
A Good Fishman Knows All the Angles: A Critical Evaluation of
Google’s Phishing Page Classifier

Changqing Miao
School of Information, Renmin

University of China
Beijing, China

miaochangqing@ruc.edu.cn

Jianan Feng
School of Information, Renmin

University of China
Beijing, China

jiananfeng@ruc.edu.cn

Wei You
School of Information, Renmin

University of China
Beijing, China

youwei@ruc.edu.cn

Wenchang Shi
School of Information, Renmin

University of China
Beijing, China

wenchang@ruc.edu.cn

Jianjun Huang∗
School of Information, Renmin

University of China
Beijing, China
hjj@ruc.edu.cn

Bin Liang∗
School of Information, Renmin

University of China
Beijing, China

liangb@ruc.edu.cn

ABSTRACT
Phishing is one of the most popular cyberspace attacks. Phishing
detection has been integrated into mainstream browsers to provide
online protection. The phishing detector of Google Chrome reports
millions of phishing attacks per week. However, it has been proven
to be vulnerable to evasion attacks. Currently, Google has upgraded
Chrome/Chromium’s phishing detector, introducing a CNN-based
image classifier. The robustness of the new-generation detector is
unclear. If it can be bypassed, its billions of users will be exposed
to sophisticated attackers. This paper presents a critical evaluation
of Google’s phishing detector by targeted evasion testing, and in-
vestigates corresponding defensive techniques. First, we propose a
three-stage evasion method against the phishing image classifier.
The experiments show that it can be completely bypassed with
adversarial phishing pages generated using the proposed method.
Meanwhile, the phishing pages still preserve their visual utility.
Second, we introduce two defense techniques to enhance the phish-
ing detection model. The results show that even using lightweight
defense methods can significantly improve the model robustness.
Our research reveals that Google’s new-generation phishing classi-
fier is very vulnerable to targeted evasion attacks. A sophisticated
phishers can know how to fool the classifier. Billions of Chrome
users are being exposed to potential phishing attacks. To improve its
robustness, necessary security enhancements should be introduced.

CCS CONCEPTS
• Security and privacy→ Browser security;Malware and its mit-
igation; Intrusion/anomaly detection andmalwaremitigation;
• Computing methodologies→ Machine learning.

∗Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’23, November 26–30, 2023, Copenhagen, Denmark.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00
https://doi.org/10.1145/3576915.3623199

KEYWORDS
Phishing attacks, Image classifiers, Google Chrome/Chromium,
Evasion

ACM Reference Format:
Changqing Miao, Jianan Feng, Wei You, Wenchang Shi, Jianjun Huang,
and Bin Liang. 2023. A Good Fishman Knows All the Angles: A Critical
Evaluation of Google’s Phishing Page Classifier. In Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security (CCS
’23), November 26–30, 2023, Copenhagen, Denmark. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3576915.3623199

1 INTRODUCTION
Phishing attacks pose a significant security threat in cyberspace. In
Q3 2022, APWG [12] reported a record-breaking 1,270,883 phishing
attacks, marking the worst quarter for phishing incidents observed
by the organization. A substantial portion of these attacks involved
phishing webpages, which deceive users by imitating legitimate
webpages.

Many machine-learning-based classifiers [3, 5, 6, 11, 22, 55, 56,
60–62] have been developed to detect phishing webpage attacks.
They leverage various features, such as URL, DOM tree, visual ele-
ments, andmeta-information, to predict whether the givenwebpage
is a phishing one.

It is natural to integrate the phishing classifier within the web
browser. The browser can directly access page content, and can
conveniently extract all desirable features. More importantly, the
integrated classifier can identify the phishing page and block it
before being seen by users. In other words, it can provide an online
protection for end users.

For instance, Google Chrome, the most widely used browser with
five billion users, has equipped a phishing detection mechanism
for years. The old version mechanism consists of two components,
a URL blacklist, and a logistic regression classifier. They had been
proven to be vulnerable to evasion attacks [35]. Currently, the
phishing detection mechanism is upgraded. An new CNN-based
image classifier is introduced to enhance the phishing detection.
A webpage must pass through all the three detection components
before being displayed to users. Otherwise, a phishing block page,
as illustrated in Figure 1, will be presented to warn the page viewer.

https://doi.org/10.1145/3576915.3623199
https://doi.org/10.1145/3576915.3623199

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Changqing Miao et al.

Figure 1: The block page for a phishing webpage.

The new-generation detection mechanism have proven to be effec-
tive, reporting over 3,500,000 web browsing warnings per week in
July 2022 [25].

However, the robustness of the new-generation mechanism is
still unclear. An important question arises naturally as whether it
can also be bypassed like its old version, as done in [35]. For this
purpose, we present a critical evaluation of Google’s phishing page
detector via launching targeted evasion test and investigating po-
tential defense methods in this paper.

As shown in Figure 3, a phishing page must circumvent all the
two classifiers to bypass the new-generation detector. Surprisingly,
the evasion technique presented in [35] is still effective to bypass
the current logistic regression classifier. To this end, in this study,
we focus on evading the newly introduced image classifier.

To fool the logistic regression classifier, the attacker can dress
up the target page by altering the URLs, DOM elements, or terms
of it, and conceal the modification with various tricks. As a result,
the render result of the modified page is completely identical with
that of the original one.

However, to fool the image classifier, the visual appearance of the
target page will be perturbed to generate a different model input,
leading to misclassification. To ensure the accuracy of the critical
evaluation, we need to ensure that the proposed evasion method
is practicable. The primary challenge lies in preserving the visual
utility of the page. First, a phishing page should closely resemble the
impersonated page as much as possible, to successfully deceive end
users. Second, the introduced perturbation should be imperceptible,
and able to mislead the classifier.

Our approach. We propose a three-stage evasion method against
Google’s phishing image classifier, consisting of adversarial screen-
shot generation, inverse downsampling and webpage construction.
First, the candidate pixels are identified based on their saliency
and classification contribution, and perturbed using an iterative
optimization process to generate an adversarial screenshot. How-
ever, the Chrome/Chromium classifier is a simplified TF-Lite model,
which is designed for improved deployability but lacks the capabil-
ity to perform iterative optimization. To enable the optimization for
adversarial sample generation, we reconstruct a standard Tensor-
Flowmodel from the TF-Lite model by introducing a dequantization
layer and a quantization layer before and after each original layer.
Second, we inversely downsample the adversarial screenshot to ob-
tain a full-size version. Downsampling the input image is a common
preprocessing mechanism in industrial models. A practical attack

Figure 2: An example of perturbed phishing page.

needs to reflect the perturbations within the downsampled image
in the original webpage. We specifically design a programming-
based method to perform upsampling while preserving the attack
information and visual utility. Finally, a dressed up phishing page
is constructed base on the full-size adversarial screenshot. The vi-
sual utility-preserving of the target page is ensured by setting a
pixel optimization scope and introducing specific elements in the
programming objective function.

Our experiments show that the proposed evasion method can
effectively bypass the new-generation phishing image classifier.
We collected 135 real-world phishing pages that can be spotted by
the image classifier. However, all of them can bypass the detection
after being perturbed with our method. As the same time, their
visual utility is preserved well. An example of the perturbed page is
shown in Figure 2. We can see that it is difficult for ordinary users
to detect the introduced perturbation.

Furthermore, we enforce two simple defense approaches to im-
prove the classifier robustness. We find that most of the phishing
pages can be re-detected after introducing lightweight techniques.

We can draw the conclusion that Google’s new-generation phish-
ing detection is still vulnerable. Billions of users are being exposed
to potential phishing attacks. Fortunately, the classifier can be sig-
nificantly enhanced by introducing necessary defense mechanisms.

This paper makes the following main contributions:
• Google’s new-generation phishing classifier is proven to be
vulnerable. It can be completely evaded with sophisticated
adversarial samples. Numerous Chrome/Chromium users
still face serious phishing threat. The dataset of our work
can be found in the Github repository1.
• We propose a three-stage evasion method to dress up phish-
ing pages, making them effectively bypass Google’s phishing
image classifier.
• The proposed method presents an adversarial sample genera-
tion technique for the deployment-oriented simplified model,
and offers a utility-preserving inverse downsampling tech-
nique to bridge the downsampling gap arising from model
input preprocessing, enriching the arsenal of attacking in-
dustrial models.
• We apply two potential defense methods, and prove that in-
troducing lightweight techniques can significantly enhance
its performance for phishing detection.

1https://github.com/GoodPhishman/A-Good-Fishman-Knows-All-the-Angles

A Good Fishman Knows All the Angles: A Critical Evaluation of Google’s Phishing Page Classifier CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

Browsing
web page

Displayed

Blocked Blocked Blocked

Logistic
Regression
Classifier

URL
Blacklist

Y Y Y

N N NImage
Classifier

Figure 3: Google’s current phishing detection mechanism.

Y

N

Full-size
Screenshot

Downsampling Upsampling

48 * 48 px 224 * 224 px

Classification
Score

Over
Threshold

Blocked

Displayed

TF-Lite
Model

Figure 4: Google’s newly-added phishing image classification stage.

2 BACKGROUND
In this section, we demystify the details of Chrome’s phishing web-
page detection mechanism by analyzing its open-source Chromium.
The detection consists of URL blacklisting, logistic regression clas-
sification, and image classification, as shown in Figure 3.

URL Blacklisting is triggered when the user requests a webpage
with a URL. Before the browser sends a request, the requested URL
must first pass the blacklist check. Chrome/Chromium hashes the
URL and searches in the maintained URL blacklist. If the hashed
URL appears in the blacklist, the request is canceled, and a block
page is shown; otherwise, the request proceeds to the target host.

Logistic Regression Classification begins after thewebpage request
has been sent, the response has been loaded, and the rendering of
the webpage has started. In this stage, the detector extracts three
types of features from the webpage, including URL features (e.g.,
the protocol, domain, and port of the target host’s URL), DOM
features (e.g., with or without <form> elements, number of <script>
elements, fraction of page links that use HTTPS), and term features
(i.e., the words used in the webpage). After extracting these features,
the detector matches them with pre-defined rules, and adds the
weight of any matched features to the total score. If the total score
is over 0.5, the webpage is reported to Google for further inspection
and will be blocked if confirmed as a phishing page.

Image Classification is the newly-added stage. Its workflow is
shown in Figure 4. In this stage, Chrome/Chromium takes a screen-
shot of the rendered webpage, downsamples it to 48*48 px, then
upsamples it to 224*224 px, and feeds it into a convolutional neu-
ral network (CNN) for image classification. The CNN is deployed
as a TF-Lite model and consists of 55 hidden layers. The output
of the CNN is a 19-dimensional vector. The 19 dimensions are
composed of one benign score and 18 phishing type scores, each
with a predefined threshold. When a particular dimension in the
phishing dimensions exceeds its threshold, the current page will be
recognized as a potential phishing page. There are not any public
information about phishing webpage categories. Besides, the labels
for each output dimension in the TF-Lite model within Chromium

have been hashed. The above factors limit our ability to understand
their exact meaning. However, based on the observation on the
model output for the collected phishing webpages, we have rea-
sons to infer that the 18 phishing dimensions may correspond to
some common phishing target websites respectively, like Amazon,
Facebook, Microsoft and Netflix.

3 METHODOLOGY
We present our evasion method, whose goal is to bypass Google’s
phishing image classifier while preserving the visual utility of the
phishing webpage. It is important to note that specific sensi-
tive details of our method have been intentionally omitted to
prevent them from being used for malicious purposes.

Figure 5 presents the workflow of our evasion method. We first
extract the image classifier model (❶) used for phishing detection in
Chrome/Chromium. The extracted model is reconstructed (❷), mak-
ing it more suitable for evasion. The reconstructed model is used to
generate adversarial screenshot (❸), which takes the downsampled
original screenshot of a phishing webpage as input and generates a
downsampled adversarial screenshot. The downsampled adversar-
ial screenshot is further inversely downsampled (❹) to generate a
full-size adversarial screenshot. Finally, a fully-functional webpage
that can bypass the phishing detector is constructed (❺), according
to the full-size adversarial screenshot.

