
SinkFinder: Harvesting Hundreds of Unknown Interesting
Function Pairs with Just One Seed

Pan Bian

bianpan@ruc.edu.cn

School of Information, Renmin

University of China

Key Laboratory of DEKE, Renmin

University of China

Beijing, China

Bin Liang
∗

liangb@ruc.edu.cn

School of Information, Renmin

University of China

Key Laboratory of DEKE, Renmin

University of China

Beijing, China

Jianjun Huang

hjj@ruc.edu.cn

School of Information, Renmin

University of China

Key Laboratory of DEKE, Renmin

University of China

Beijing, China

Wenchang Shi

wenchang@ruc.edu.cn

School of Information, Renmin

University of China

Key Laboratory of DEKE, Renmin

University of China

Beijing, China

Xidong Wang

wangxidong@ruc.edu.cn

School of Information, Renmin

University of China

Key Laboratory of DEKE, Renmin

University of China

Beijing, China

Jian Zhang

zj@ios.ac.cn

State Key Laboratory of Computer

Science, Institute of Software, Chinese

Academy of Sciences

Beijing, China

ABSTRACT
Mastering the knowledge about security-sensitive functions that

can potentially result in bugs is valuable to detect them. However,

identifying this kind of functions is not a trivial task. Introduc-

ing machine learning-based techniques to do the task is a natural

choice. Unfortunately, the approach also requires considerable prior

knowledge, e.g., sufficient labelled training samples. In practice, the

requirement is often hard to meet.

In this paper, to solve the problem, we propose a novel and prac-

tical method called SinkFinder to automatically discover func-

tion pairs that we are interested in, which only requires very lim-

ited prior knowledge. SinkFinder first takes just one pair of well-

known interesting functions as the initial seed to infer enough

positive and negative training samples by means of sub-word word

embedding. By using these samples, a support vector machine clas-

sifier is trained to identify more interesting function pairs. Finally,

checkers equipped with the obtained knowledge can be easily devel-

oped to detect bugs in target systems. The experiments demonstrate

that SinkFinder can successfully discover hundreds of interest-

ing functions and detect dozens of previously unknown bugs from

large-scale systems, such as Linux, OpenSSL and PostgreSQL.

CCS CONCEPTS
• Software and its engineering→ Automated static analysis.
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1 INTRODUCTION
Software bug detection is critical to protect system security and

reliability. To effectively detect certain bugs, current methods, es-

pecially the static ones, need to master related bug knowledge in

advance [11, 16, 18, 52]. For many types of bugs, the essence of this

prior knowledge is which functions can potentially result in the

target bugs. For example, only if a static analysis tool knows brelse()
is a memory deallocation function, can it successfully discover the

use-after-free bug shown in §2.

In practice, the security-sensitive functions can be manually col-

lected from known secure programming knowledge or dataset, such

as common weakness enumerations (CWE), common vulnerability

enumerations (CVE) or even usage specifications of public func-

tions. Obviously, this requires a great deal of human effort, which

is tedious and error-prone. Worse, it is very difficult to manually

identify application-specific security-sensitive functions in a large-

scale system. In fact, many of them are often less well documented

and less well understood by analysts, e.g., the function brelse() in
the Linux kernel.

Naturally, the machine learning technique was employed to auto-

matically infer security-sensitive functions. The basic idea is to use

a training set to train a classifier, and then use it to identify whether

a given function is security-sensitive or not. For example, Rasthofer

https://doi.org/10.1145/3368089.3409678
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et al. [45] developed SuSi to train a support vector machine (SVM)

classifier to flag unknown taint sources and sinks in the Android

framework. This kind of method has been proven to be effective

in inferring unknown security-sensitive functions. SuSi success-

fully identified thousands of taint sources or sinks from Android

framework (v4.2), which have been used to support practical taint

analysis on Android applications [3].

Unfortunately, this straightforward supervised learning mode

requires considerable prior knowledge, i.e., enough labelled training

samples. In fact, the training set of SuSi consists of 779 labeled

Android Framework APIs. This is indeed a great limitation when

applying to other large-scale systems. In practice, so much prior

knowledge is not always available. For example, an analyst, who

wants to find memory corruption bugs in the Linux kernel, may

only be aware of a very limited number of memory allocation and

deallocation functions, e.g., kmalloc() and kfree(). It is very difficult,

if not impossible, to train a usable classifier only with a few known

positive functions. The problem may become more serious when

facing a less popular target system.

In this paper, we propose a method, called SinkFinder, to solve

the above problem. The basic idea is to employ the unsupervised

learning technique and only rely on very limited prior knowledge

to automatically discover enough positive and negative samples,

and then use them to train an effective classifier of interesting

function pairs. We refer to functions that we desire to extract as

interesting functions, which are often security-sensitive ones in

bug detection. Considering that many security-sensitive functions

come in pairs (e.g., kmalloc() and kfree()), we choose to use a pair
of known interesting functions as the seed to infer unknown inter-

esting ones. Those functions (e.g. memset()) that do not pair with

certain functions are out of our consideration.

SinkFinder takes just one pair of functions (called the seed pair)
of the target system and its source code as inputs, and employs the

word embedding technique to infer function pairs that are analogous
to the seed pair. All functions are first embedded in vectors, just like

vectorizing words in NLP [6, 39]. As the learned vectors embody

semantics of functions, the desired unknown interesting function

pairs are identified by measuring the semantic distance between

their vectors and the given seed vector. Subsequently, these identi-

fied function pairs are used to train a SVM classifier to gain more

positive ones that are difficult to be found by analogical reasoning.

Finally, all discovered positive function pairs are integrated into

some static checkers to detect bugs in the target system.

However, there are two issues need to be addressed. First, tradi-

tional word embedding methods, e.g., word2vec [39], only consider
contexts that the word appears but ignore the name of the word.

But for a function, its name is also important as well as its calling

contexts when encoding its semantics [1, 23, 30]. Second, blindly

combining all functions into candidate pairs would introduce un-

acceptable overhead. There would be 𝑛2 pairs need to be handled

for a target system with 𝑛 functions. In other words, the pairing

space will explode with the increase of the number of functions.

In practice, a real-world large-scale system may have hundreds of

thousands of functions, which would result in a huge pairing space.

We employ sub-word word embedding and data mining tech-

niques to address above two issues, respectively. First, the state-of-

the-art word embedding method fastText [6] is used to vectorize

functions, which can encode sub-word level semantics besides inter-

word relationships. Second, to reduce the pairing space, a specially

designed frequent sequence mining algorithm is used to mine can-

didate pairs of functions that frequently co-occur.

We implemented SinkFinder and have evaluated it on the Linux
kernel. We select six different well-known function pairs as seeds

to identify different categories of unknown interesting functions.

With these seed pairs, SinkFinder successfully discovers a large

number of unknown interesting pairs with an average precision

of 91.24%. For example, given security-sensitive pairs <kmalloc,
kfree> and <mutex_lock_nested, mutex_unlock>, SinkFinder auto-

matically discovers 237 pairs of “Alloc / Free” functions and 101

pairs of “Lock / Unlock” functions, respectively. In the knowledge

of such security-sensitive functions, we can easily design check-

ers to detect bugs. Without loss of generality, we developed two

checkers to detect use-after-free and mismatched-alloc-free bugs

according to the obtained “Alloc / Free” functions. Using the two

checkers, 55 suspects are detected in the Linux kernel v4.19. We

have written patches for these suspects and submitted them to the

kernel community. Up to now, 37 out of them have been confirmed

to be real bugs and fixed in latest kernel versions. The others are

waiting for further confirmation. We believe that the evaluation

results are amazing and encouraging, considering that all findings

are derived from just two well-known security-sensitive functions.

