the 18th ACM conference

on Computer and communications security (CCS ’11). ACM, New York, NY, USA,
12. DOI:http://dx.doi.org/10.1145/2046707.2046779

[12] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steven Hanna, and
Erika Chin. 2011. Permission Re-delegation: Attacks and Defenses. In Proceedings

of the 20th USENIX Conference on Security (SEC’11). USENIX Association, Berkeley,
CA, USA, 22–22. http://dl.acm.org/citation.cfm?id=2028067.2028089

[13] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. 2012. Androi-
dLeaks: Automatically Detecting Potential Privacy Leaks in Android Applications
on a Large Scale. In Proceedings of the 5th International Conference on Trust and

Trustworthy Computing (TRUST’12). Springer-Verlag, Berlin, Heidelberg, 291–307.
DOI:http://dx.doi.org/10.1007/978-3-642-30921-2_17

[14] Michael I. Gordon, Deokhwan Kim, Jeff Perkins, Limei Gilham, Nguyen Nguyen,
and Martin Rinard. 2015. Information-Flow Analysis of Android Applications
in DroidSafe. In Proceedings of the 22nd Annual Network and Distributed System

Security Symposium (NDSS).
[15] Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. 2012. Systematic

Detection of Capability Leaks in Stock Android Smartphones. In Proceedings

of the 19th Network and Distributed System Security Symposium (NDSS). http:
//www.csc.ncsu.edu/faculty/jiang/pubs/NDSS12_WOODPECKER.pdf

[16] Jianjun Huang, Zhichun Li, Xusheng Xiao, Zhenyu Wu, Kangjie Lu, Xiangyu
Zhang, and Guofei Jiang. 2015. SUPOR: Precise and Scalable Sensitive User Input
Detection for Android Apps. In Proceedings of the 24th USENIX Conference on

Security Symposium (SEC’15). USENIX Association, Berkeley, CA, USA, 977–992.
http://dl.acm.org/citation.cfm?id=2831143.2831205

[17] Jianjun Huang, Xiangyu Zhang, and Lin Tan. 2016. Detecting Sensitive Data
Disclosure via Bi-directional Text Correlation Analysis. In Proceedings of the

2016 24th ACM SIGSOFT International Symposium on Foundations of Software

Engineering (FSE 2016). ACM, New York, NY, USA, 169–180. DOI:http://dx.doi.
org/10.1145/2950290.2950348

Session 6B: Mobile 1 CCS’18, October 15-19, 2018, Toronto, ON, Canada

1163

https://github.com/JesusFreke/smali
http://dx.doi.org/10.1145/2810103.2813648
https://github.com/JesusFreke/smali
https://github.com/JesusFreke/smali
http://dx.doi.org/10.1145/2594291.2594299
http://dx.doi.org/10.1145/2382196.2382222
https://source.android.com/devices/tech/dalvik/
http://dx.doi.org/10.1145/2508859.2516693
http://dx.doi.org/10.1145/2508859.2516693
http://dx.doi.org/10.1007/978-3-642-39884-1_12
http://dx.doi.org/10.1145/2046707.2046779
http://dl.acm.org/citation.cfm?id=2028067.2028089
http://dx.doi.org/10.1007/978-3-642-30921-2_17
http://www.csc.ncsu.edu/faculty/jiang/pubs/NDSS12_WOODPECKER.pdf
http://www.csc.ncsu.edu/faculty/jiang/pubs/NDSS12_WOODPECKER.pdf
http://dl.acm.org/citation.cfm?id=2831143.2831205
http://dx.doi.org/10.1145/2950290.2950348
http://dx.doi.org/10.1145/2950290.2950348


[18] Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang. 2014. As-
Droid: Detecting Stealthy Behaviors in Android Applications by User Interface
and Program Behavior Contradiction. In Proceedings of the 36th International Con-

ference on Software Engineering (ICSE 2014). ACM, New York, NY, USA, 1036–1046.
DOI:http://dx.doi.org/10.1145/2568225.2568301

[19] IBM. 2017. WALA: T.J. Watson Libraries for Analysis. http://wala.sourceforge.net.
(2017).