3.1 Model Extraction
Model extraction involves two parts: locating model uses in source
code and extracting the model data. However, with tens of millions
of lines of code, it is nearly impossible to analyze the source code
purely by manual effort. Thus, we developed a method for locating
the uses of the phishing image classifier, which leverages dynamic
debugging.

Locating Model Use.We first heuristically search the entire source
code base of the open-source edition Chromium to identify func-
tions that contain related keywords (e.g., “phishing”, “classifier”,

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Changqing Miao et al.

Webpage

Construction
TF

Model

Extraction Reconstruction

loss = clsbenign - max(cls)

Adversarial Screenshot Generation

Downsampled

Adversarial

Screenshot

Inverse

Downsampling
Adversarial

Web Page

TF-Lite

Model

Figure 5: The workflow of our method.

...

...

Dequantization Layer Original Layer Quantization Layer

ybquantized
y

b

xquantizedwquantized
y

xw
quantized

ZZb
S
S

ZxZw
S
SSy

)(

)()(
xquantized ...

yquantized

xquantized xdequantized ydequantized yquantized ...
xxquantized

ddequantize

SZx
x

)(ddequantizeddequantizeddequantize

ddequantize

bxw
y

)(y
y

ddequantize

quantized

Z
S

y
round

y

TF-Lite Model

Tensorflow Model

Figure 6: The method for adding quantization and dequantization layers.

“classification”, etc.), and add these functions to a candidate list.
Then, we recompile and run Chromium in a debug mode and set
breakpoints on the candidate functions.We then visit some phishing
webpages and collect the execution traces. After that, we analyze
the execution traces to identify the functions that are invoked in
each triggering of the block pages.

Using the above method, we locate the function that contains
the operation of loading the model, i.e., CreateClassifier(). It takes as
input a byte stream and outputs a tflite::task::vision::ImageClassifier
object. The byte stream originates from a file in the format of a
TF-Lite model, and the constructed classifier is used to generate the
classification score of the webpage. Therefore, we can confirm that
the byte stream is the model that we want to extract.

Extracting Model Data. After locating the function that loads the
phishing image classifier model data, there are two ways to extract
the model: reading from the disk file or dumping from the runtime
memory. We choose the latter as the model file saved on the disk
might not be identical to the model that performs the classification.
There might be modifications after loading, and Google might up-
date the model from the internet. We resort to debugger to dump
the model data from the memory, whose corresponding variable in
source code is always in the nearest position to code that performs
classification.

The extracted model has a size of 3.05 MB. Using the official
API [2], we can obtain the metadata of the model and acquire the

knowledge about the network as mentioned in Section 2. The model
takes a 224*224*3 image as input and outputs a 19-dimensional
vector. Note that, the TF-Lite model is optimized with full integer
quantization, meaning that all tensors in this model have been
quantized into integers, including the input and output tensors.

3.2 Model Reconstruction
We have obtained a TF-Lite model suitable for classification but
not for evasion. TF-Lite models are lightweight models optimized
to save storage and computing resources, enabling their use on
mobile, embedded, and edge devices. To this end, TF-Lite models
discard most functions irrelevant to classification.

However, the most common approach for adversarial attacks
against image classifiers is based on the gradient from the output
layer to the input layer [16, 24, 38, 44]. Unfortunately, as a model
designed for low-resource devices, TF-Lite does not support gradi-
ent calculations, making it impossible to implement gradient-based
evasion attacks. To address this problem, we convert the TF-Lite
model into a TensorFlow model with full gradient access.

The most influential difference between TF-Lite and TensorFlow
models in terms of evasion is quantization. In the TF-Lite model,
tensors are in the form of unsigned 8-bit integers, and the neural
network calculations are specially designed for integers. In contrast,
in TensorFlow, tensors and calculations are performed using signed

A Good Fishman Knows All the Angles: A Critical Evaluation of Google’s Phishing Page Classifier CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

32-bit floating-point numbers. The quantization of TF-Lite reduces
the model size by 75%, decreases the computational resources re-
quired for inference calculations by reducing necessary memory
bandwidth, and provides better adaptability for devices that cannot
efficiently perform floating-point operations. The precision differ-
ence between the two kinds of models could lead to differences in
classification results, which can in turn cause evasion failure.

To address the difference, we add a Quantization layer and a
Dequantization layer for each hidden layer in the model. Figure 6
illustrates the layers. A dequantization layer processes quantized
8-bit integers and passes dequantized 32-bit floating-point numbers
to a standard TensorFlow hidden layer. The hidden layer performs
calculations on floating-point numbers and passes the result to a
quantization layer, which converts a 32-bit floats to an 8-bit inte-
ger. Quantization and dequantization are shown in Equations 1
and 2, respectively. 𝑅 represents the real value calculated in the
convolutional and other hidden layers. 𝑆 is the quantization scale
to zoom the data into a specific range, and 𝑍 is the quantized value
𝑄 corresponding to the real value 0. In the output layer, the output
result is an integer between [0, 255]. We divide it by 256 to obtain
its corresponding softmax result between [0, 1].

𝑄 = 𝑟𝑜𝑢𝑛𝑑 (𝑅
𝑆
+ 𝑍) (1)

𝑅 = (𝑄 − 𝑍) ∗ 𝑆 (2)

As an example, if a tensor dimension with a value of 255(𝑄) is
passed into the dequantization layer before the convolutional layer,
and the scale and zero point values are 0.007874(𝑆) and 128(𝑍),
respectively, then the dequantized value for this dimension is:

𝑅 = (255 − 128) ∗ 0.007874 = 0.999998

If an output value of a convolutional layer is 2.3653743(𝑅), and this
value is passed into the quantization layer, where the scale and zero
point values are 0.405654(𝑆) and 131(𝑍), then the quantized value
for this value is:

𝑄 =
2.3653743
0.405654

+ 131 = 136.831

The value is rounded to the nearest integer, i.e., 137.
It is also worth noting that, the upsampling procedure in Figure 4

is implemented in the reconstruced model. A resize layer is added
into the model before the first dequantization layer. The resize
layer uses bilinear interpolation to upsample a 48*48 px image to a
224*224 px image, the same as done in Chromium.

A natural concern is that the reconstructed model may not re-
produce the results of the TF-Lite model with sufficient precision.
However, we conduct a pilot experiment to demonstrate that our
reconstruction has adequate precision. Our experiment uses 20
webpages: 10 ordinary non-phishing pages and 10 phishing pages.
We downsample the 20 full-size screenshots to 48*48 px images and
then feed them into the TF-Lite model (after a bilinear interpola-
tion) and the reconstructed TensorFlow model, respectively. The
classification results are then compared. The difference between
the results for two models is not significant and does not influence
the phishing detection outcome. In fact, both TF-Lite model and our
TensorFlow model can correctly classify all the 20 webpages. The

Algorithm 1: Adversarial Screenshot Generation
Input: Original downsampled screenshot 𝑥
Output: Adversarial downsampled screenshot 𝑥 ′ or failure

1 𝑖𝑡𝑒𝑟_𝑐𝑜𝑢𝑛𝑡, 𝑙𝑎𝑠𝑡_𝑒𝑥𝑝𝑎𝑛𝑑_𝑐𝑜𝑢𝑛𝑡 ← 0 ;
2 𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦, 𝑠𝑐𝑜𝑟𝑒 ← get_score(𝑥) {
3 𝑠𝑎𝑙 ← calculate_saliency(𝑥);
4 𝑐𝑜𝑛𝑡_𝑏𝑦_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 ← calculate_contribution(𝑥);
5 𝑐𝑜𝑛𝑡𝑟𝑖 ← {

∑
𝑐=𝑟,𝑔,𝑏 𝑐𝑜𝑛𝑡_𝑏𝑦_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 [𝑖] [𝑐] | ∀𝑖 ∈ 𝑥 };

6 𝑠𝑎𝑙, 𝑐𝑜𝑛𝑡𝑟𝑖𝑏 ← normalize(𝑠𝑎𝑙, 𝑐𝑜𝑛𝑡𝑟𝑖𝑏);
7 𝑠𝑐𝑜 ← {𝑐𝑜𝑛𝑡𝑟𝑖𝑏 [𝑖] − 𝑠𝑎𝑙 [𝑖] | ∀𝑖 ∈ 𝑥};
8 return 𝑠𝑎𝑙 , 𝑠𝑐𝑜 ; };
9 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑚𝑜𝑑𝑠 ← get_topk(𝑥, 𝑠𝑐𝑜𝑟𝑒, 𝑘 ∗ |𝑠𝑐𝑜𝑟𝑒 > 0|) ;

10 𝑢𝑝𝑝𝑒𝑟, 𝑙𝑜𝑤𝑒𝑟 ← get_inital_limits(𝐻, 𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦);
11 𝑟𝑒𝑙𝑎𝑥𝑒𝑑 ←False;𝑀 ← ∅;
12 while 𝑖𝑡𝑒𝑟_𝑐𝑜𝑢𝑛𝑡 ≤𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do
13 if 𝑟𝑒𝑙𝑎𝑥𝑒𝑑 then
14 𝑢𝑝𝑝𝑒𝑟, 𝑙𝑜𝑤𝑒𝑟 ← relax_limits(𝑢𝑝𝑝𝑒𝑟, 𝑙𝑜𝑤𝑒𝑟) ;
15 𝑟𝑒𝑙𝑎𝑥𝑒𝑑 ← False;
16 end
17 𝑐𝑙𝑠 ← model(𝑥); 𝑙𝑜𝑠𝑠 ← 𝑐𝑙𝑠𝑏𝑒𝑛𝑖𝑔𝑛 −max(𝑐𝑙𝑠);
18 𝐷 (𝑔𝑥) ← calculate_degree(𝑙𝑜𝑠𝑠,𝑚𝑜𝑑𝑒𝑙, 𝑥);
19 𝑥 ← modify(𝑥, 𝐷 (𝑔𝑥), 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑚𝑜𝑑𝑠);
20 𝑥 ← clip(𝑥,𝑢𝑝𝑝𝑒𝑟, 𝑙𝑜𝑤𝑒𝑟);
21 if model(𝑥) < 𝑡ℎ𝑟𝑒𝑠ℎ then
22 return current 𝑥 as 𝑥 ′;
23 end
24 𝑖𝑡𝑒𝑟_𝑐𝑜𝑢𝑛𝑡++; 𝑙𝑎𝑠𝑡_𝑒𝑥𝑝𝑎𝑛𝑑_𝑐𝑜𝑢𝑛𝑡++;
25 if count_mods(𝑥) < 𝑐𝑙𝑖𝑝_𝑟𝑎𝑡𝑖𝑜 × |𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑚𝑜𝑑𝑠 | then
26 𝑙𝑎𝑠𝑡_𝑒𝑥𝑝𝑎𝑛𝑑_𝑐𝑜𝑢𝑛𝑡 ← 0 ;
27 _, 𝑠𝑐𝑜𝑟𝑒 ← get_score(𝑥);
28 𝑀 ← 𝑀 ∪ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑚𝑜𝑑𝑠 ;
29 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑚𝑜𝑑𝑠 ←

get_topk(𝑥 −𝑀, 𝑠𝑐𝑜𝑟𝑒, 𝑘 ∗ |𝑠𝑐𝑜𝑟𝑒 > 0|);
30 if |𝑀 | > 100 then
31 𝑟𝑒𝑙𝑎𝑥𝑒𝑑 ←True;
32 𝑀 ← ∅;
33 end
34 end
35 if 𝑙𝑎𝑠𝑡_𝑒𝑥𝑝𝑎𝑛𝑑_𝑐𝑜𝑢𝑛𝑡 > 100 then
36 𝑙𝑎𝑠𝑡_𝑒𝑥𝑝𝑎𝑛𝑑_𝑐𝑜𝑢𝑛𝑡 ← 0;
37 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑚𝑜𝑑𝑠 ←

get_topk(𝑥, 𝑠𝑐𝑜𝑟𝑒, |𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑚𝑜𝑑𝑠 | + 10);
38 end
39 end
40 return failure message;

pilot study demonstrates that our reconstruction has acceptable
classification performance.