We also evaluated it on two other large systems (OpenSSL and

PostgreSQL) with different initial seed pairs, i.e., <CRYPTO_alloc,
CRYPTO_free> for OpenSSL and <fopen, fclose> for PostgreSQL.

According to the identified functions, four suspects are detected

and have been confirmed to be real bugs by the project developers.

This paper makes the following contributions.

• Novel methodology. By combining supervised and unsuper-

vised learning techniques, SinkFinder can successfully discover

unknown application-specific security-sensitive functions to ef-

fectively support bug detection. As far as we know, SinkFinder
is the first practical learning-based interesting functions extrac-

tion method only requiring very limited prior knowledge.

• Practicable solution. By introducing sub-word word embed-

ding and data mining techniques, sufficient training samples are

produced and the pairing space is dramatically reduced, making

SinkFinder applicable to large systems.

• Encouraging results. Hundreds of security-sensitive functions
are identified and dozens of confirmed bugs are detected from

three real-world large-scale systems
1
.

The rest of this paper is organized as follows. §2 provides the

motivating example. §3 presents the framework of SinkFinder and
§4 describes the two checkers. §5 presents our evaluation result.

After discussing the limitation and possible future works in §6, we

review related work in §7. Finally, §8 concludes the paper.

2 MOTIVATING EXAMPLE
In this section, we use a real use-after-free (UAF) bug we found

in the Linux kernel (v4.19) to motivate our method. Figure 1 illus-

trates the simplified code snippets related to the bug. The function

ext2_xattr_set() calls sb_bread() to read a specified block from a

block device (line 10). The function sb_bread() returns the buffer
1
https://github.com/SinkFinder/data
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1 // file: linux-v4.19/fs/ext2/xattr.c
2 int ext2_xattr_set(struct inode *inode, ...)
3 {
4 struct super_block *sb = inode->i_sb;
5 ...
6 int not_found = 1, error;
7 char *end;
8 ...
9 if (EXT2_I(inode)->i_file_acl) {
10 bh = sb_bread(sb, EXT2_I(inode)->i_file_acl);
11 error = -EIO;
12 if (!bh)
13 goto cleanup;
14 ...
15 header = HDR(bh);
16 }
17 ...
18 cleanup:
19 brelse(bh); // only decrements the reference count

bh->b_count
20

21 if (!(bh && header == HDR(bh)))
22 kfree(header);
23 up_write(&EXT2_I(inode)->xattr_sem);
24 return error;
25 }

26 // file: linux-v4.19/fs/buffer.c
27 int try_to_free_buffers(struct page *page)
28 {
29 struct address_space * const mapping = page->mapping;
30 ...
31 spin_lock(&mapping->private_lock);
32 ret = drop_buffers(page, &buffers_to_free);
33 ...
34 if (ret)
35 cancel_dirty_page(page);
36 spin_unlock(&mapping->private_lock);
37 out:
38 if (buffers_to_free) {
39 struct buffer_head *bh = buffers_to_free;
40

41 do {
42 struct buffer_head *next = bh->b_this_page;
43 free_buffer_head(bh); // calls kmem_cache_free

to release bh
44 bh = next;
45 } while (bh != buffers_to_free);
46 }
47 return ret;
48 }

Thread A Thread B

Race Window

Crash

Figure 1: A use-after-free bug in Linux kernel.

head of the block on success. A buffer head is a shared memory with

a reference count which records how many objects are using it. In

sb_bread(), the reference count is incremented by 1. When it is no

longer needed, the function brelse() should be called to decrement

the reference count of the buffer head (line 19). If the reference

count of the buffer head reaches zero, it will be released within the

function try_to_free_buffers() (line 43).
The problem in Figure 1 is that the buffer head bh is used again

(line 21) after its reference count is decremented (line 19). If another

kernel thread is executed to release the buffer head during the

window between calling brelse(bh) and dereferencing bh, a use-after-
free bug may occur, resulting in a system crash or other security

impacts.

Challenges in previous works. To detect the bug, static anal-

ysis methods need to know that the function brelse() behaves like a
free() function [11, 18, 52]. However, brelse() is not as well known
as other kernel deallocation functions such as kfree(). In fact, as far

as we know, brelse() is not configured as a free() function in static

analysis tools including both commercial ones (e.g., Coverity and

Fortify) and open source ones (e.g., Coccinelle and K-Miner).
Besides, a precise inter-procedural analysis does not work because

the function brelse() just decrements the reference count of the

buffer head and there is no explicit execution path to the real point

where the buffer head is actually released.

Dynamic methods may also find it difficult to detect the bug.

Dynamic symbolic execution methods are confronted with the

same problem in static methods [8]. They also need to know the

semantics of brelse() to simulate the behavior of brelse(). Fuzzing
methods have to run a very long time before observing the crash

due to the small race window and the unknown interactive threads

that can result in the bug [13, 54].

Our solution. An intuitive but effective approach is to automat-

ically identify the semantics of the functions closely related to the

bug, e.g., sb_bread() and brelse(). Despite that the two functions

may have other purposes, they can be viewed as allocation and

deallocation functions when detecting memory-corruption bugs.

With the knowledge that brelse() is a free-like function, static and
dynamic methods can be applied to detect the bug. As an example,

we replaced kfree() with brelse() in a Coccinelle’s UAF detection
rule and the bug was successfully uncovered.

However, semantics inference is non-trivial. As discussed in

Section 1, manual identification for a large-scale system is nearly

impossible due to lack of documentations. For example, there is no

entry describing the semantics of the function brelse() in the Linux

kernel documentations. Besides, a typically supervised machine

learning method always demands sufficient labeled functions for

training an effective classifier, while such prior knowledge is usually

extremely difficult, if not impossible, to obtain.

In this paper, we propose a two-stage method, SinkFinder,
which requires merely a couple of known functions to infer the

semantics of the other unknown ones. The high-level idea is to

utilize the analogical reasoning ability of modern word embedding

techniques [39, 42], with which the semantic relations between

functions can be captured by subtraction of function vectors [21].

We can learn a vector for each function pair, and use it to dis-

cover semantically similar function pairs. We will show below how

SinkFinder infers the fact that the relationship between sb_bread()
and brelse() is similar to that between kmalloc() and kfree().

SinkFinder first discovers pairs that are quite similar or dissim-

ilar to a given interesting function pair in both naming conventions

and usage contexts. For example, given <kmalloc, kfree>, the pair
<vmalloc, vfree> is identified to be similar, while <lp_gpio_reg, outl>
is dissimilar. Then, SinkFinder discards the preference on func-

tion names to discover interesting pairs that “look” different to the

given pair. Specifically, the pairs found in the first stage are taken

as samples to train a SVM classifier, with which SinkFinder labels
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the rest function pairs. As a result, <sb_bread, brelse> is reported

analogous to <kmalloc, kfree>. With this knowledge, existing static

analyzers could easily report the use-after-free bug in Figure 1.