[20] Soo Hyeon Kim, Daewan Han, and Dong Hoon Lee. 2013. Predictability of
Android OpenSSL’s Pseudo Random Number Generator. In Proceedings of the

2013 ACM SIGSAC Conference on Computer and Communications Security (CCS

’13). ACM, New York, NY, USA, 659–668. DOI:http://dx.doi.org/10.1145/2508859.
2516706

[21] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer. 2014.
Android Taint Flow Analysis for App Sets. In Proceedings of the 3rd ACM SIGPLAN

International Workshop on the State of the Art in Java Program Analysis (SOAP ’14).
ACM, New York, NY, USA, 1–6. DOI:http://dx.doi.org/10.1145/2614628.2614633

[22] Li Li, Alexandre Bartel, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried
Rasthofer, Eric Bodden, Damien Octeau, and Patrick McDaniel. 2014. I know
what leaked in your pocket: uncovering privacy leaks on Android Apps with
Static Taint Analysis. arXiv preprint arXiv:1404.7431 (2014).

[23] Tongxin Li, Xiaoyong Zhou, Luyi Xing, Yeonjoon Lee, Muhammad Naveed,
XiaoFeng Wang, and Xinhui Han. 2014. Mayhem in the Push Clouds: Under-
standing and Mitigating Security Hazards in Mobile Push-Messaging Services. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications

Security (CCS ’14). ACM, New York, NY, USA.
[24] Kangjie Lu, Zhichun Li, Vasileios P Kemerlis, Zhenyu Wu, Long Lu, Cong Zheng,

Zhiyun Qian, Wenke Lee, and Guofei Jiang. 2015. Checking More and Alerting
Less: Detecting Privacy Leakages via Enhanced Data-flow Analysis and Peer
Voting.. In the 2015 Network and Distributed System Security Symposium (NDSS

’15).
[25] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012. CHEX:

statically vetting Android apps for component hijacking vulnerabilities. In Pro-

ceedings of the 2012 ACM conference on Computer and communications security

(CCS ’12). ACM, New York, NY, USA, 229–240. DOI:http://dx.doi.org/10.1145/
2382196.2382223

[26] Microsoft Research. 2017. Z3 Prover. https://github.com/Z3Prover/z3. (2017).
[27] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,

Jacques Klein, and Yves Le Traon. 2013. Effective Inter-component Communica-
tion Mapping in Android with Epicc: An Essential Step Towards Holistic Security
Analysis. In Proceedings of the 22Nd USENIX Conference on Security (SEC’13).
USENIX Association, Berkeley, CA, USA, 543–558. http://dl.acm.org/citation.
cfm?id=2534766.2534813

[28] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. 2013. WHY-
PER: Towards Automating Risk Assessment of Mobile Applications. In Proceed-

ings of the 22Nd USENIX Conference on Security (SEC’13). USENIX Association,
Berkeley, CA, USA, 527–542. http://dl.acm.org/citation.cfm?id=2534766.2534812

[29] Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu, and
Zhong Chen. 2014. AutoCog: Measuring the Description-to-permission Fidelity
in Android Applications. In Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security (CCS ’14). ACM, New York, NY, USA,
1354–1365. DOI:http://dx.doi.org/10.1145/2660267.2660287

[30] Quine, J. 2017. Quine?McCluskey algorithm. https://en.wikipedia.org/wiki/
Quine?McCluskey_algorithm. (2017).