3.3 Adversarial Screenshot Generation
Adversarial screenshot generation performs iterations on the recon-
structed TensorFlow model and generates a 48*48 px adversarial

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Changqing Miao et al.

downsampled screenshot using original downsampled screenshot.
The primary goal of this step is to bypass the phishing image clas-
sifier while preserving visual utility as much as possible. There are
three basic principles for preserving visual utility:

• Modified pixels should have low visual saliency.
• The number of modified pixels should be minimized.
• The degree of modification per pixel should be minimized.

To achieve the goal, we develop an algorithm to get modifi-
cation candidates and modify pixels. The algorithm is shown in
Algorithm 1.

3.3.1 Getting Modification Candidates. We first screen out the can-
didate pixels for modification. The pixels should have relatively
high contribution to classification but relatively low saliency. There-
fore, we compute the saliency of each pixel to reduce the likelihood
of modifying high-saliency pixels. Besides, we calculate the per-
pixel contribution to classification and modify only the ones with
high contribution, and thus we can achieve the bypass goal with
fewer modified pixels and smaller per-pixel changes. We compose
the saliency and contribution to a kind of per-pixel score, based on
which we select the candidates. It involves two major steps.

First, we calculate the score for each pixel using an inner function
get_score() at line 2 in Algorithm 1, the details of which span from
line 3 to line 8. The function also returns the saliency for subsequent
use. We use a pretrained webpage saliency calculation model [43] to
calculate each pixel’s saliency (line 3), and the well-known Guided
Backpropagation method [50] to calculate the classification con-
tribution for each pixel channel (line 4). The absolute values in all
channels are summed up to calculate the pixel’s contribution (line 5).
After obtaining the saliency and contribution maps, we normalize
them to the range of [0, 1] (line 6), and calculate the final score by
subtracting the saliency from the contribution (line 7). As a result, a
pixel with a high score should have relatively low saliency but high
contribution to classification. Prioritizing the high-score pixels for
modification would satisfy the first two principles.

Then, we sort the pixels by their scores and select the top 𝑘 pixels
as modification candidates (line 9), denoted as current_mods. The
value of 𝑘 is related to the number of pixels with positive scores.
If a pixel has a positive score, it means that the contribution loss
is greater than the saliency loss by modifying the pixel. In other
words, the pixel is worth modifying. In practice, users can select a
proper 𝑘 to limit the number of modified pixels, in case the number
becomes too large.

3.3.2 Modifying Pixels. We then calculate the limits of pixel modi-
fications (i.e., the maximum gap between current and modified pixel
values), modifying pixel values of the top 𝑘 pixels, and use the upper
and lower limits to constrain the modification to satisfy the last
principle for preserving visual utility. The task may take multiple
rounds of modifications and involves lines 10-39 in Algorithm 1.

Calculating Pixel Modification Limits. First, we calculate the limits
for pixel modifications (line 10). The initial upper and lower limits
for each pixel are empirically calculated using Equation 3.

𝑢𝑝𝑝𝑒𝑟 = min(𝑖 + 1, 255), 𝑙𝑜𝑤𝑒𝑟 = max(𝑖 − 2, 0);
if 𝑖 ∈ 𝐻 ;

𝑢𝑝𝑝𝑒𝑟 = min(𝑖 + 2, 255), 𝑙𝑜𝑤𝑒𝑟 = max(𝑖 − 4, 0);
if 𝑖 ∉ 𝐻 and 𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦 [𝑖] > 0.5;

𝑢𝑝𝑝𝑒𝑟 = min(𝑖 + 3, 255), 𝑙𝑜𝑤𝑒𝑟 = max(𝑖 − 6, 0);
if 𝑖 ∉ 𝐻 and 𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦 [𝑖] ≤ 0.5;

(3)

where𝐻 is the pixel set chosen by attackers, representing the pixels
that users are considered to look at from the attacker’s point of
view, e.g., the pixels in the login button.

According to 𝐻 and the saliency, we divide the pixels into three
categories at different restriction levels. The most restrictive cate-
gory limits pixels that users has a high probability of seeing. The
relatively restrictive category represents salient pixels users may
glance at, such as a company logo. The least restrictive category
contains pixels that most people will ignore. As we know, the larger
a pixel’s value is, the brighter and more salient it becomes. There-
fore, we set stricter upper limits than lower limits, i.e., the scope of
increasing pixel values is narrower than decreasing.

Lines 13-16 relax the upper and lower limits if the relaxed flag
is True. In this study, a relaxation looses the modification limit. If
the initial limit is 𝑖 ± 𝑛, then after𝑚 times of relaxation, the limit
becomes 𝑖 ±𝑚𝑛. The relaxation happens when the iteration reaches
a dead end. If the number of modified pixels expands beyond a
certain amount (in our case, 100), the limit is relaxed (lines 30-33).
The relaxation is performed to prevent situations where simply ex-
panding the number of modified pixels cannot achieve a successful
bypass.

Calculating Gradient and Modification Degree.We then classify
the sample and construct the loss for gradient calculation (line 17).
The goal of the loss is to decrease the classification scores for phish-
ing classes until they are lower than the thresholds, above which
the browser detects a phishing page. However, incorporating all
phishing classes in the loss function makes it too complex for gradi-
ent calculation, making the bypass less likely to succeed. As a result,
we simplify the process by using the maximum class score instead
of the combination of the 18 phishing class scores, shown in Equa-
tion 4, in which 𝑐𝑙𝑠_𝑏𝑒𝑛𝑖𝑔𝑛 denotes the benign score and max(𝑐𝑙𝑠)
indicates the maximum score among the 18 phishing classes.

𝑙𝑜𝑠𝑠 = 𝑐𝑙𝑠𝑏𝑒𝑛𝑖𝑔𝑛 −max(𝑐𝑙𝑠) (4)

There is an issue with this simplification, as the maximum class
score could change during the iteration, causing the scores of the
two phishing categories to rise alternately. However, the class with
the maximum score has never changed before the bypass succeeded,
so we can consider this simplification valid for our method.

Once the loss is acquired, we can calculate the degree of modifi-
cation based on the gradient of the loss to the input (line 18). We
want the output to move in the direction that the loss increases,
so that we can modify the input in the positive direction of the
gradient. Therefore, we use the gradient to calculate the degree of
modification as shown in Equation 5.

A Good Fishman Knows All the Angles: A Critical Evaluation of Google’s Phishing Page Classifier CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

𝐷 (𝑔𝑥) =
𝑠𝑖𝑔𝑛(𝑔𝑥) ∗ 𝑘𝑔 ∗ |𝑔𝑥 |

max (max (𝑔𝑠𝑖𝑔𝑛), 0) + 𝜖
,

𝑤ℎ𝑒𝑟𝑒 𝑔𝑠𝑖𝑔𝑛 = {|𝑔𝑘 | | 𝑠𝑖𝑔𝑛(𝑔𝑘) = 𝑠𝑖𝑔𝑛(𝑔𝑥)}
(5)

In Equation 5, 𝑔𝑥 is the pixel’s gradient value, 𝑘𝑔 is a predefined
positive coefficient, and 𝜖 is a small positive constant to ensure the
denominator is not equal to 0. With this formula, we can map the
positive gradient to the interval (0, 𝑘𝑔], map the negative gradient
to the interval [−𝑘𝑔, 0), and leave 0 in the gradient unchanged. By
adjusting 𝑘𝑔 , we can control the step size, ensuring that the iteration
will not miss the optimal point because of a too large step or get
stuck in a local optimum because of a too small step.

Modifying and Clipping Pixels. After calculating the modification
degree, the modification is rounded to an integer and added to the
screenshot (line 19). Then, the pixel values are clipped within the
upper and lower limits (line 20). After that, a series of checks are
performed to complete the iteration or expand the candidates.

First, if the modified sample can bypass the phishing image
classifier, it is outputted as the adversarial downsampled screenshot
(lines 21-23).

Second, if the modified sample cannot bypass the phishing im-
age classifier, we check whether most of modifications in current
iteration have been clipped by the upper and lower limits (line
25). This check compares the sample before modification in this
iteration (line 19) and the sample after clipping (line 20). Function
count_mods() counts the number of modified pixels. If the number is
smaller than a certain ratio of the candidate pixels in this iteration,
it means that most of the candidates have reached the limit, causing
further modifications to be clipped by the boundary. In this case,
we recalculate the score (line 27), select candidates from pixels that
have never been modified (i.e., 𝑥 −𝑀 at line 29), and relax current
upper and lower limits if number of modified pixels have exceeded
100 since the initialization or last limit relaxation (lines 30-33).

Third, if there have been over 100 iterations of modifications for
current candidates, we believe there is a high risk that the modi-
fication with current candidates has got stuck in a local optimum.
We address the issue by expanding the candidates by a relatively
small amount (ten in our practice, line 37).

The overall number of iterations is constrained by max_iter at
line 12. Exceeding the iteration boundary means that there may not
exist an adversarial screenshot for the original downsampled screen-
shot, and thus the algorithm returns a failure message (line 40).

3.4 Inverse Downsampling
Inverse downsampling accepts a constructed adversarial downsam-
pled screenshot as input and outputs a full-size phishing webpage
screenshot capable of bypassing phishing detection. Efficiency is
the primary goal while the visual utility is to be preserved.

A straightforward approach to implementing the evasion is to
generate the full-size adversarial screenshot directly based on the
classification score. However, this end-to-end implementation en-
counters the combinatorial explosion problem. The task of con-
structing a full-size adversarial screenshot can be divided into two

parts: constructing an adversarial downsampled screenshot, and in-
versely downsampling it to obtain the full-sized adversarial screen-
shot. Constructing an adversarial downsampled screenshot by mod-
ifying 100 pixels has a search space of 𝑂 (256100∗3), and inverse
downsampling into a 1920*1080 screenshot has a search space of
𝑂 (256100∗23∗40∗3), then the end-to-end adversarial screenshot gen-
eration has a search space of𝑂 (256100∗3 ∗ 256100∗23∗40∗3), resulting
in an extreme increment of time consumption for bypassing.

To address the problem, we separate the large iteration into
two stages: selecting the local optimum downsized screenshot and
applying it to the inverse downsampling process. By doing so,
we can reduce the time complexity to 𝑂 (256100∗3 + 256100∗23∗40∗3),
which shows a significant decrement from the end-to-end approach.

Note that, since the output of the previous step, i.e., a 48*48px
image, is taken as input, we can only achieve the local optimum
in visual utility within the constraints of the 48*48px downsam-
pled image. We cannot achieve the global optimum in the entire
search space of the full-size screenshot. To address this issue, we
introduce several techniques to implement fine-tuned visual utility
preservation. Although we still cannot achieve the global optimum,
the visual utility of the webpage remains at an acceptable level.

In our design, we convert the inverse downsampling problem
into an integer linear programming problem and leverage the
GUROBI optimizer [1] to solve the problem. Any feasible solution to
this problem represents a viable bypass of the phishing image clas-
sifier. To accomplish this, we treat the pixels in the full-size original
image, which can influence the altered pixels in the downsampled
adversarial screenshot, as variables. We constrain the integer linear
programming problem to ensure that the full-sized screenshot, after
inverse downsampling, can be downsampled to the output of the
adversarial screenshot generation. We incorporate indicators to
assess visual utility in the objective function. By minimizing the
value of the objective function, we can preserve the visual utility
in the inverse downsampling result as much as possible.