3 OUR APPROACH
3.1 Overview
In this section, we present SinkFinder, an approach to discovering

analogous function pairs of a given function pair, which is expected

but not limited to consist of security-sensitive functions. The given

function pair is referred to as the seed pair , the function pairs

analogous to the seed pair (i.e., pairs that we desire to identify) are

viewed as positive pairs, and all the other pairs that we are not

interested in are treated as negative pairs. As shown in Figure 2,

SinkFinder works in a two-stage schema.

The first stage tries to infer a set of reliable positive pairs as well

as a set of reliable negative pairs. To begin with, SinkFindermines

frequent function pairs from the source code (§3.2) to enhance the

effectiveness, as blindly paired functions containmassive butmostly

meaningless pairs. Then, it extracts function call sequences from the

source code and learns vector representations of all functions (§3.3).

According to the findings that the function names also provide

an important source to understand the functions’ semantics, we

accomplish the function embedding with fastText [6] to take both
the function names and the invocation contexts into account. At

the end, SinkFinder performs analogical reasoning to output the

positive, negative and unlabelled pairs (§3.4).

In the second stage, taking the positive and negative function

pairs as training samples, SinkFinder trains a SVM classifier to

further identify more positive pairs from the unlabelled ones (§3.5).

To avoid being limited to only acquiring positive function pairs

that have similar names as the seed, word2vec is used to trans-

form functions to vectors, which discards the naming information

of functions (also done in §3.3). As a result, SinkFinder can dis-

cover the especially semantically similar pairs with the seed, e.g.,

<sb_bread, brelse> for <kmalloc, kfree>.
Eventually, the interesting functions identified in the second

stage can be used for further analysis, e.g., crafting rules for static

bug detection targeting on the specific system.

3.2 Mining Frequent Function Pairs
As mentioned in §3.1, we mine frequent function pairs from source

code of the target system. The desired pairs identified in §3.4 and

§3.5 come from the frequent ones mined in this section. We are

interested in pairs of functions that have strong data flow relation-

ships. We concentrate on two types of data flow relationships, data

dependence (DataDep) and data sharing (DataShare) [5]. Within

a function definition, function 𝑔 is data dependent on function 𝑓 if

𝑔 takes the output value of 𝑓 as one of its arguments. Functions 𝑔1
and 𝑔2 have data sharing relationship if they both take the same

variable value as their arguments and there is at least one feasible

path between them in the control flow graph. A path is feasible if all

conditions on it are satisfiable [27, 56]. A pair of two functions 𝑔1
and 𝑔2 is denoted as the tuple <𝑔1, 𝑔2>, where 𝑔2 is data dependent

on or is data sharing with 𝑔1.

Taking the code snippets in Figure 1 as an example. In the func-

tion ext2_xattr_set(), the first argument of brelse() at line 19 comes

from the return value of sb_bread() called at line 10. Obviously,

there is a data dependence relationship between the two functions.

Whereas there is a data sharing relationship between drop_buffers()
and cancel_dirty_page() because both of them take the variable page
as their first argument in the function try_to_free_buffers().

A function definition is considered to contain a function pair

𝑝 : <𝑔1, 𝑔2> if it calls both 𝑔1 and 𝑔2, and there is either DataDep or

DataShare relationship between𝑔1 and𝑔2. The number of function

definitions that contain a pair 𝑝 is referred to as the support of 𝑝 . We

consider 𝑝 is frequent if its support is larger than a given threshold

𝑚𝑖𝑛_𝑠𝑢𝑝𝑝𝑜𝑟𝑡 . For example, throughout Linux-v4.19, there are 107

functions containing the pair 𝑝1: <sb_bread, brelse>. Assuming the

threshold𝑚𝑖𝑛_𝑠𝑢𝑝𝑝𝑜𝑟𝑡 of 10, 𝑝1 is a frequent pair.

3.3 Embedding Functions
Mapping functions to vectors can benefit the semantic similarity

computation for discovering analogous function pairs (see §3.4). To

capture the semantics of functions, we leverage the advanced word

embedding techniques in natural language processing to convert

functions into continuous vectors.

State-of-the-art word embedding methods attempt to learn a

convolutional neural network model that connects a word with its

contexts. The most widely adopted method is word2vec, proposed
byMikolov et al. [39]. The basic idea behind word2vec is that words
appearing in similar contexts are similar or closely related in seman-

tics. Thus, word2vec attempts to map words with similar contexts

to similar vectors. word2vec ignores the name of words and treats

them as distinct ones even if the names are merely slightly different

(e.g., kfree v.s. kzfree). Bojanowski et al. proposed fastText to en-

code the sub-word information of a word into the resultant vector

as well as its contexts [6]. fastText works similarly to word2vec
except that the sub-word information is also taken into account

during learning vectors. Specifically, it first learns a vector for each

constituent part of a word (called character 𝑛-grams). Then, the

word is represented as a sum of the vectors of its 𝑛-grams.

SinkFinder uses both fastText and word2vec to learn vector

representations for functions. We refer to the function vectors

learned with fastText as fastText-vectors, and those learned with

word2vec as word2vec-vectors.
A function definition acts as a context of the enclosed function

invocations. SinkFinder performs a random walk on the control

flow graph of each function definition intra-procedurally. During

the random walk, loops are expanded only once and at most 100

random paths are extracted to mitigate the path explosion. Every

feasible random path is transformed into a sequence of functions

invoked on the path. Then, all the sequences generated from the

target system are fed to fastText and word2vec, respectively. Each
tool returns a vector for each function appearing in the sequences.

We represent the vector of a function 𝑓 as 𝑣 (𝑓 ). The vector of
a pair 𝑝: <𝑓 , 𝑔> is denoted as 𝑣 (𝑝) and computed via the vector

subtraction:

𝑣 (𝑝) = 𝑣 (𝑓 ) − 𝑣 (𝑔) (1)

Vector 𝑣 (𝑝) embodies possible semantic relationships between 𝑓

and 𝑔, such as co-occurrences and invocation orders [21, 42].
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Figure 2: A high-level overview of SinkFinder.

3.4 Inferring Reliable Function Pairs
Given one pair of functions, SinkFinder performs an analogical

reasoning to infer a set of reliable positive and negative function

pairs. The core idea of analogical reasoning is that two pairs have

similar semantics if they are close to each other in the vector

space [6, 21, 39, 42]. The essence of reasoning is to find pairs that

are close to the seed pair (i.e., positive pairs) as well as those that

are far away from the seed pair (i.e., negative pairs). To achieve a

high precision, SinkFinder works on the fastText-vectors in this

phase such that the names of functions also act as a criterion for

identifying semantically similar or dissimilar functions.

To quantitatively evaluate how much a pair is interesting, each

pair 𝑝 is associatedwith a positive confidence (denoted by 𝑃𝐶𝑜𝑛𝑓 (𝑝))
and a negative confidence (denoted by 𝑁𝐶𝑜𝑛𝑓 (𝑝)), reflecting how

much we believe the pair is in our interest or not, respectively.

Initially, the seed pair is assigned a positive confidence of 1.0 and a

negative confidence of 0.0.

Ideally, we can take the function pairs with high positive con-

fidence as positive ones, and those with low positive confidence

as negative ones. However, we confront a challenge of how to

determine the boundary of “high” and “low” confidence values.

Specifying an absolute confidence threshold is not a good idea as it

may not work well for all target systems. We overcome the problem

by first screening out a set of reliable negative pairs that are highly

dissimilar to the seed pair and then using them as references to

pick out the reliable positive pairs iteratively.