[31] sdat2img: Convert sparse Android data image (.dat) into filesystem ext4 image
(.img). 2016. (2016). https://github.com/xpirt/sdat2img

[32] Yuru Shao, Jason Ott, Qi Alfred Chen, Zhiyun Qian, and Z Morley Mao. 2016.
Kratos: Discovering inconsistent security policy enforcement in the android
framework. In 23rd Annual Network and Distributed System Security Symposium,

NDSS 2016, San Diego, California, USA, February 21-24, 2016. The Internet Society.
[33] Android Revolution Mobile Device Technologies. 2017. (2017). Re-

trieved May 2, 2018 from http://android-revolution-hd.blogspot.com/p/
android-revolution-hd-mirror-site-var.html

[34] Samsung Updates. 2017. Samsung Updates: Latest News and Firmware for your
Samsung Devices! (2017). http://samsung-updates.com/

[35] Official Android Developer Website. 2018. (2018). https://developer.android.com/
index.html

[36] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2014. Amandroid: A
Precise and General Inter-component Data FlowAnalysis Framework for Security
Vetting of Android Apps. In Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security (CCS ’14). ACM, New York, NY, USA, 13.
DOI:http://dx.doi.org/10.1145/2660267.2660357

[37] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. 2013. The
impact of vendor customizations on android security. In Proceedings of the 2013

ACM SIGSAC conference on Computer communications security (CCS ’13). ACM,
New York, NY, USA, 623–634. DOI:http://dx.doi.org/10.1145/2508859.2516728

[38] Xiao Zhang, Kailiang Ying, Yousra Aafer, Zhenshen Qiu, and Wenliang Du. 2016.
Life after App Uninstallation: Are the Data Still Alive? Data Residue Attacks on
Android. In 23rd Annual Network and Distributed System Security Symposium,

NDSS 2016, San Diego, California, USA, February 21-24, 2016. The Internet Society.
[39] Yajin Zhou andXuxian Jiang. 2013. Detecting Passive Content Leaks and Pollution

in Android Applications. In In Proceedings of the 20th Annual Symposium on

Network and Distributed System Security, NDSS ’13. The Internet Society.

Session 6B: Mobile 1 CCS’18, October 15-19, 2018, Toronto, ON, Canada

1164

http://dx.doi.org/10.1145/2568225.2568301
http://wala.sourceforge.net
http://dx.doi.org/10.1145/2508859.2516706
http://dx.doi.org/10.1145/2508859.2516706
http://dx.doi.org/10.1145/2614628.2614633
http://dx.doi.org/10.1145/2382196.2382223
http://dx.doi.org/10.1145/2382196.2382223
https://github.com/Z3Prover/z3
http://dl.acm.org/citation.cfm?id=2534766.2534813
http://dl.acm.org/citation.cfm?id=2534766.2534813
http://dl.acm.org/citation.cfm?id=2534766.2534812
http://dx.doi.org/10.1145/2660267.2660287
https://en.wikipedia.org/wiki/Quine?McCluskey_algorithm
https://en.wikipedia.org/wiki/Quine?McCluskey_algorithm
https://github.com/xpirt/sdat2img
http://android-revolution-hd.blogspot.com/p/android-revolution-hd-mirror-site-var.html
http://android-revolution-hd.blogspot.com/p/android-revolution-hd-mirror-site-var.html
http://samsung-updates.com/
https://developer.android.com/index.html
https://developer.android.com/index.html
http://dx.doi.org/10.1145/2660267.2660357
http://dx.doi.org/10.1145/2508859.2516728

	Abstract
	1 Introduction
	2 Motivation
	2.1 Permissions as a Set Are Imprecise
	2.2 Additional Access Control Dimension

	3 System Design
	4 Extracting Framework Access Control
	4.1 Abstracting CFG to Access-Control Flow Graph (AFG):
	4.2 Generating Protection Map

	5 Using Protection Mapping to Identify Security Problems
	5.1 Over-Privilege Detection
	5.2 Component Hijacking Detection

	6 EVALUATION
	6.1 Analysis of API Protection Map
	6.2 Applications of Protection Mappings

	7 Limitations
	8 Related Work
	9 Conclusion
	References