The transformed integer linear programming problem can be
expressed as Equation 6. 𝐶T

1 and 𝐶T
2 represent weights for differ-

ent modification distances. 𝐾T denotes the downsampling kernel.
𝑃𝑓 𝑢𝑙𝑙𝑠𝑖𝑧𝑒𝑑 is the pixel value in the full-size original screenshot, and
𝑃𝑑𝑜𝑤𝑛𝑠𝑖𝑧𝑒𝑑 is the pixel value in the downsampled adversarial screen-
shot. 𝑀, 𝑁 and 𝑈 ,𝑉 are two pairs of variable vectors designed to
measure the absolute modification distance. Since absolute value
operations are not permitted in linear programming problems, we
use a pair of variables to represent the distance between a variable
and a constant. The details will be discussed as follows.

min 𝑍 = 𝐶T
1 · (𝑈 +𝑉) +𝐶

T
2 · (𝑀 + 𝑁)

𝑠 .𝑡 . 0 ≤ (𝑈 −𝑉) + 𝑃𝑓 𝑢𝑙𝑙𝑠𝑖𝑧𝑒𝑑 ≤ 255
0 ≤ 𝑈 ,𝑉 ,𝑀, 𝑁 ≤ 255, 𝑈 ,𝑉 ,𝑀, 𝑁 : 𝐼𝑛𝑡𝑒𝑔𝑒𝑟
(𝑈 −𝑉) + 𝑃𝑜𝑟𝑖𝑔𝑖𝑛 = (𝑀 − 𝑁) + 𝑃𝑏𝑙𝑢𝑟𝑟𝑒𝑑
𝑃𝑑𝑜𝑤𝑛𝑠𝑖𝑧𝑒𝑑 = 𝐾T · (𝑈 −𝑉 + 𝑃𝑓 𝑢𝑙𝑙𝑠𝑖𝑧𝑒𝑑)
𝛿 ≤ ∑

𝑐 (𝑈𝑐 +𝑉𝑐) 𝑐 = 𝑟, 𝑔, 𝑏

(6)

Variable choice. Figure 7 shows an example of choosing proper
pixels as variables. To optimize the visual utility of the modified full-
size image, we employ a trick to change the shape of the modified
zone from a rectangle (the shape of the downsampling kernel) to the
inscribed ellipse of the original rectangular range. For those pixels

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Changqing Miao et al.

Area in
Full-size

Screenshot

Pixels in Full-size
Screenshot

Pixel in
Downsampled

Adversarial
Screenshot

Pixels Selected
As Variables

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

Select Pixels
as Variables

Figure 7: A schematic diagram about how we choose variable
that in an ellipse shape with real examples.

not within the ellipse but inside the original rectangular range, we
treat their values as constants. By implementing this trick, we can
make the shape of the modified zone resemble a dripping stain on
the monitor.

Objective function. The objective function of the integer linear
programming problem comprises two parts. One limits the distance
to the original pixel value, and the other limits the distance to the
pixel values around its positions, as illustrated in Figure 8.

Suppose that𝑋 is a variable and 𝑃𝑜𝑟𝑖𝑔𝑖𝑛 is the corresponding pixel
value in the full-size original screenshot. We use the combination
of𝑈 ,𝑉 (as shown in Equation 7) to denote the distance between the
variable and its original pixel (see Figure 8(a)). The distance, with a
coefficient 𝐶T

1 , is minimized as a partial objective. To measure the
distance to pixels around, we blur the original image, i.e., averaging
the pixels around as the pixel value as shown in Figure 8(b). The
blurred pixel has a value 𝑃𝑏𝑙𝑢𝑟𝑟𝑒𝑑 and then the combination of
𝑀, 𝑁 in Equation 7 can represent the distance between the variable
and the surrounding pixels. The distance, accompanying with a
coefficient 𝐶T

2 , becomes the other part of the objective function.

𝑈 =
|𝑋−𝑃𝑜𝑟𝑖𝑔𝑖𝑛 |+(𝑋−𝑃𝑜𝑟𝑖𝑔𝑖𝑛)

2
𝑉 =

|𝑋−𝑃𝑜𝑟𝑖𝑔𝑖𝑛 |− (𝑋−𝑃𝑜𝑟𝑖𝑔𝑖𝑛)
2

𝑀 =
|𝑋−𝑃𝑏𝑙𝑢𝑟𝑟𝑒𝑑 |+(𝑋−𝑃𝑏𝑙𝑢𝑟𝑟𝑒𝑑)

2
𝑁 =

|𝑋−𝑃𝑏𝑙𝑢𝑟𝑟𝑒𝑑 |− (𝑋−𝑃𝑏𝑙𝑢𝑟𝑟𝑒𝑑)
2

(7)

We take the full-size blurred image into consideration for the
following reason. According to our observations, the visual saliency
for a modified pixel is related not only to its distance to the original
pixel value but also to its distance to the surrounding pixels.

Note that, for a single channel of a pixel, 𝐶T
1 is greater than 𝐶T

2 .
However, the ratio between𝐶T

1 and𝐶T
2 depends on the value of the

channel. In our design, if a channel value is larger than 128, then the
ratio is smaller than the situation where the value of the channel
is smaller than 128. This method is based on the observation that
darker colors (with channel values smaller than 128) can be hidden
more easily within their surroundings than brighter colors (with
values larger than 128).

Constraint. The constraint of the integer linear programming
problem consists of three parts.

First, the variable value, denoted as𝑈 −𝑉 + 𝑃𝑓 𝑢𝑙𝑙𝑠𝑖𝑧𝑒𝑑 in Equa-
tion 6, should be legal. As a result,𝑈 ,𝑉 ,𝑀, 𝑁 are all integers within
[0, 255]. Additionally, the variable should remain consistent during
the problem solving, i.e., (𝑈 −𝑉) + 𝑃𝑜𝑟𝑖𝑔𝑖𝑛 = (𝑀 − 𝑁) + 𝑃𝑏𝑙𝑢𝑟𝑟𝑒𝑑 .

Second, we must ensure that the constructed full-size screenshot
can be downsampled to the input, i.e., the adversarial downsampled
image. As such, we constrain that the value of a variable multiplying
the downsample kernel 𝐾T should be equal to the value of the
corresponding input pixel.

Third, we employ a trick to enhance the visual utility of the con-
structed full-size screenshot, i.e., the sum of all channel distances
to the original pixel must be larger than a predefined 𝛿 . According
to our observation, a small change in the downsampled pixel can
be achieved through a drastic alteration of a small number of pixels
and negligible alteration of the other related pixels in the full-size
screenshot, which compromises visual utility, as illustrated in the
top part of Figure 9. To unsure all pixels in the full-size screen-
shot related to a changed pixel in the downsampled screenshot
are evenly altered as far as possible to preserve visual utility, we
constrain that each pixel should have at least a minimum change,
as demonstrated in the bottom part of Figure 9. By this means,
drastic pixel changes will be forbidden, because the overall change
is constrained by the validity of the related modified pixel in the
downsampled screenshot.

In conclusion, the proposed inverse downsampling generates a
full-size adversarial screenshot within a reasonable amount of time,
while simultaneously preserving the visual utility of the adversarial
screenshot.

3.5 Webpage Construction
This step takes full-size adversarial screenshot as input and outputs
a fully-functional webpage that can bypass Google’s phishing de-
tector. The key is to introduce the perturbations in a way that does
not affect the normal function of the target webpage.

There are many leverageable web front-end tricks to launch
an effective attack. In this study, we utilize the widely-used CSS
technique to construct the phishing webpage straightforwardly.

We convert the full-size adversarial screenshot into an SVG im-
age with the same resolution as the original webpage. Note that,
only the modified pixels are kept, while the others are removed and
left transparent in the SVG image. Besides, if the adversarial per-
turbation involves input fields in the webpage, the corresponding
areas are cut out of the full-size SVG and saved alone as small PNG
images. The left half of Figure 10 shows the conversion.

The constructed phishing webpage consists of three layers and
the CSS property “z-index” is utilized to place the layers. The bigger
the z-index, the upper the layer. An illustration of the webpage
construction is shown in the right half of Figure 10.

The top layer contains the perturbed input fields, such as the
input box for user ID in Figure 10. It has the biggest z-index to
ensure the user input will not be blocked. We adjust the box’s CSS
property “background” and set the corresponding small PNG image
as its background. Furthermore, we adjust the small PNG’s position-
related CSS properties like “top” and “left” to incorporate it with
the input field seamlessly.

A Good Fishman Knows All the Angles: A Critical Evaluation of Google’s Phishing Page Classifier CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

||||||1 bbggrrDist

min(Dist1)
),,(bgr),,(bgr

(a) Distance with pixel in corresponding position

8

1

8

1

8

1
2 8

1,
8
1,

8
1||||||

i
ia

i
ia

i
iaaaa bb gg rr bbggrrDist

min(Dist2)

),,(111 bgr),,(222 bgr),,(333 bgr

),,(444 bgr),,(555 bgr

),,(666 bgr),,(777 bgr),,(888 bgr

),,(bgr

(b) Distance with pixels around corresponding position

Figure 8: The two kinds of distance we use to construct the objective function.

Distributed Among Pixels

Contributes for Most Modification

Row

Pixel
Modification

Column

A Few Pixels

Modification is Evenly

Pixel
Modification

Column

Row

Figure 9: The constraint design to evenly spread the contri-
bution.

The middle layer contains the full-size SVG image. We set it as
the background of a div element, and align the div element with the
whole page. At the same time, we set the “pointer-event” property
of the div element to none, so that any click operations can go
through the image and reach the bottom layer, where all elements
reside except the input fields.

Consequently, the functionality of the webpage remains un-
changed. The three-layer structure ensures that user inputs are
correctly displayed without being obscured and the clicks can reach
the underlying target elements. In the meantime, all the perturba-
tions have been introduced in the form of small background images
of input fields at the top layer and full-size background image at
the middle layer.

For some webpages, we must also bypass the logistic regression
classifier simultaneously. To address this, we apply the method
presented in [35], inserting invisible Good Terms into the webpage.
The terms can effectively decrease the classification score to a safe
range under the threshold of phishing detection. In all of our 135
samples, only 20 requires to bypass the logistic regression classifier.

It should be pointed out that, the primary objective of this study
is to demonstrate the feasibility of attacking the phishing webpage

image classifier. In practice, attackers could employ more sophisti-
cated techniques to realize the attacks.

4 EVASION EVALUATION
We investigate the following research questions to evaluate the
proposed evasion method.

RQ1: Can our approach effectively bypass Google’s phishing
webpage image classifier? (Section 4.1)

RQ2: Can our approach preserve the visual utility of the target
webpages? (Section 4.2)

RQ3: Howmuch time is consumed to generate adversarial image?
(Section 4.3)

4.1 Effectiveness
We did an end-to-end testing of our attack method. To prevent the
leakage of attack samples, we set up a local web server to host the
attack samples. However, Chrome/Chromium does not perform
classification detection on pages with local addresses. Therefore,
we disabled Chromium’s local address detection in the source code
and took it as the evaluation target.

To evaluate the evasion ability of our approach, we collect phish-
ing webpage samples from PhishTank [53] and OpenPhish [39].
In total, we have collected 50 and 85 samples, respectively, from
the two sources. All the obtained pages are identified as phish-
ing webpages by Chromium’s phishing image classifier. Although
the number is limited, the samples target login pages of different
popular web sites, including Paypal, Outlook, Netflix, etc.

Following the implementation of our bypass method, we found
that each of the 135 pages can be dressed up to successfully bypass
Google’s phishing image classifier detection. Additional details and
results can be found in Table 1, in which the ID columns indicate
the sample ID in PhishTank or sequential ID in OpenPhish, the
Category columns show the attack targets, and the Bypass columns
show the evasion result against the image classifier.