Algorithm 1 shows the details of pair inference in this stage.

Besides the seed pair 𝑝0, the function fastText-vectorsV and the set

of frequent pairs F, the algorithm requires a ratio of negative pairs
R and a positive coefficient C. The ratio R indicates how many pairs

can be directly recognized as negative pairs and the coefficient

C determines whether the positive confidence of a pair is large

enough. We denote the set of positive pairs and the set of negative

pairs as P and N, respectively. And the set of pairs waiting for

identification is called pending pairs, represented as L.
The algorithm walks three steps to infer the reliable negative

and positive pairs.

Step 1: inferring reliable negative pairs. The positive con-

fidence and negative confidence of each pending pair are com-

puted according to their similarity to the seed pair (lines 5 ∼ 8).

𝑐𝑜𝑠𝑖𝑛𝑒 (𝑝, 𝑝0) is the cosine similarity between 𝑝 and 𝑝0. A higher

cosine value means the two pairs are more similar. Ranking the

Algorithm 1 Identifying Reliable Positive and Negative Pairs

1: procedure extract_pairs(V, F, 𝑝0, R, C)
2: P = {𝑝0 };
3: L = L − P;
4: // STEP 1: inferring reliable negative pairs

5: for (each pair 𝑝 in L) do
6: 𝑃𝐶𝑜𝑛𝑓 (𝑝) = 𝑐𝑜𝑠𝑖𝑛𝑒 (𝑝0, 𝑝) };
7: 𝑁𝐶𝑜𝑛𝑓 (𝑝) = 1 − 𝑃𝐶𝑜𝑛𝑓 (𝑝) ;
8: end for
9: quick_sort(L, 𝑁𝐶𝑜𝑛𝑓 );

10: N = {top R pairs of L};

11: // STEP 2: updating 𝑁𝐶𝑜𝑛𝑓 of pending pairs

12: L = L − N;
13: for (each pair 𝑝 in L) do
14: 𝑁𝐶𝑜𝑛𝑓 (𝑝) = max

𝑝𝑖 ∈N
{𝑁𝐶𝑜𝑛𝑓 (𝑝𝑖 ) × 𝑐𝑜𝑠𝑖𝑛𝑒 (𝑝, 𝑝𝑖 ) }

15: end for
16: // STEP 3: iteratively inferring reliable positive pairs

17: while (L ≠ ∅) do
18: 𝑝𝑚 = 𝑎𝑟𝑔max{𝑃𝐶𝑜𝑛𝑓 (𝑝)

�� 𝑝 ∈ L};
19: L = L − {𝑝𝑚 };
20: if (𝑃𝐶𝑜𝑛𝑓 (𝑝𝑚) < C × 𝑁𝐶𝑜𝑛𝑓 (𝑝𝑚)) then
21: continue;

22: end if
23: P = P ∪ {𝑝𝑚 };
24: // Updating positive confidence

25: for (each pair 𝑝𝑖 in L) do
26: 𝑐𝑜𝑛𝑓𝑇𝑚𝑝 = 𝑃𝐶𝑜𝑛𝑓 (𝑝𝑚) × 𝑐𝑜𝑠𝑖𝑛𝑒 (𝑝𝑖 , 𝑝𝑚) ;
27: if (𝑃𝐶𝑜𝑛𝑓 (𝑝𝑖 ) < 𝑐𝑜𝑛𝑓𝑇𝑚𝑝) then
28: 𝑃𝐶𝑜𝑛𝑓 (𝑝𝑖 ) = 𝑐𝑜𝑛𝑓𝑇𝑚𝑝 ;

29: end if
30: end for
31: end while
32: quick_sort(P, 𝑃𝐶𝑜𝑛𝑓 );

33: return (P, N);

34: end procedure

pending pairs (line 9) in a descending order of their negative confi-

dence values allows us easily extract the top R as the set of reliable

negative pairs N (line 10). These pairs are highly dissimilar to the

seed pair in both the function names and the calling contexts. In

other words, they are unlikely to be our interesting pairs.

Step 2: computing negative confidence of pending pairs.
The set of reliable negative pairs, after computed, will keep un-

changed. SinkFinder is then expected to extract reliable positive
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pairs from the rest pending pairs (line 12). A potentially reliable

positive pair, intuitively, should be close enough to the seed pair

(i.e., high positive confidence) and far away from the reliable neg-

ative pairs (i.e., low similarity to them). To this end, we use the

reliable negative pairs to recalculate the pending pairs’ negative

confidence (line 13 ∼ 15).

Step 3: Iteratively inferring reliable positive pairs. This
step examines the pending pairs one by one until all pairs have been

tested. During each iteration, the pair 𝑝𝑚 ∈ L with the highest pos-

itive confidence is selected as the target for identification (line 18).

If 𝑝𝑚 ’s positive confidence, which is initially computed at line 6,

is not 𝐶 times larger than its negative confidence (lines 20 ∼ 22),

we resort to labeling it in the classification stage (§3.5). Otherwise,

we mark 𝑝𝑚 as a reliable positive pair (line 23). Considering that

a pair can be a potentially positive pair when its cosine similarity

to a reliable positive pair is high enough, we update the positive

confidence of each pair in L if it is more semantically similar to 𝑝𝑚
with a coefficient than to the other existing reliable positive pairs

(line 25 ∼ 30).

Finally, the algorithm outputs P and N, which contain all the

identified reliable positive pairs and reliable negative pairs, respec-

tively (line 33).

3.5 Classifying Function Pairs
The reliable positive pairs that SinkFinder obtains are very similar

to the seed pair in both the function names and the calling contexts.

For example, taking <kmalloc, kfree> as the seed, <vmalloc, vfree>
is identified in the above stage.

Even though the first stage produces a precise set of positive

pairs, we think it is more interesting and valuable to discover pairs

that look very different with the seed pair but possess quite similar

semantics, such as <sb_bread, brelse> versus <kmalloc, kfree>. We

will show in §5.4 that, most of the Linux kernel memory-corruption

bugs detected by our checkers are caused by deallocation functions

whose names do not contain the keyword “free” (see Table 2).

To achieve the goal, SinkFinder trains a linear Support Vector
Machine (SVM) to flag the undetermined function pairs. In order

to exclude the impact of the function names, we use the word2vec-

vectors to construct the feature vectors. As word2vec may encode

various semantics (interesting and uninteresting) of a function into

the function’s vector and all dimensions are regarded to be equally

important, the analogical reasoning technique is not suitable to

infer interesting functions. Whereas, by learning the weight of each

dimension from a number of training samples, an SVMaddresses the

issue by emphasizing the importance of the interesting semantics

while lowering the uninteresting ones.

Training. The key to training a classifier is the preparation of

the training samples, e.g., (X1, 𝑦1), (X2, 𝑦2), ..., (X𝑛, 𝑦𝑛), where X𝑖

is a feature vector and 𝑦𝑖 is the class label. We take the positive and

negative pairs identified in the first stage as the training samples.

More specifically, we utilize the corresponding word2vec-vectors

of the functions within the identified pairs to make up the feature

vectors. The class labels for positive pairs and negative pairs are 1

and 0, respectively. Because each function as well as the pair itself

reflect certain semantic information, we build the feature vector by

concatenating the function vectors and the pair vector. That is, the

resulting feature vector V(𝑝) of a pair 𝑝: <𝑓 , 𝑔> is computed via

V(𝑝) =
[
𝑣 (𝑓 ), 𝑣 (𝑔), 𝑣 (𝑓 ) − 𝑣 (𝑔)

]
(2)

SinkFinder builds feature vectors for both positive and negative
pairs and feeds them to a linear SVM. The SVM then attempts

to learn a hyperplane to separate the positive samples from the

negative ones.

Predicting. After trained, the classifier can then be used to clas-

sify unlabeled samples (denoted as U). Given the feature vector of a

function pair, the classifier predicts its label, 1 or 0, which directly

tells whether the function pair is positive or negative. However, we

observed in practice that such a naive method will misclassify a

large number of negative pairs as positive ones (i.e., false positives),

especially when the number of positive samples is far smaller than

that of the negative samples, known as the imbalanced training

data issue[7, 10, 20].

To address the imbalance issue, we adopt the Spy idea adopted

in PULearning [33]. When training a classifier, PULearning takes

a small number of positive examples as unlabelled ones (called

spies) to automatically determine a reasonable threshold. In this

study, we take the reliable positive pairs as spies to determine a

minimum probability threshold min_proba for identifying positive

pairs and compute a positive probability for each target pair 𝑝 , say

pos_prob(𝑝). An unlabeled pair is considered to be positive only

when its positive probability exceeds the threshold. We notice that

the SVM classifier can compute the probability of a sample belong-

ing to a certain class via cross validation. We leverage this feature

to compute the positive probabilities of the unlabeled pairs. More-

over, we generate min_proba by averaging the probabilities of the

bottom 𝑠% reliable positive pairs with the lowest probabilities. To

gain as many interesting positive pairs as possible, we set the per-

centage 𝑠% to 10%, which is a bit smaller than that in conventional

PULearning [33] (i.e., 15%). Therefore, SinkFinder updates the set

of positive pairs as follows:

P = P ∪ {𝑝
��� 𝑝 ∈ U, Svm(𝑝) = 1, 𝑝𝑜𝑠_𝑝𝑟𝑜𝑏 (𝑝) > 𝑚𝑖𝑛_𝑝𝑟𝑜𝑏𝑎}

4 BUG DETECTION
We can use SinkFinder to identify more security-sensitive func-

tions according to one or several known security-sensitive func-

tions, and then integrate the identification result to checkers to

detect bugs. Without loss of generality, we developed two checkers

that utilize the identified “Alloc / Free” functions to detect memory

corruption bugs. In C programs, correctly invoking allocation and

deallocation functions is significant to guarantee the system secu-

rity and such functions can be directly transformed to checkers to

verify the usefulness of SinkFinder in bug detection.

1. use-after-free checker. A use-after-free bug is caused by ac-

cessing a memory chunk or resource that has already been re-

leased or closed via a deallocation function. The key to detecting

use-after-free bugs is knowing which functions act as dealloca-

tors [11, 18, 19, 52]. Such functions are referred to as free-like func-
tions. The free-like functions are extracted from “Alloc / Free” pairs

(see §5.2) automatically identified by SinkFinder. With the knowl-

edge of free-like functions, the use-after-free checker (UAF in short)
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Table 1: Identification Result of Each Category.

Category Seed Pair Stage 1 Stage 2
#True / #All Precision #True / #All Precision

Alloc / Free <kmalloc, kfree> 104 / 105 99.05% 237 / 272 87.13%

Lock / Unlock <mutex_lock_nested, mutex_unlock> 95 / 95 100% 101 / 101 100%

Start / End <nla_nest_start, nla_nest_end> 9 / 9 100% 9 / 9 100%

Enable / Disable <pci_enable_device, pci_disable_device> 11 / 11 100% 11 / 11 100%

Register / Unregister <device_register, device_unregister> 18 / 20 90% 26 / 28 92.86%

Map / Unmap <ioremap, iounmap> 12 / 13 92.31% 12 / 13 92.31%

Total 249 / 253 98.42% 396 / 434 91.24%

performs a data flow analysis to find potential usages of the freed

variables [15].

2. mismatched-alloc-free checker. Using an unexpected deal-

location function to release memory allocated with a certain alloca-

tion function can also result in bugs. For example, in Linux, misusing

kfree() to release a page memory allocated with __get_free_pages()
can result in a system crash or other security impacts (see bug #2 in

Table 2). We implement a mismatched-alloc-free checker (MAF in

short) to detect such bugs. The MAF checker scans the source code

and reports a potential bug if there is a data flow from an allocation

function 𝑓 to a deallocation function 𝑔 but <𝑓 , 𝑔> is not one of the

identified “Alloc / Free” pairs.

Considering that our identification method is unsound, some

non-security-sensitive functions may be recognized as security-

sensitive ones, leading to incorrect detection rules and then false

alarms of bugs. We adopt a widely used ranking mechanism to

mitigate the impact of false positives [31, 55]. The mechanism is

inspired by the empirical observation that the more violations asso-

ciated to a rule are uncovered, the more likely the rule is a FALSE

rule and the corresponding discoveries are false positives. There-

fore, a bug report is ranked at top if the rule it violates has very few

violations. Otherwise, it is ranked at bottom.

5 EVALUATION
5.1 Experiment Setup
We have implemented our method as a prototype system and ap-

plied it to real-world large-scale systems to evaluate its effectiveness

by mainly answering the following three key research questions.

RQ1 How effective is SinkFinder in identifying previously un-

known interesting function pairs? (§5.2)

RQ2 How do parameter settings affect the identification result?

(§5.3)

RQ3 Can the identified interesting functions help to detect previ-

ously unknown bugs? (§5.4 and §5.5)

RQ4 Why should we use different word embedding techniques in

different stages? (§5.6)

To answer the above questions, we conduct a series of experi-

ments mainly on the Linux kernel, which has been widely used as

the target of evaluation (TOE) in both embedding methods [14, 21]

and bug detection methods [16, 18, 28, 47, 51, 55]. We want to

demonstrate the urgency of identifying system-specific security-

sensitive functions for bug detection, especially for static methods,

by detecting bugs that are missed in previous works. Linux-v4.19

is the latest version at our experiment time. It includes about 15

million lines of C code.

To show the generality of our method, we also apply SinkFinder
to two other large-scale open source C systems, OpenSSL v1.1.1

and PostgreSQL v11.1 (§5.4), which have also been taken as TOEs

by many bug detection methods [24, 25, 31, 55].

SinkFinder requires users to provide three parameters to iden-

tify interesting function pairs, the threshold𝑚𝑖𝑛_𝑠𝑢𝑝𝑝𝑜𝑟𝑡 , the ratio

R and the coefficient C. Their default values are 10, 0.05 and 1.5,

respectively. In practice, however, users can tune them to gain bet-

ter results as demonstrated in §5.3. Besides, different settings of

hyperparameters of fastText and word2vec may also affect the

experiment results. In our experiments, we adopt the well-tuned

hyperparameter settings that fastText and word2vec used in their

experiments to train vectors for words in natural language. Our ex-

periment results show that they also work well on learning function

vectors. There may be more suitable hyperparameter settings that

could result in better results, but how to tune such hyperparameters

is out of scope of this paper.