4.2 Visual Utility Preservation
In this study, we leverage two methods to evaluate the effectiveness
of visual utility preservation.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Changqing Miao et al.

Top layer
Middle layer

Bottom layer
(Other elements)Adversarial Screenshot SVG

PNG Input Field
+

Constructed Webpage

Figure 10: Webpage Construction.

Table 1: Experiment results (time unit: minutes)

ID Category Bypass AUC Time ID Category Bypass AUC Time ID Category Bypass AUC Time

8120157 Outlook ✓ 0.996 5.0 7945622 Shared Document ✓ 0.995 16.5 op041 Shared Document ✓ 0.963 6.1
8101033 Paypal ✓ 0.996 2.4 7973561 Microsoft ✓ 0.85 6.5 op042 Netflix ✓ 0.994 11.4
8100905 Microsoft ✓ 0.958 23.9 7969583 Shared Document ✓ 0.994 4.3 op043 Microsoft ✓ 0.959 3.7
8082292 Microsoft ✓ 0.732 2.1 7958598 Netflix ✓ 0.995 8.5 op044 Microsoft ✓ 0.904 5.0
8082216 Facebook ✓ 0.989 13.8 7897335 Shared Document ✓ 0.988 4.1 op045 Microsoft ✓ 0.998 1.8
8082078 Netflix ✓ 0.998 19.8 op001 Microsoft ✓ 0.946 3.0 op046 Microsoft ✓ 0.998 1.9
8080988 Microsoft ✓ 0.953 4.6 op002 Microsoft ✓ 0.973 3.3 op047 Facebook ✓ 0.997 0.4
8080214 Microsoft ✓ 0.905 14.6 op003 Microsoft ✓ 0.966 3.5 op048 Netflix ✓ 0.993 53.8
8078574 Paypal ✓ 0.996 2.9 op004 Microsoft ✓ 0.977 14.5 op049 Outlook ✓ 0.946 6.9
8052357 Outlook ✓ 0.949 6.0 op005 Microsoft ✓ 0.964 11.6 op050 Facebook ✓ 0.998 7.5
8052355 Shared Document ✓ 0.987 33.7 op006 Shared Document ✓ 0.993 3.1 op051 Facebook ✓ 0.998 7.4
8052333 Microsoft ✓ 0.963 4.7 op007 Microsoft ✓ 0.974 22.0 op052 Microsoft ✓ 0.968 5.6
8042311 Microsoft ✓ 0.964 3.9 op008 Microsoft ✓ 0.9 87.8 op053 Outlook ✓ 0.963 7.0
8042296 Netflix ✓ 0.997 44.1 op009 Microsoft ✓ 0.95 8.6 op054 Microsoft ✓ 0.879 9.0
8042295 Netflix ✓ 0.996 21.8 op010 Microsoft ✓ 0.923 44.7 op055 Outlook ✓ 0.963 6.0
8042290 Microsoft ✓ 0.809 44.3 op011 Microsoft ✓ 0.933 7.7 op056 Netflix ✓ 0.998 11.3
8042289 Microsoft ✓ 0.843 8.1 op012 Microsoft ✓ 0.915 3.3 op057 Microsoft ✓ 0.952 2.4
8040774 Paypal ✓ 0.984 8.1 op013 Microsoft ✓ 0.977 6.1 op058 Facebook ✓ 0.997 5.5
8040771 Outlook ✓ 0.952 6.2 op014 Facebook ✓ 0.992 9.5 op059 Microsoft ✓ 0.966 7.0
8040761 Shared Document ✓ 0.987 32.0 op015 Microsoft ✓ 0.958 1.4 op060 Microsoft ✓ 0.944 9.5
8040752 Microsoft ✓ 0.954 5.8 op016 Microsoft ✓ 0.933 4.5 op061 Netflix ✓ 0.998 12.4
8040698 Facebook ✓ 0.987 12.0 op017 Microsoft ✓ 0.939 6.8 op062 Microsoft ✓ 0.950 11.2
8039424 Microsoft ✓ 0.862 12.4 op018 Microsoft ✓ 0.955 6.4 op063 Microsoft ✓ 0.975 2.2
8039340 Microsoft ✓ 0.956 7.0 op019 Microsoft ✓ 0.956 5.5 op064 Shared Document ✓ 0.998 3.7
7998977 Microsoft ✓ 0.957 2.4 op020 Microsoft ✓ 0.734 5.9 op065 Amazon ✓ 0.993 14.7
7989793 Shared Document ✓ 0.983 8.4 op021 Microsoft ✓ 0.949 6.1 op066 Facebook ✓ 0.997 6.2
7989787 Netflix ✓ 0.997 46.8 op022 Microsoft ✓ 0.997 6.0 op067 Microsoft ✓ 0.965 17.5
7989781 Microsoft ✓ 0.922 4.2 op023 Netflix ✓ 0.992 20.4 op068 Netflix ✓ 0.997 11.7
7989779 Microsoft ✓ 0.939 5.7 op024 Microsoft ✓ 0.954 5.6 op069 Microsoft ✓ 0.965 7.7
7989777 Microsoft ✓ 0.826 7.5 op025 Netflix ✓ 0.992 50.6 op070 Amazon ✓ 0.983 6.9
7984500 Microsoft ✓ 0.955 19.8 op026 Outlook ✓ 0.972 7.2 op071 Amazon ✓ 0.993 8.5
7984484 Microsoft ✓ 0.974 4.2 op027 Microsoft ✓ 0.97 3.7 op072 Microsoft ✓ 0.848 5.2
7983855 Outlook ✓ 0.959 6.3 op028 Microsoft ✓ 0.973 3.7 op073 Facebook ✓ 0.998 8.2
7983589 Netflix ✓ 0.997 7.9 op029 Microsoft ✓ 0.965 3.2 op074 Microsoft ✓ 0.960 6.4
7983585 Shared Document ✓ 0.982 71.1 op030 Outlook ✓ 0.965 6.7 op075 Microsoft ✓ 0.972 0.9
7983549 Microsoft ✓ 0.918 3.5 op031 Microsoft ✓ 0.96 3.3 op076 Facebook ✓ 0.987 7.5
7983503 Microsoft ✓ 0.929 3.7 op032 Shared Document ✓ 0.975 13.1 op077 Outlook ✓ 0.983 6.8
7983245 Microsoft ✓ 0.979 16.8 op033 Facebook ✓ 0.995 6.1 op078 Facebook ✓ 0.987 8.5
7982619 Shared Document ✓ 0.992 3.3 op034 Microsoft ✓ 0.926 4.1 op079 Facebook ✓ 0.973 4.0
7981210 Microsoft ✓ 0.899 3.3 op035 Facebook ✓ 0.991 4.7 op080 Microsoft ✓ 0.964 14.3
7949021 Microsoft ✓ 0.903 7.5 op036 Facebook ✓ 0.998 6.2 op081 Microsoft ✓ 0.971 3.4
7949019 Microsoft ✓ 0.968 7.0 op037 Microsoft ✓ 0.947 5.3 op082 Outlook ✓ 0.970 9.8
7949016 Microsoft ✓ 0.997 6.4 op038 Netflix ✓ 0.998 12.4 op083 Microsoft ✓ 0.985 4.9
7948992 Shared Document ✓ 0.984 8.2 op039 Microsoft ✓ 0.907 23.3 op084 Outlook ✓ 0.964 5.1
7948941 Microsoft ✓ 0.850 6.6 op040 Microsoft ✓ 0.971 3.6 op085 Outlook ✓ 0.963 5.2

Average 0.959 10.7

Quantitative analysis.We perform a quantitative analysis to
ascertain whether perturbations possess the capability to obviously
redirect the attention of users interacting with a given webpage.
The underlying premise is that if there is a marked shift in atten-
tional focus, users would be more inclined to perceive pronounced

anomalies within the webpage. Consequently, this would indicate
a failure in preserving the visual utility. If no such shift is observed,
it is construed that the visual utility remains intact.

A Good Fishman Knows All the Angles: A Critical Evaluation of Google’s Phishing Page Classifier CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

Webpage saliency, as described in [45], serves as a tool to pin-
point potential areas capturing users’ attention. To holistically as-
sess the changes in page-wide saliency, the widely-acknowledged
metric of AUC (Area Under the ROC Curve) [28, 45] is employed. A
higher AUC score is indicative of reduced changes in saliency. An
AUC score equating to one denotes the absence of saliency shifts.

The computation of the AUC score necessitates two distinct
saliency maps. As delineated in webpage saliency prediction [45],
the duo comprises a ground truth map and a target map. In our
study, the ground truth is represented by the saliency map of the
original page, while the adversarial page’s saliency map forms
the target version. Our approach to calculating AUC aligns with
the methodology proposed in [45]. First, the ground truth map is
transformed into a discrete map𝑚𝑔 , with all values exceeding zero
set to one; zeroes remain unaffected. Subsequently, for each unit
position in𝑚𝑔 with a value of one, we extract the corresponding
value 𝑣 in the target map𝑚𝑡 . Utilizing 𝑣 as a binary classifier, values
in 𝑚𝑡 exceeding 𝑣 are set to one and the others are set to zero,
yielding a classifiedmap𝑚𝑐 . We then compute both the True Positive
Rate (TPR) and False Positive Rate (FPR) based on𝑚𝑔 and𝑚𝑐 . Finally,
the ROC curve, using TPRs and FPRs for all binary classifiers, is
plotted, and the AUC is calculated.

A threshold is needed to be established for the AUC score. Only
scores exceeding the threshold would signify the absence of overt
saliency shifts on the given webpage. Relying on data from [45],
a consistent AUC score of approximately 0.7 was attained across
diverse conditions, aligning the target saliency map closely with the
ground truth. Therefore, we adopt 0.7 as our evaluative threshold
for whole-page saliency alterations.

Our experiment yielded AUC scores for all evaluation targets, as
tabulated in the AUC columns of Table 1. The cumulative average
stands at 0.959. Remarkably, out of 135 samples, 124 (91.9%) show-
case AUC scores exceeding 0.9, with a mere two falling below 0.8
but above the threshold. This overarching data underscores only a
little saliency deviation is caused by our adversarial perturbations,
implying a minimal likelihood of users’ attention shift and thereby
retaining the visual utility.

User study.We also conduct a single-blind user study involving
23 computer science students from our university. They have no
prior knowledge about this project. Each participant is presented
with a set of 100 phishing webpages: 50 of these are adversarial
pages, and the remaining 50 are their corresponding original ver-
sions. Each page is displayed for five seconds, the same as done
in [45]. The pages are randomly presented, ensuring that partici-
pants are unaware of which pages have been perturbed. Participants
are tasked with identifying any abnormal or incongruent regions
on the displayed page. If a page is deemed to contain such perturbed
regions, participants are then instructed to specify these areas. For
the original samples, any misidentification as an adversarial page is
counted as a false positive. For the adversarial samples, our evalua-
tion criteria is somewhat lenient. If a participant correctly identifies
any of the perturbed regions without flagging non-perturbed ones,
we consider it a correct identification.

We amassed 1,700 valid feedback entries, as some participants
did not look through all pages. Data from Table 2 reveals that
66.0% of the adversarial samples and 33.1% of the original ones are
misidentified by the participants. In total, around half of the samples

Table 2: User study result

Original Adversarial

Total (1,700) 858 842
Correctly Identified (860) 574 (66.9%) 286 (34.0%)
Incorrectly Identified (840) 284 (33.1%) 556 (66.0%)

(840) are inaccurately recognized. Moreover, none of the samples
achieve unanimous correct identification across all participants.
The findings suggest that differentiating between the adversarial
and original samples is challenging for the participants. The study
demonstrates that the visual utility of adversarial samples is well
preserved. It is worth noting that, given the heightened sensitivity
of computer science students to such perturbations, we postulate
that general users may exhibit even lower identification accuracy.

We must also notice that, repeated exposure during the testing
phase might have further heightened the participants’ awareness
of the perturbations. This might have refined their skills, especially
when numerous pages were presented consecutively. However,
in real-world scenarios, users are likely to encounter adversarial
phishing attacks sporadically. Without the guidance provided in our
study, they might not focus on or detect subtle changes, meaning
that their attention might not be drawn to the perturbations. Given
these considerations, we posit that our study offers a conservative
yet reliable assessment.

4.3 Time Cost
The reconstructed Tensorflow model was built on Python 3.7.11
and Tensorflow 2.7.0. Adversarial screenshot generation and in-
verse downsampling were conducted on Windows 10 21H2, Intel(R)
Core(TM) i7-10870H CPU @ 2.20GHz without the use of a GPU.

As shown in the Time columns in Table 1, generating one full-size
adversarial screenshot, including adversarial screenshot generation
and inverse downsampling, takes an average of 10.7 minutes. Most
of the samples (92.6%) take no more than half one hour.

It is noteworthy that, in our study, adversarial screenshot genera-
tion is relatively fast, with an average time consumption of just 88.4
seconds. Inverse downsampling requires much more time, encom-
passing the majority (over 86%) of the total time consumption as we
work on solving the integer linear programming problem. Despite
the occasionally extreme time consumption, we consider the cost
is acceptable, as the adversarial image generation is a one-time
off-line effort.

4.4 Case study
We use two cases to demonstrate the effectiveness of our approach
in both evasion and utility preservation. The first shows an example
with complex background and the second shows a case with very
simple background.

Webpage with complex background. Some webpages use complex
backgrounds, such as pictures and dense texts, which makes it easy
to hide modified pixels. For example, Figure 11 shows a case that
imitates the login page of Netflix. In such a case, many pixels have
been modified as shown in Figure 11(c). However, the high informa-
tion density in the background makes it harder for human beings

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Changqing Miao et al.

(a) Original screenshot (b) Adversarial screenshot (c) Illustration of modified pixels

Figure 11: An example phishing page with complex background.

(a) Original screenshot (b) Adversarial screenshot (c) Illustration of modified pixels

Figure 12: An example phishing page with simple plain white background and the adversarial screenshot.

Original Part Modified Part

Modified

Figure 13: A detailed illustration of a modified area in Fig-
ure 12.

to identify the information from the adversarial modification.notice
the changes from Figure 11(a) to Figure 11(b). Especially when
Figure 11(b) alone is shown to users, it is impossible for them to
identify the changed pixels that are intended to bypass the phishing
page image classifier. Even if there are a few salient pixels in the
adversarial screenshot, they are harder to spot or may be mistaken
for dead pixels on LCD screen due to their small number.

Webpage with simple background. Some websites use simple back-
grounds, such as plain white or solid color, which makes it difficult
to preserve visual utility while succeeding the bypass. Figure 12(a)
imitates the login page of PayPal. Such a webpage with simple back-
ground, e.g., plain white, makes it hard to preserve visual utility,
since simple background has very low saliency. Any modification
with salient pixels can drawn unwanted attention and web viewers
would be aware of the abnormal visual effect. We successfully fit
the modifications to the background, with each pixel only modi-
fied a small amount. Without a special notification, web viewers
may consider the negligible modifications in Figure 12(b) as dust
on the screen. The modified pixels are illustrated in Figure 12(c).
Figure 13 further shows that significant changes in salient pixels

are avoided, taking as an example a modified area in the original
and corresponding adversarial screenshot.

5 DEFENSE
As presented above, the phishing image classifier is demonstrated to
be vulnerable. Improving the robustness of the model thus becomes
an urgent issue. In this section, we present two lightweight defense
methods, adversarial training and noise filtering, to enhance the
classifier. Note that, developing a comprehensive defense mech-
anism is beyond the scope of this paper, and our main aim is to
explore the feasibility of defending potential evasion attacks.

5.1 Adversarial Training
Adversarial training is widely-used in the field of deep learning de-
fense. Adversarial training takes adversarial samples as the training
set to train the model, making the model more robust to the same
kind of adversarial samples. Therefore, we choose to use the gen-
erated adversarial samples to conduct adversarial training on the
phishing webpage classifier model in Chrome/Chromium, making
it more robust against adversarial samples.

In a preliminary experiment, we randomly split the 135 adver-
sarial samples into two parts: a training set with 50 samples and
a testing set with the others. We have checked that adversarial
screenshots for each type of phishing web page are included in the
training set. After a quick training, the model is fortunately able to
detect all the 85 phishing webpages in our testing set.

The adversarial training performs well in our experiment with
only 135 samples. This is a good sign that, with enough adversarial
samples, the robustness of the phishing image classifier could be fur-
ther improved using adversarial training. Therefore, the phishing

A Good Fishman Knows All the Angles: A Critical Evaluation of Google’s Phishing Page Classifier CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

image classifier should not use fixed weights for a long time. In-
stead, it should periodically update its weights through adversarial
training.

5.2 Noise Filtering
Our method of constructing adversarial samples is to add tiny
perturbations to original images. The perturbations can be seen
as a kind of noise that is introduced into the images. Therefore, it
is natural to use a noise filtering technique as a defense method
against our bypass.

In our experiment, we use a 5*5 median filter and a 9*9 Gauss-
ian filter to filter the introduced adversarial noise. The effect is
remarkable. After the filter, 92 among the 135 samples (68.1%) can
be detected by the phishing image classifier.

The noise filtering is a simple, direct yet powerful way to raise
the bar, making the phishing image classifier robust to this kind of
bypass with adversarial noise. In the practice, the filtering operation
can be implemented by the convolutional layer with different kind
of kernels, so that the source code does not need to be modified.

5.3 Summary
The two defense methods we proposed perform well in defending
our bypass. Preliminary experiment shows that even the light-
weight defense method could make a significant improvement in
the robustness of phishing detection. However, the detection and
defense of the phishing webpage is an open problem. Facing the
latest defense, the attacker could always come up with new attack
methods that are not able to defend with current defenses. There-
fore, the defenders should always update their defense method to
adapt to the latest attacks.

6 RELATEDWORK
Since our work focuses on bypassing a phishing image classifier,
we explore the domain of attacks against other image classification
neural networks, the machine learning based approaches for detect-
ing phishing webpages, and the attacks against machine learning
based methods for detecting phishing webpages.

Attacks against Image Classification Neural Networks. At-
tacks against image classification neural networks primarily fall into
two categories: perturbation-based attacks and generation-based
attacks. Perturbation-based attacks deceive the image classifier by
introducing perturbations to benign images. A notable example
is [24], which alters each pixel channel by one in the direction of
gradient descent. Other works, such as [17, 21, 33, 34, 42, 52, 54, 63],
develop various techniques to control modification degrees and
modification boundaries but do not regulate the number of modi-
fied pixels. Adversarial patch attack [16, 26, 32, 36, 38, 41, 51, 59] is
another type of perturbation-based attack. It limits the number of
modified pixels but does not constrain the per-pixel modification.

Generation-based attacks [15, 31, 49, 57] employ Generative
Adversarial Networks (GANs) to create adversarial samples. A GAN
consists of a generator and a discriminator. The former attempts to
produce adversarial inputs close to benign samples, and the latter
tries to differentiate the generated samples from benign ones.

Machine Learning Based Approaches for Detecting Phish-
ing Webpages. Many methods have been developed for detecting

potential phishing webpages using machine learning techniques.
The most commonly used feature for detection is the URL. Many
works [5, 6, 8, 14, 22, 23, 30, 48, 55, 56, 58, 60–62] utilize the URL as
one of their machine learning feature sources. Other feature sources
include HTML DOM tree, terms on the webpage, meta-information
of the website, and so on.

Google proposed its first version of a phishing detector using a lo-
gistic regression classifier in 2010 [56]. Yi et al. [62] employed Deep
Belief Networks (DBNs) and features from both the webpage and
interaction flow for webpage classification. PDGAN [6] used the dis-
criminator in a GAN to determine if a website is phishy. Apruzzese
et al. [11] introduced the concept of Protective Operation Chain
(POC), preventing attackers from evading phishing detectors by
cracking features in the detector and manipulating a small number
of features. Xiao et al. [58] applied Natural Language Processing
(NLP) techniques to analyze the meaning of URLs. Recurrent Neu-
ral Networks (RNNs) are also used to implement phishing website
detection[14, 23]. Somesha et al. [48] incorporated third-party infor-
mation like WHOIS, Alexa, and search engines as features. Huh et
al. [29] utilized search results returned from popular search engines
such as Google, Bing and Yahoo as features for phishing detection.
Some approaches [3, 18, 19, 37] relied on visual features to identify
phishing websites. Abuadbba et al. [4] analyzed techniques used to
bypass ML-based phishing detection and proposes a more resilient
model based on logistic regression.

Attacks Against Machine Learning Based Approaches to
Detecting Phishing Websites. While many approaches focus on
detecting phishing websites using machine learning techniques, the
number of works attempting to bypass these detections is relatively
small. Liang et al. [35] cracked GPPF’s features in Chrome and used
the cracked features to evade Chrome’s early version of phishing de-
tection [56]. Shirazi et al. [46] demonstrated that even with limited
knowledge of the phishing detector, attackers can still generate ad-
versarial samples by manipulating features in the URL and webpage
content. Researchers also employed Generative Adversarial Net-
works to create adversarial URLs for phishing webpages [7, 9, 13].
Apruzzese et al. [11] used a degree to measure the attacker’s knowl-
edge of the phishing detector, evading 13 phishing detectors in a
gray box scenario. They also introduced “evasion-space” to measure
the actual cost of attacks [10]. MaskDGA [47] proposed a black-box
attack technique to evade character-level classifiers capable of de-
tecting algorithmically generated domain names. Panum et al. [40]
perturbed visual features of phishing websites, such as HSL (hue,
saturation, light), to bypass phishing detection. Gressel et al. [27]
evaded phishing detection by evaluating feature importance and
perturbing them towards the benign class.

7 DISCUSSION
There are many other classifiers deployed in industry, some of
which are close-source. In theory, all classifiers face varying degrees
of evasion threats. However, bypassing different classifiers may
involve specific technical challenges, and designing a universal
bypass method is nearly impossible. Moreover, for close-source
classifiers, sophisticated probe testing methods need to be designed
to acquire exploitable knowledge. We plan to further explore the

CCS ’23, November 26–30, 2023, Copenhagen, Denmark. Changqing Miao et al.

security aspects of some important commercial classifiers in future
research efforts.

There may exist many potential evasion variants for adversarial
training in Section 5.1. Focusing on the hard-to-change parts would
be an insightful idea that could bring more thorough defense. One
potential approach is encoding screenshots of the hard-to-change
parts of pages of interest (e.g., the login page) as retrieval vectors
and recording them. When users browse webpages, it is possible to
quickly determine whether the current page is similar to a particular
page of interest using CBIR (Content-Based Image Retrieval) [20]
techniques. Based on this, potential phishing pages can then be
detected by comparing the related URLs. This can provide a de-
fense mechanism for individual users and can be implemented as a
browser extension. Besides, developing a one-time solution is infea-
sible, due to the ongoing evolution of attacks. Developers should
closely monitor state-of-the-art attacks and implement targeted
defenses accordingly.

Applications employing phishing webpage detection methods
similar to Chrome/Chromium’s may also face the same issue, espe-
cially the browsers utilizing the Chromium kernel. Future research
could focus on evaluating the robustness of these applications.