5.2 Identifying Interesting Function Pairs
Input. We conduct a series of experiments on Linux-v4.19 to eval-

uate the major ability of SinkFinder on identifying unknown in-

teresting function pairs. We select six categories of function pairs

to show the effectiveness of SinkFinder. Table 1 lists these cat-

egories and the corresponding seed pairs. Generally, we take the

most frequent pair of each category as the seed because it is usually

the most well-known one in practice. Note that the name of a cate-

gory summarizes the common semantics of function pair instances.

For example, “Alloc / Free” implies that one of the two functions

allocates memory and the other function releases it, while “Lock /

Unlock” functions are used to protect a certain resource from being

read or written inconsistently in concurrent programs.

Time overhead. For each category, SinkFinder takes the well-

known seed pair as input to discover pairs that are semantically

similar to it. In total, SinkFinder took about 96 minutes for all

six categories. Most of the time was spent on preparing data for

analogical reasoning and classifying, i.e., parsing the source code

with GCC, mining frequent function pairs, and learning function

vectors, which took about 36 minutes, 25 minutes, 30 minutes,

respectively. After embedding, there are 110,125 fastText-vectors

and 110,125 word2vec-vectors generated. Through mining, 8,659

frequent function pairs are extracted. When the preparation is done,



ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Pan Bian, Bin Liang, Jianjun Huang, Wenchang Shi, Xidong Wang, and Jian Zhang

SinkFinder can perform the identification of analogous function

pairs for every seed pair within one minute.

Raw identification result. Under default parameter settings

(i.e., 𝑚𝑖𝑛_𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 10, ratio R = 0.05, and coefficient C = 1.5),

the raw identification result of each category is shown in Table 1

(columns #All). In total, 434 function pairs are identified for all the

six categories. In addition to the statistical result in the first stage

(Stage 1) and second stage (Stage 2), Table 1 also shows the overall

result (Overall).
Manual inspection details. Because there are no available

golden data to evaluate the precision of our method, we spent

a great deal of human effort to inspect the identified functions one

by one. To gain an accurate evaluation of our method, we inspect

the source code implementation of each identified function and

randomly examine some of the call instances to determine whether

the functions have very close semantics with the given seed. The

inspection costs one of us about 40 hours for all the 434 function

pairs. However, in practice, users do not have to spend so much

effort to examine the discovered function pairs. For example, in the

application of detecting memory-corruption bugs, the identified

“Alloc / Free” functions are directly integrated into the UAF and

MAF checkers, and the ranking mechanism can help us highlight

the true ones (see §5.4).

A pair is marked as “True” if both of the functions have similar

semantics as those in the seed pair. For example, <sb_bread, brelse>
is marked as a true “Alloc / Free” pair because sb_bread() occupies
a buffer head (either an old one or a newly created one) by increas-

ing the reference count while brelse() releases the occupation by

decreasing the reference count. Whereas, <dev_get_drvdata, kfree>
is not a valid pair because dev_get_drvdata() directly returns the

data held by its argument rather than a newly allocated memory

chunk.

Manual inspection result. The inspection result of each cate-

gory is illustrated in Table 1, with the number of pairs marked as

“True” (#True) and the precision (Precision). The precision is com-

puted via 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = #𝑇𝑟𝑢𝑒
#𝐴𝑙𝑙

. We did not compute the recall as it

is impractical to collect all the function pairs of a certain category

without bias.

From Table 1, our method achieves a high precision. Especially,

the first stage achieves an average precision of 98.42%, which is

high enough to be directly taken as training samples. The high

precision of the first stage benefits from incorporating both invoca-

tion contexts and sub-word information of function names during

embedding functions.

The precision of the second stage is also encouraging. The aver-

age precision is 91.24%. More importantly, hundreds of interesting

pairs that do not follow common naming conventions are identified,

which are difficult to be inferred by analogical reasoning.

5.3 Parameter Sensitivity
We conduct some experiments on Linux v4.19 to study how the

three parameters, i.e., the minimum support𝑚𝑖𝑛_𝑠𝑢𝑝𝑝𝑜𝑟𝑡 , the ratio

R, and the coefficient C, can impact the identification of interesting

function pairs.
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Figure 3: Function pairs identified by SinkFinder under dif-
ferent minimum supportmin_support.
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Figure 4: Function pairs identified by SinkFinder under dif-
ferent ratio R.

To evaluate the impact of minimum support𝑚𝑖𝑛_𝑠𝑢𝑝𝑝𝑜𝑟𝑡 , we

conduct 14 experiments with different𝑚𝑖𝑛_𝑠𝑢𝑝𝑝𝑜𝑟𝑡 settings (rang-

ing from 10 to 100) and fixed R and C. Figure 3 shows the number

of identified function pairs and the precision under each minimum

support setting. We can see that the number of function pairs de-

creases along with the increase of𝑚𝑖𝑛_𝑠𝑢𝑝𝑝𝑜𝑟𝑡 , but the precision

of identification is much less sensitive to 𝑚𝑖𝑛_𝑠𝑢𝑝𝑝𝑜𝑟𝑡 . In gen-

eral, SinkFinder can identify more interesting function pairs if a

smaller𝑚𝑖𝑛_𝑠𝑢𝑝𝑝𝑜𝑟𝑡 threshold is specified. The practice in mining

programming patterns suggests that the mining result may be un-

reliable when the𝑚𝑖𝑛_𝑠𝑢𝑝𝑝𝑜𝑟𝑡 is too small [31, 32]. In this study,

to identify as many true interesting function pairs as possible, we

take 10 as the default minimum support setting.

Similarly, we conducted 12 experiments to evaluate the impact

of ratio R. As shown in Figure 4, along with the increase of ratio R
(from 0.01 to 0.45), the number of identified function pairs decreases

but the precision increases. Finally, 16 experiments are used to

evaluate the impact of coefficient C. From Figure 5, we can see

that the number of identified function pairs decreases along with

the increase of ratio C (from 1.0 to 2.5). However, the precision

first increases but then decreases as insufficient positive training

samples can be identified in the analogical reasoning stage with a

large C. To balance precision and outcome, the default values of R
and C are set to 0.05 and 1.5, respectively.

5.4 Detecting Bugs
In this subsection, we show the usefulness of the identified security-

sensitive functions in detecting previously unknown bugs. In this
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Figure 5: Function pairs identified by SinkFinder under dif-
ferent coefficient C.

experiment, we pass the raw identification result of the “Alloc /

Free” category to the use-after-free checker and the mismatched-

alloc-free checker. We manually inspect the detecting result of the

two checkers. As the detected violations are ranked, we can only

inspect the top ranked ones.

In the following of this subsection, we first demonstrate the

bug detection result in the Linux kernel. And then, we evaluate

SinkFinder on two other real systems to demonstrate that our

method is general and is not limited to specific target systems (e.g.,

the Linux kernel).

Detecting bugs in the Linux kernel. The two checkers run

45 minutes to detect bugs in the Linux-v.4.19. The UAF checker

and MAF checker report 835 and 522 violations, respectively. We

manually inspect the top ranked 100 UAF violations and 10 MAF

violations. In total, we have found 55 suspicious bugs, including

52 use-after-free bugs and 3 mismatched-alloc-free bugs. We have

written patches for them and submitted the patches to the kernel

maintainers. Up to now, 37 of the reported bugs have been con-

firmed to be real bugs and fixed by the kernel maintainers. And the

other 18 reported suspicious bugs are waiting for further confirma-

tion.

Table 2 is a list of the 37 already confirmed bugs, with the func-

tions that contain the bug (Function), the related security-sensitive

function pairs (Pair), the checker that detects the bug (Checker), and
the IDs of our patches at the PatchWork site (PatchID). Each patch

can be retrieved with its ID. For example, the patch 1016715# for the

bug in Figure 1 can be found at https://lore.kernel.org/patchwork/pa

tch/1016715.

Checking other systems.We also apply SinkFinder and the

two checkers to OpenSSL v1.1.1 and PostgreSQL v11.1. The pair

<CRYPTO_malloc, CRYPTO_free> and <fopen, fclose> are taken as

seed pairs for OpenSSL and PostgreSQL, respectively. Finally, 40

and 5 “Alloc / Free” pairs are identified from OpenSSL and Post-

greSQL, respectively. According to these function pairs, the two

checkers report 92 and 22 violations in OpenSSL and PostgreSQL,

respectively. We only inspect the top 10 reports of each type of bugs.

And even so, we have found 1 and 3 suspicious bugs in OpenSSL

and PostgreSQL, respectively. We have reported these suspicious

bugs to the corresponding communities. All of them have been

confirmed to be real bugs and have been fixed in the latest versions.

The ID of the OpenSSL bug report
2
is #7845, and the IDs of the

PostgreSQL bug reports
3
are #15539, #15540 and #15541.

5.5 Comparative Analysis
Coverity. Coverity is one of the best static bug detection tools. It

has been applied to more than 6,200 open source projects includ-

ing the Linux kernel. Coverity has been equipped with the basic

memory deallocation function kfree() as a default rule to detect

use-after-free bugs. According to the predefined rules, it conducts

inter-procedural and path-sensitive analysis to detect potential vi-

olations [15]. We apply Coverity to Linux-v4.19 and review the

detection results. As shown in Table 2, all of the 22 bugs are missed

by Coverity (column Cov). A possible reason is that Coverity
lacks the knowledge of the corresponding allocation or dealloca-

tion functions. The comparison with Coverity well demonstrates

that identifying security-sensitive functions is helpful for static

detection tools to detect real bugs.

Grep-like methods. We notice that some semantically similar

functions follow specific naming conventions. For example, the

name of a function that allocates memory may contain the sub-

word “alloc”, while the name of a function that releases memory

may contain “free”. We can utilize such heuristics to identify inter-

esting functions with tools like grep. However, by reviewing the

identified pairs, we find that only a small portion of the true func-

tions follow the naming convention (83/237 = 35.02%) and thus can

be discovered by grep with the naming pattern <.*alloc.*, .*free.*>

in the Linux kernel. Besides, the sub-word may not indicate an

expected behavior. For example, “free” in get_free_page() means

“not being used” rather than “to release memory”. Befitting from

embedding contexts into function vectors, SinkFinder can recog-

nize its true meaning. Consequently, our method performs much

better than naive grep-like methods.

5.6 Using Different Vectors
To better understand the benefit of incorporating names and con-

texts of functions in the first stage and only considering contexts of

functions in the second stage, we conduct three more experiments

with <kmalloc, kfree> as the seed pair by employing different word

embedding tools. We name each experiment in the form of A→B
where A and B can be either fastText or word2vec, denoting the

choices in the first stage and the second stage, respectively. Row 0

in Table 3 shows the results of in §5.2 and rows 1 ∼ 3 describe the

results of the other three configurations.

In the 1
𝑠𝑡

experiment, we get the same reliable positive pairs as

the original experiment in the first stage. However, only 35 new

pairs are flagged as positive in the second stage. And 105 out of

133 (about 78.95%) “True” pairs are missed. Most of the 35 pairs

have similar names with those identified in the first stage. In other

words, the names of functions stop us from identifying interesting

function pairs that are similar in semantics but dissimilar in naming

conventions.

In the 2
𝑛𝑑

and 3
𝑟𝑑

experiments, only 24 pairs are extracted in

the first stage, which are insufficient to train an effective classifier.

After a manual inspection, only 20 of them belong to the category

2
https://github.com/openssl/openssl/issues

3
https://www.postgresql.org/list/pgsql-bugs
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Table 2: Previously Unknown Bugs in Linux-v4.19 Detected by the Two Checkers.

ID Function Pair Checker PatchID Cov
1 xfrm_add_acquire <xfrm_state_alloc, xfrm_state_put> MAF 1015392 ×
2 create_active <__get_free_pages, free_pages> MAF 1015912 ×
3 truncate_node <f2fs_get_node_page, f2fs_put_page> UAF 1016104 ×
4 dentry_connected <d_lookup, dput> UAF 1016402 ×
5 hfs_bmap_free <hfs_bnode_find, hfs_bnode_put> UAF 1016628 ×
6 hfsplus_bmap_free <hfsplus_bnode_find, hfsplus_bnode_put> UAF 1016665 ×
7 vfs_rename <d_lookup, dput> UAF 1016714 ×
8 xfs_alloc_get_freelist <xfs_perag_get, xfs_perag_put> UAF 1017605 ×
9 ext2_xattr_set <sb_bread, brelse> UAF 1016715 ×
10 ocfs2_get_dentry <igrab, iput> UAF 1016725 ×
11 autofs_expire_run <d_lookup, dput> UAF 1016907 ×
12 ext4_quota_enable <igrab, iput> UAF 1016937 ×
13 gfs2_create_inode <get_acl, posix_acl_release> UAF 1016991 ×
14 sis_find_family <pci_get_device, pci_dev_put> UAF 1017915 ×
15 sis_init_one <pci_get_device, pci_dev_put> UAF 1017916 ×
16 sl82c105_bridge_revision <pci_get_device, pci_dev_put> UAF 1017916 ×
17 ubi_detach_mtd_dev <get_mtd_device, put_mtd_device> UAF 1017919 ×
18 rionet_start_xmit <dev_alloc_skb, dev_kfree_skb_any> UAF 1018023 ×
19 hip04_mac_probe <alloc_netdev_mqs, free_netdev> UAF 1018030 ×
20 lio_vf_rep_packet_sent_callback <octeon_alloc_soft_command, octeon_free_soft_command> UAF 1018512 ×
21 mwifiex_parse_single_response_buf <cfg80211_get_bss, cfg80211_put_bss> UAF 1018810 ×
22 rtl8187_init_urbs <usb_alloc_urb, usb_free_urb> UAF 1018816 ×
23 amdgpu_benchmark_do_move <dma_fence_get, dma_fence_put> UAF 1149388 ×
24 amdgpu_do_test_moves <dma_fence_get, dma_fence_put> UAF 1149298 ×
25 intel_vgpu_get_dmabuf <i915_gem_object_create, i915_gem_object_put> UAF 1149266 ×
26 rga_probe <video_device_alloc, video_device_release> UAF 1151291 ×
27 nfc_genl_llc_set_params <nfc_get_device, nfc_put_device> UAF 1149816 ×
28 fdp_nci_i2c_read_device_properties <devm_kmalloc, devm_kfree> UAF 1148731 ×
29 st21nfca_hci_complete_target_discovered <alloc_skb, kfree_skb> UAF 1149734 ×
30 _rtl92e_hard_data_xmit <alloc_skb, kfree_skb> UAF 1148926 ×
31 bnx2i_free_hba <pci_get_device, pci_dev_put> UAF 1149409 ×
32 pch_udc_free_dma_chain <dma_pool_alloc, dma_pool_free> UAF 1149287 ×
33 i40iw_addr_resolve_neigh_ipv6 <sk_dst_get, dst_release> UAF 1149186 ×
34 qedr_addr6_resolve <sk_dst_get, dst_release> UAF 1149184 ×
35 dwc2_hcd_init <kmem_cache_create, kmem_cache_destroy> UAF 1149083 ×
36 qla4xxx_initialize_fw_cb <dma_alloc_coherent, dma_free_coherent> UAF 1148789 ×
37 fnic_fcpio_icmnd_cmpl_handler <mempool_alloc, mempool_free> UAF 1147894 ×

Table 3: Result of Using Different Vectors.