8 CONCLUSION
We presented a critical evaluation of the new-generation Google’s
phishing page detector with billions of users in this paper. We found
that Google upgrade its detector by introducing a phishing image
classifier in Chrome/Chromium alongside the existing system. To
evaluate its robustness, we conducted a targeted evasion testing
and investigated corresponding defense techniques. We proposed a
three-stage evasion method, which can evade the phishing image
classifier with 100% success rate, and maintain high visual utility.
The time cost of generating an evasion page is acceptable for an
off-line process. We also proposed two lightweight defense tech-
niques for the phishing image classifier, significantly enhanced
its detection ability. Our work shows that the new-generation of
Google’s phishing detector is still vulnerable to targeted evasion
attacks, putting billions of users at risk of phishing. Fortunately,
we also demonstrated that the robustness of the phishing detector
can be greatly improved by employing necessary security enhance-
ments. We believe that all commercial machine learning systems
with massive users should be subjected to critical evaluation, to
reveal their weakness and strengthen them as far as possible.

ACKNOWLEDGMENTS
The authors would like to thank the reviewers for their constructive
comments. The authors would also like to thank the students in
Turing Class 2021 in RUC for their contribution to the user study.
The work is supported in part by National Natural Science Founda-
tion of China (NSFC) under grants 62272465, 62002361, 62272464
and U1836209, and the Fundamental Research Funds for the Central
Universities and the Research Funds of Renmin University of China
under grant 22XNKJ29.

REFERENCES
[1] 2023. GUROBI OPTIMIZATION. https://www.gurobi.com/.
[2] 2023. Module: tf.lite. https://www.tensorflow.org/api_docs/python/tf/lite.

[3] Sahar Abdelnabi, Katharina Krombholz, and Mario Fritz. 2020. VisualPhishNet:
Zero-Day Phishing Website Detection by Visual Similarity. In CCS ’20: 2020 ACM
SIGSAC Conference on Computer and Communications Security, Virtual Event, USA.
ACM, 1681–1698. https://doi.org/10.1145/3372297.3417233

[4] Alsharif Abuadbba, Shuo Wang, Mahathir Almashor, Muhammad Ejaz Ahmed,
Raj Gaire, Seyit Camtepe, and Surya Nepal. 2022. Towards Web Phishing
Detection Limitations and Mitigation. CoRR abs/2204.00985 (2022). https:
//doi.org/10.48550/arXiv.2204.00985 arXiv:2204.00985

[5] Moses Adebowale Akanbi, Khin T. Lwin, and M. Alamgir Hossain. 2019. Deep
Learning with Convolutional Neural Network and Long Short-Term Memory for
Phishing Detection. In 13th International Conference on Software, Knowledge, In-
formation Management and Applications, SKIMA 2019, Island of Ulkulhas, Maldives.
IEEE, 1–8. https://doi.org/10.1109/SKIMA47702.2019.8982427

[6] Saad A. Al-Ahmadi, Afrah Alotaibi, and Omar Alsaleh. 2022. PDGAN: Phishing
Detection With Generative Adversarial Networks. IEEE Access 10 (2022), 42459–
42468. https://doi.org/10.1109/ACCESS.2022.3168235

[7] Ahmed Aleroud and George Karabatis. 2020. Bypassing Detection of URL-based
Phishing Attacks Using Generative Adversarial Deep Neural Networks. In Pro-
ceedings of the 6th International Workshop on Security and Privacy Analytics, New
Orleans, LA, USA. ACM, 53–60. https://doi.org/10.1145/3375708.3380315

[8] Amani Alswailem, Bashayr Alabdullah, Norah Alrumayh, and Aram Alsedrani.
2019. Detecting phishing websites using machine learning. In 2nd International
Conference on Computer Applications & Information Security (ICCAIS). IEEE, 1–6.

[9] Hyrum S. Anderson, Jonathan Woodbridge, and Bobby Filar. 2016. DeepDGA:
Adversarially-Tuned Domain Generation and Detection. In Proceedings of the 2016
ACM Workshop on Artificial Intelligence and Security, AISec@CCS 2016, Vienna,
Austria. ACM, 13–21. https://doi.org/10.1145/2996758.2996767

[10] Giovanni Apruzzese, Mauro Conti, and Ying Yuan. 2022. SpacePhish: The Evasion-
space of Adversarial Attacks against Phishing Website Detectors using Machine
Learning. In Annual Computer Security Applications Conference, ACSAC 2022,
Austin, TX, USA. ACM, 171–185. https://doi.org/10.1145/3564625.3567980

[11] Giovanni Apruzzese and V. S. Subrahmanian. 2022. Mitigating Adversarial
Gray-Box Attacks Against Phishing Detectors. CoRR abs/2212.05380 (2022).
https://doi.org/10.48550/arXiv.2212.05380 arXiv:2212.05380

[12] APWG. 2022. Phishing Activity Trends Report, 3rd Quarter 2022. Technical Report.
https://apwg.org/.

[13] Trinh Nguyen Bac, Phan The Duy, and Van-Hau Pham. 2021. Pwdgan: Generating
adversarial malicious url examples for deceiving black-box phishing website
detector using gans. In 2021 IEEE International Conference on Machine Learning
and Applied Network Technologies (ICMLANT). IEEE, 1–4.

[14] Alejandro Correa Bahnsen, Eduardo Contreras Bohorquez, Sergio Villegas, Javier
Vargas, and Fabio A. González. 2017. Classifying phishing URLs using recurrent
neural networks. In 2017 APWG Symposium on Electronic Crime Research, eCrime
2017, Phoenix, AZ, USA. IEEE, 1–8. https://doi.org/10.1109/ECRIME.2017.7945048

[15] Tao Bai, Jun Zhao, Jinlin Zhu, Shoudong Han, Jiefeng Chen, Bo Li, and Alex C.
Kot. 2021. AI-GAN: Attack-Inspired Generation of Adversarial Examples. In 2021
IEEE International Conference on Image Processing, ICIP 2021, Anchorage, AK, USA.
IEEE, 2543–2547. https://doi.org/10.1109/ICIP42928.2021.9506278

[16] Tom B. Brown, Dandelion Mané, Aurko Roy, Martín Abadi, and Justin Gilmer.
2017. Adversarial Patch. CoRR abs/1712.09665 (2017). http://arxiv.org/abs/1712.
09665

[17] Nicholas Carlini and David A. Wagner. 2017. Towards Evaluating the Robustness
of Neural Networks. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San
Jose, CA, USA. IEEE Computer Society, 39–57. https://doi.org/10.1109/SP.2017.49

[18] Teh-Chung Chen, Scott Dick, and James Miller. 2010. Detecting visually similar
Web pages: Application to phishing detection. ACM Trans. Internet Techn. 10, 2
(2010), 5:1–5:38. https://doi.org/10.1145/1754393.1754394

[19] Kang-Leng Chiew, Ee Hung Chang, San-Nah Sze, and Wei King Tiong. 2015.
Utilisation of website logo for phishing detection. Comput. Secur. 54 (2015), 16–26.
https://doi.org/10.1016/j.cose.2015.07.006

[20] Ritendra Datta, Jia Li, and James Ze Wang. 2005. Content-based image retrieval:
approaches and trends of the new age. In Proceedings of the 7th ACM SIGMM
International Workshop on Multimedia Information Retrieval, MIR 2005, Singapore.
ACM, 253–262. https://doi.org/10.1145/1101826.1101866

[21] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and
Jianguo Li. 2018. Boosting Adversarial Attacks With Momentum. In 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City,
UT, USA. CVF/IEEE CS, 9185–9193. https://doi.org/10.1109/CVPR.2018.00957

[22] Muna Elsadig, Ashraf Osman Ibrahim, Shakila Basheer, Manal Abdullah Alohali,
Sara Alshunaifi, Haya Alqahtani, Nihal Alharbi, and Wamda Nagmeldin. 2022.
Intelligent Deep Machine Learning Cyber Phishing URL Detection Based on
BERT Features Extraction. Electronics 11, 22 (2022), 3647.

[23] Tao Feng and Chuan Yue. 2020. Visualizing and Interpreting RNN Models in
URL-based Phishing Detection. In Proceedings of the 25th ACM Symposium on
Access Control Models and Technologies, SACMAT 2020, Barcelona, Spain. ACM,
13–24. https://doi.org/10.1145/3381991.3395602

[24] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. In 3rd International Conference on Learning

https://www.gurobi.com/
https://www.tensorflow.org/api_docs/python/tf/lite
https://doi.org/10.1145/3372297.3417233
https://doi.org/10.48550/arXiv.2204.00985
https://doi.org/10.48550/arXiv.2204.00985
https://arxiv.org/abs/2204.00985
https://doi.org/10.1109/SKIMA47702.2019.8982427
https://doi.org/10.1109/ACCESS.2022.3168235
https://doi.org/10.1145/3375708.3380315
https://doi.org/10.1145/2996758.2996767
https://doi.org/10.1145/3564625.3567980
https://doi.org/10.48550/arXiv.2212.05380
https://arxiv.org/abs/2212.05380
https://doi.org/10.1109/ECRIME.2017.7945048
https://doi.org/10.1109/ICIP42928.2021.9506278
http://arxiv.org/abs/1712.09665
http://arxiv.org/abs/1712.09665
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1145/1754393.1754394
https://doi.org/10.1016/j.cose.2015.07.006
https://doi.org/10.1145/1101826.1101866
https://doi.org/10.1109/CVPR.2018.00957
https://doi.org/10.1145/3381991.3395602

A Good Fishman Knows All the Angles: A Critical Evaluation of Google’s Phishing Page Classifier CCS ’23, November 26–30, 2023, Copenhagen, Denmark.

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings. http://arxiv.org/abs/1412.6572

[25] Google. 2023. Safe-browsing in Chrome. https://transparencyreport.google.
com/safe-browsing/overview

[26] Divya Gopinath, Mengshi Zhang, Kaiyuan Wang, Ismet Burak Kadron, Corina S.
Pasareanu, and Sarfraz Khurshid. 2019. Symbolic Execution for Importance Anal-
ysis and Adversarial Generation in Neural Networks. In 30th IEEE International
Symposium on Software Reliability Engineering, ISSRE 2019, Berlin, Germany. IEEE,
313–322. https://doi.org/10.1109/ISSRE.2019.00039

[27] Gilad Gressel, Niranjan Hegde, Archana Sreekumar, and Michael C. Darling. 2021.
Feature Importance Guided Attack: A Model Agnostic Adversarial Attack. CoRR
abs/2106.14815 (2021). arXiv:2106.14815 https://arxiv.org/abs/2106.14815

[28] J A Hanley and B J McNeil. 1982. The meaning and use of the area under a
receiver operating characteristic (ROC) curve. Radiology 143, 1 (1982), 29–36.
https://doi.org/10.1148/radiology.143.1.7063747

[29] Jun Ho Huh and Hyoungshick Kim. 2011. Phishing Detection with Popular
Search Engines: Simple and Effective. In Foundations and Practice of Security -
4th Canada-France MITACS Workshop, FPS 2011, Paris, France, Revised Selected
Papers (Lecture Notes in Computer Science, Vol. 6888). Springer, 194–207. https:
//doi.org/10.1007/978-3-642-27901-0_15

[30] Ankit Kumar Jain and BBGupta. 2018. PHISH-SAFE: URL features-based phishing
detection system using machine learning. In Cyber Security: Proceedings of CSI
2015. Springer, 467–474.