# Experiment Stage 1 Stage 2 Overall
0 fastText→word2vec 104 / 105 133 / 167 237 / 272

1 fastText→fastText 104 / 105 28 / 38 132 / 143

2 word2vec→word2vec 20 / 24 8 / 11 28 / 35

3 word2vec→fastText 20 / 24 3 / 5 23 / 29

“Alloc / Free”. Compared with that of the original experiment, 84

out of 104 (about 80.77%) “True” pairs are missed due to discarding

the naming information in the first stage.

Summary. From the above comparisons, we can conclude that

(1) introducing sub-word information of function names in the

first stage can help identify more reliable positive pairs as well as

improve the precision. And (2) discarding the sub-word information

in the second stage can avoid being limited to only find function

pairs that have similar names as the seed.

6 DISCUSSION
Though SinkFinder has automatically discovered hundreds of

security-sensitive functions and detected dozens of bugs according

to only several pairs of well known security sensitive functions,

there are some points to be improved in our future work.

Using more seeds. In our method, only one seed pair is used to

infer unknown interesting ones. However, in practice, more than

one seed pair may be available. For example, one may know other

“Alloc / Free” instances in the Linux kernel, e.g., <vmalloc, vfree>.
In future, we will explore methods that incorporate multiple seed

pairs to improve the efficiency of our method. On one hand, we

can gain more reliable positive pairs by merging analogous pairs of
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each seed. On the other hand, we can leverage multipass validation

to reduce false positives.

Detecting bugs. To show the usefulness of our method in as-

sisting bug detection, we have developed two static checkers to

detect bugs associated with “Alloc / Free” functions. However, the

other types of security-sensitive functions are also useful for detect-

ing bugs such as deadlocks [37, 38]. We will apply the discovered

knowledge to detect more types of bugs in the future.

Introducing inter-procedural analysis. We take the same

strategy as most mining-based methods to extract frequent pairs

intra-procedurally [16, 31, 32, 48, 55]. Though currently it works

well, we will explore to integrate inter-procedural mining in our

future work to discover frequent pairs that the functions are called

in different but correlated contexts.

7 RELATEDWORK
Several types of methods have been proposed to automatically iden-

tify security-sensitive functions. Engler et al. [16] and Kremenek

et al. [28] developed a method to identify functions that may have

certain semantics [16]. For example, observing that pointers passed

to a deallocation function should not be used afterward to avoid

bugs, a function is a potential deallocation function if its parameter

is rarely used after it is called.

Some other methods heuristically identify security-sensitive op-

erations according to domain-specific knowledge. Ganapathy et

al. used concept analysis to infer fingerprints of security-sensitive

operations according to the given domain knowledge, such as one

or more critical data structures [17]. Tan et al. proposed a method

called AutoISES to infer operations that should be protected by cer-
tain security check functions [47]. SinkFinder differs from these

methods in the types of extracted operations.

Rasthofer et al. developed a method called SuSi to identify taint

sources and taint sinks in the Android framework [45]. SuSi uses
a set of labelled APIs to train a SVM classifier, which is then used

to predict labels of the other APIs. SuSi has successfully identified

a large number of taint sources and taint sinks in Android frame-

work to facilitate taint analysis on Android Apps [3]. SinkFinder
also trains a classifier to identify security-sensitive functions. The

biggest difference between SinkFinder and SuSi is the source of
training samples. SuSi requires users to provide hundreds of already
known APIs. Whereas, SinkFinder automatically infers positive

and negative training samples with only one well-known seed pair.

The required prior knowledge in SinkFinder is much less than

that in SuSi. Another difference is in the manner of generating

feature vectors. In SuSi, the feature vectors are extracted according
to predefined rules, some of which are biased to taint style APIs

and should be redesigned when adapting for other categories of

APIs. Whereas, in SinkFinder, the feature vectors are generated
by word to vector tools and are applicable for different targets.

The research of Hindle et al. suggests that most software is

also natural, and learning techniques for natural language can

be used to process programming languages [22]. Nguyen et al.

used word embedding techniques to learn vectors for APIs and

found that the learned API vectors did encode useful semantic

information [42]. What’s more, their experiment shows that the

subtraction of two API vectors encodes relationships between APIs.

Henkel et al. further uses the word embedding techniques to map

the Linux kernel functions to vectors [21]. Their experiment results

demonstrate that function vectors can be used to answer analogy

questions in the form “𝑎 is to 𝑏 as 𝑐 is to𝑤ℎ𝑎𝑡?” SinkFinder also
takes advantage of vector representations of functions to identify

analogous functions. The biggest difference is that SinkFinder
only needs a seed pair and does not require users to provide a third

function (i.e., 𝑐), which is often unavailable in practice.

Researchers also propose to mine implicit programming rules

from real-world large-scale systems for bug detection [2, 9, 26, 29, 31,

32, 34, 36, 37, 41, 43, 46, 50, 51, 55]. Theminingmethods are based on

the deep insight that most implementations are correct in real-world
systems. Generally, these approaches extract frequent patterns from
target source code and take them as (implicit) programming rules

that should be followed in coding. And any violations to them are

regarded as potential bugs. SinkFinder also adopts the mining

idea to extract frequent function pairs to mitigate pairing space

explosion rather than to detect bugs directly. Our method to focus

on mining correlated pairs is inspired by NAR-Miner [5].

Various program analysis techniques have been proposed to

detect software bugs, including both static and dynamic ones [4, 12,

15, 18, 35, 40, 44, 53]. Despite their success in finding bugs, these

approaches largely depend on the models of the system or the

patterns of the bugs, e.g., high-level function semantics [49], which

we call prior knowledge. Without that kind of knowledge, they are

unable to find bugs. Our work, in contrast, discovers the knowledge

of security-sensitive functions automatically. The knowledge can

be employed by above detection methods. For example, the “Alloc /

Free” and “Lock / Unlock” functions identified by SinkFinder can

be used by DCUAF to detect concurrency use-after-free bugs.

8 CONCLUSION
In this paper, we develop a novel approach called SinkFinder to
automatically identify hundreds of application-specific interesting

functions with only one seed function pair. SinkFinder works

in a two-stage schema. In the first stage, it performs analogous

reasoning to infer a set of reliable negative pairs and reliable positive

pairs. In the second stage, the reliable pairs are taken as training

samples to train a linear SVM classifier. The trained classifier is

then used to predict the labels of the undetermined pairs. Our

experiments on the Linux kernel show that given a function pair,

we can harvest hundreds of semantically similar function pairs.

And the precision is quite high, i.e., 91.24%. We also implemented

two checkers to detect bugs related to “Alloc / Free” functions and

found a considerable number of memory corruption bugs from

real-world large-scale systems.
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