[31] Surgan Jandial, Puneet Mangla, Sakshi Varshney, and Vineeth Balasubramanian.
2019. AdvGAN++: Harnessing Latent Layers for Adversary Generation. In 2019
International Conference on Computer Vision Workshops, ICCV Workshops 2019,
Seoul, Korea. IEEE, 2045–2048. https://doi.org/10.1109/ICCVW.2019.00257

[32] Danny Karmon, Daniel Zoran, and Yoav Goldberg. 2018. LaVAN: Localized and
Visible Adversarial Noise. In Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden (Proceedings
of Machine Learning Research, Vol. 80). PMLR, 2512–2520. http://proceedings.mlr.
press/v80/karmon18a.html

[33] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. 2017. Adversarial examples
in the physical world. In 5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings.
OpenReview.net. https://openreview.net/forum?id=HJGU3Rodl

[34] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. 2017. Adversarial Machine
Learning at Scale. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, Conference Track Proceedings. OpenReview.net. https:
//openreview.net/forum?id=BJm4T4Kgx

[35] Bin Liang, Miaoqiang Su, Wei You, Wenchang Shi, and Gang Yang. 2016. Cracking
Classifiers for Evasion: A Case Study on the Google’s Phishing Pages Filter. In
Proceedings of the 25th International Conference on World Wide Web, WWW 2016,
Montreal, Canada. ACM, 345–356. https://doi.org/10.1145/2872427.2883060

[36] Aishan Liu, Xianglong Liu, Jiaxin Fan, Yuqing Ma, Anlan Zhang, Huiyuan Xie,
and Dacheng Tao. 2019. Perceptual-Sensitive GAN for Generating Adversarial
Patches. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019,
Honolulu, Hawaii, USA. AAAI Press, 1028–1035. https://doi.org/10.1609/aaai.
v33i01.33011028

[37] Eric Medvet, Engin Kirda, and Christopher Kruegel. 2008. Visual-similarity-based
phishing detection. In 4th International ICST Conference on Security and Privacy
in Communication Networks, SECURECOMM 2008, Istanbul, Turkey. ACM, 22.
https://doi.org/10.1145/1460877.1460905

[38] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.
DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. In
2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 2574–2582. https:
//doi.org/10.1109/CVPR.2016.282

[39] OpenPhish. 2023. OpenPhish - Phishing Intelligence. https://openphish.com/
[40] Thomas Kobber Panum, Kaspar Hageman, René Rydhof Hansen, and Jens Myrup

Pedersen. 2020. Towards Adversarial Phishing Detection. In 13th USENIX Work-
shop on Cyber Security Experimentation and Test, CSET 2020. USENIX Association.
https://www.usenix.org/conference/cset20/presentation/panum

[41] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay
Celik, and Ananthram Swami. 2016. The Limitations of Deep Learning in Adver-
sarial Settings. In IEEE European Symposium on Security and Privacy, EuroS&P 2016,
Saarbrücken, Germany. IEEE, 372–387. https://doi.org/10.1109/EuroSP.2016.36

[42] Andras Rozsa, Ethan M. Rudd, and Terrance E. Boult. 2016. Adversarial Diversity
and Hard Positive Generation. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition Workshops, CVPR Workshops 2016, Las Vegas, NV, USA. IEEE
Computer Society, 410–417. https://doi.org/10.1109/CVPRW.2016.58

[43] Wei Shan, Guangling Sun, Xiaofei Zhou, and Zhi Liu. 2017. Two-Stage Transfer
Learning of End-to-End Convolutional Neural Networks for Webpage Saliency
Prediction. In Intelligence Science and Big Data Engineering - 7th International
Conference, IScIDE 2017, Dalian, China, September 22-23, 2017, Proceedings (Lecture
Notes in Computer Science, Vol. 10559). Springer, 316–324. https://doi.org/10.1007/
978-3-319-67777-4_27

[44] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. 2016.
Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recog-
nition. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016. ACM, 1528–1540.
https://doi.org/10.1145/2976749.2978392

[45] Chengyao Shen and Qi Zhao. 2014. Webpage saliency. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, Proceedings, Part VII
13. Springer, 33–46.

[46] Hossein Shirazi, Bruhadeshwar Bezawada, Indrakshi Ray, and Charles Anderson.
2019. Adversarial Sampling Attacks Against Phishing Detection. In Data and
Applications Security and Privacy XXXIII - 33rd Annual IFIP WG 11.3 Conference,
DBSec 2019, Charleston, SC, USA, Proceedings (Lecture Notes in Computer Science,
Vol. 11559). Springer, 83–101. https://doi.org/10.1007/978-3-030-22479-0_5

[47] Lior Sidi, Asaf Nadler, and Asaf Shabtai. 2019. MaskDGA: A Black-box Eva-
sion Technique Against DGA Classifiers and Adversarial Defenses. CoRR
abs/1902.08909 (2019). arXiv:1902.08909 http://arxiv.org/abs/1902.08909

[48] M Somesha, Alwyn Roshan Pais, Routhu Srinivasa Rao, and Vikram Singh
Rathour. 2020. Efficient deep learning techniques for the detection of phish-
ing websites. Sādhanā 45 (2020), 1–18.

[49] Yang Song, Rui Shu, Nate Kushman, and Stefano Ermon. 2018. Con-
structing Unrestricted Adversarial Examples with Generative Models. In
Advances in Neural Information Processing Systems 31: Annual Confer-
ence on Neural Information Processing Systems 2018, NeurIPS 2018, Mon-
tréal, Canada. 8322–8333. https://proceedings.neurips.cc/paper/2018/hash/
8cea559c47e4fbdb73b23e0223d04e79-Abstract.html

[50] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Ried-
miller. 2015. Striving for Simplicity: The All Convolutional Net. In 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Workshop Track Proceedings. http://arxiv.org/abs/1412.6806

[51] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. 2019. One Pixel
Attack for Fooling Deep Neural Networks. IEEE Trans. Evol. Comput. 23, 5 (2019),
828–841. https://doi.org/10.1109/TEVC.2019.2890858

[52] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks.
In 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, Conference Track Proceedings. http://arxiv.org/abs/1312.6199

[53] Cisco Talos Intelligence Group (Talos). 2023. PhishTank | Join the fight against
phishing. https://phishtank.org/

[54] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian J. Goodfellow, Dan Boneh,
and Patrick D. McDaniel. 2018. Ensemble Adversarial Training: Attacks and
Defenses. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, Conference Track Proceedings. OpenReview.net. https:
//openreview.net/forum?id=rkZvSe-RZ

[55] Bo Wei, Rebeen Ali Hamad, Longzhi Yang, Xuan He, Hao Wang, Bin Gao, and
Wai Lok Woo. 2019. A Deep-Learning-Driven Light-Weight Phishing Detection
Sensor. Sensors 19, 19 (2019), 4258. https://doi.org/10.3390/s19194258

[56] Colin Whittaker, Brian Ryner, and Marria Nazif. 2010. Large-Scale Automatic
Classification of Phishing Pages. In Proceedings of the Network and Distributed
System Security Symposium, NDSS 2010, San Diego, California, USA. The Internet
Society. https://www.ndss-symposium.org/ndss2010/large-scale-automatic-
classification-phishing-pages

[57] Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song.
2018. Generating Adversarial Examples with Adversarial Networks. In Proceed-
ings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018,
Stockholm, Sweden. 3905–3911. https://doi.org/10.24963/ijcai.2018/543

[58] Xi Xiao, Dianyan Zhang, Guangwu Hu, Yong Jiang, and Shutao Xia. 2020. CNN-
MHSA: A Convolutional Neural Network and multi-head self-attention combined
approach for detecting phishing websites. Neural Networks 125 (2020), 303–312.
https://doi.org/10.1016/j.neunet.2020.02.013

[59] Chenglin Yang, Adam Kortylewski, Cihang Xie, Yinzhi Cao, and Alan L. Yuille.
2020. PatchAttack: A Black-Box Texture-Based Attack with Reinforcement
Learning. InComputer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK,
Proceedings, Part XXVI (Lecture Notes in Computer Science, Vol. 12371). Springer,
681–698. https://doi.org/10.1007/978-3-030-58574-7_41

[60] Peng Yang, Guangzhen Zhao, and Peng Zeng. 2019. Phishing Website Detection
Based on Multidimensional Features Driven by Deep Learning. IEEE Access 7
(2019), 15196–15209. https://doi.org/10.1109/ACCESS.2019.2892066

[61] Suleiman Y. Yerima and Mohammed K. Alzaylaee. 2020. High Accuracy Phishing
Detection Based on Convolutional Neural Networks. CoRR abs/2004.03960 (2020).
https://arxiv.org/abs/2004.03960

[62] Ping Yi, Yuxiang Guan, Futai Zou, Yao Yao, Wei Wang, and Ting Zhu. 2018. Web
Phishing Detection Using a Deep Learning Framework. Wirel. Commun. Mob.
Comput. 2018 (2018), 4678746:1–4678746:9. https://doi.org/10.1155/2018/4678746

[63] Tianhang Zheng, Changyou Chen, and Kui Ren. 2019. Distributionally Adversar-
ial Attack. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI
2019, Honolulu, Hawaii, USA. AAAI Press, 2253–2260. https://doi.org/10.1609/
aaai.v33i01.33012253

http://arxiv.org/abs/1412.6572
https://transparencyreport.google.com/safe-browsing/overview
https://transparencyreport.google.com/safe-browsing/overview
https://doi.org/10.1109/ISSRE.2019.00039
https://arxiv.org/abs/2106.14815
https://arxiv.org/abs/2106.14815
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1007/978-3-642-27901-0_15
https://doi.org/10.1007/978-3-642-27901-0_15
https://doi.org/10.1109/ICCVW.2019.00257
http://proceedings.mlr.press/v80/karmon18a.html
http://proceedings.mlr.press/v80/karmon18a.html
https://openreview.net/forum?id=HJGU3Rodl
https://openreview.net/forum?id=BJm4T4Kgx
https://openreview.net/forum?id=BJm4T4Kgx
https://doi.org/10.1145/2872427.2883060
https://doi.org/10.1609/aaai.v33i01.33011028
https://doi.org/10.1609/aaai.v33i01.33011028
https://doi.org/10.1145/1460877.1460905
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1109/CVPR.2016.282
https://openphish.com/
https://www.usenix.org/conference/cset20/presentation/panum
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.1109/CVPRW.2016.58
https://doi.org/10.1007/978-3-319-67777-4_27
https://doi.org/10.1007/978-3-319-67777-4_27
https://doi.org/10.1145/2976749.2978392
https://doi.org/10.1007/978-3-030-22479-0_5
https://arxiv.org/abs/1902.08909
http://arxiv.org/abs/1902.08909
https://proceedings.neurips.cc/paper/2018/hash/8cea559c47e4fbdb73b23e0223d04e79-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/8cea559c47e4fbdb73b23e0223d04e79-Abstract.html
http://arxiv.org/abs/1412.6806
https://doi.org/10.1109/TEVC.2019.2890858
http://arxiv.org/abs/1312.6199
https://phishtank.org/
https://openreview.net/forum?id=rkZvSe-RZ
https://openreview.net/forum?id=rkZvSe-RZ
https://doi.org/10.3390/s19194258
https://www.ndss-symposium.org/ndss2010/large-scale-automatic-classification-phishing-pages
https://www.ndss-symposium.org/ndss2010/large-scale-automatic-classification-phishing-pages
https://doi.org/10.24963/ijcai.2018/543
https://doi.org/10.1016/j.neunet.2020.02.013
https://doi.org/10.1007/978-3-030-58574-7_41
https://doi.org/10.1109/ACCESS.2019.2892066
https://arxiv.org/abs/2004.03960
https://doi.org/10.1155/2018/4678746
https://doi.org/10.1609/aaai.v33i01.33012253
https://doi.org/10.1609/aaai.v33i01.33012253

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Model Extraction
	3.2 Model Reconstruction
	3.3 Adversarial Screenshot Generation
	3.4 Inverse Downsampling
	3.5 Webpage Construction

	4 Evasion Evaluation
	4.1 Effectiveness
	4.2 Visual Utility Preservation
	4.3 Time Cost
	4.4 Case study

	5 Defense
	5.1 Adversarial Training
	5.2 Noise Filtering
	5.3 Summary

	6 related work
	7 discussion
	8 Conclusion
	Acknowledgments
	References

