
Raisin: Identifying Rare Sensitive Functions for Bug Detection
Jianjun Huang

School of Information, Renmin
University of China

Beijing, China
hjj@ruc.edu.cn

Jianglei Nie
School of Information, Renmin

University of China
Beijing, China

rucnjl@ruc.edu.cn

Yuanjun Gong
School of Information, Renmin

University of China
Beijing, China

gongyuanjun@ruc.edu.cn

Wei You
School of Information, Renmin

University of China
Beijing, China

youwei@ruc.edu.cn

Bin Liang∗
School of Information, Renmin

University of China
Beijing, China

liangb@ruc.edu.cn

Pan Bian
Huawei Technologies CO., LTD.

Beijing, China
bianpan@huawei.com

ABSTRACT

Mastering the knowledge about the bug-prone functions (i.e., sensi-
tive functions) is important to detect bugs. Some automated tech-
niques have been proposed to identify the sensitive functions in
large software systems, based on machine learning or natural lan-
guage processing. However, the existing statistics-based techniques
are not directly applicable to a special kind of sensitive functions,
i.e., the rare sensitive functions, which have very few invocations
even in large systems. Unfortunately, the rare ones can also intro-
duce bugs. Therefore, how to effectively identify such functions is
a problem deserving attention.

This study is the first to explore the identification of rare sensitive
functions. We propose a context-based analogical reasoning tech-
nique to automatically infer rare sensitive functions. A 1+context
scheme is devised, where a function and its context are embedded
into a pair of vectors, enabling pair-wise analogical reasoning. Con-
sidering that the rarity of the functions may lead to low-quality
embedding vectors, we propose a weighted subword embedding
method that can highlight the semantics of the key subwords to
facilitate effective embedding. In addition, frequent sensitive func-
tions are utilized to filter out reasoning candidates. We implement
a prototype called Raisin and apply it to identify the rare sensitive
functions and detect bugs in large open-source code bases. We suc-
cessfully discover thousands of previously unknown rare sensitive
functions and detect 21 bugs confirmed by the developers. Some
of the rare sensitive functions cause bugs even with a solitary in-
vocation in the kernel. It is demonstrated that identifying them is
necessary to enhance software reliability.

CCS CONCEPTS

• Security and privacy→ Software and application security.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00
https://doi.org/10.1145/3597503.3639165

KEYWORDS

Rare sensitive function, Bug detection, Analogical reasoning, Em-
bedding

ACM Reference Format:

Jianjun Huang, Jianglei Nie, Yuanjun Gong, Wei You, Bin Liang, and Pan
Bian. 2024. Raisin: Identifying Rare Sensitive Functions for Bug Detection
. In 2024 IEEE/ACM 46th International Conference on Software Engineering
(ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3597503.3639165

1 INTRODUCTION

Bug detection is crucial for ensuring software reliability. An im-
portant and effective detection method is static analysis, which is
often driven by a set of detection rules. These rules usually have an
integral component called sensitive functions [6, 38], which are func-
tions whose uses are prone to bugs. For instance, free() is a sensitive
function that frees a memory chunk and is commonly involved
in rules to detect double-free and use-after-free bugs. However,
identifying a comprehensive list of sensitive functions is highly
challenging, especially in large software systems, where there are
a huge number of application-specific sensitive functions.

To mitigate the need for manually collecting sensitive functions,
researchers have proposed a few data-mining andmachine-learning
based techniques for their identification [6, 35]. SuSi [35] trains an
SVM classifier to determine if a function is sensitive. It however
requires a large number of training samples, which may not be sat-
isfiable in practice. SinkFinder [6] proposes a more practical method.
It embeds functions to vectors and leverages analogical reasoning
in NLP [32, 33] to infer unknown sensitive functions, using only a
pair of known sensitive operations (i.e., one-shot learning). Ana-
logical reasoning answers questions similar to the following “If
Germany is to Berlin, then France is to ?” [32]. SinkFinder devises a
pair-to-pair reasoning method, and identifies hundreds of frequent
sensitive function pairs in the Linux kernel (short as Linux), such
as dma_fence_get()/dma_fence_put(), from the one-shot example
kmalloc()/kfree().

Figure 1a shows the workflow of analogical reasoning for pair-
wise functions in Linux. Two well-known sensitive functions, i.e.,
kmalloc() and kfree() in the top-left corner, are embedded to 𝑣kmalloc
and 𝑣kfree (the black solid vectors in the middle of Figure 1a). In

https://doi.org/10.1145/3597503.3639165
https://doi.org/10.1145/3597503.3639165

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Jianjun Huang et al.

Analogical

Reasoning

a = kmalloc();
…
kfree(a);

b = f();
…
g(b);

c = f’();
…
g’(c);

Frequent
Function Pairs

𝑣

𝑣 𝑣
𝑣

𝑣

𝑣

…
f()/g()
…

Sensitive
Pairs

𝑣 − 𝑣 ≈ 𝑣 − 𝑣

Embedding

(a) Analogical reasoning for function-function pairs in SinkFinder

Analogical

Reasoningb = f();
g(b);
...
h(b);

𝒗𝑪𝒌𝒎𝒂𝒍𝒍𝒐𝒄

𝑣

𝑣 …
f()
…

Rare
Sensitive
Functions

a = kmalloc();
memset(a,...);
...
kvfree(a);

𝑘𝑚𝑎𝑙𝑙𝑜𝑐

𝑪𝒌𝒎𝒂𝒍𝒍𝒐𝒄

𝑓

𝑪𝒇

Function-Context
Pairs

𝒗𝑪𝒇

𝑣 − 𝒗𝑪𝒌𝒎𝒂𝒍𝒍𝒐𝒄
≈ 𝑣 − 𝒗𝑪𝒇

Embedding

(b) Analogical reasoning for function-context pairs in Raisin

Figure 1: Basic idea of two kinds of analogical reasoning.

analogical reasoning, the correlations of the two functions can be ap-
proximated by the difference of the two vectors (𝑣kmalloc−𝑣kfree , i.e.,
the black dotted arrow). Other pairs of functions are searched for,
for which the difference between the embedding vector resemble
the difference between 𝑣kmalloc and 𝑣kfree . In Figure 1a, the function
pair ⟨f(), g()⟩ satisfies the condition, i.e., 𝑣kmalloc − 𝑣kfree ≈ 𝑣 𝑓 − 𝑣𝑔 ,
and is recognized as a potential allocation/deallocation function
pair. In contrast, ⟨f’(), g’()⟩ is quite different and excluded.

This kind of pair-to-pair analogical reasoning can produce more
precise result than a one-to-one method, because more information
is introduced in the reasoning. However, it requires target func-
tions to be frequent and pairwise. Unfortunately in practice, many
sensitive functions are rare in a software system (e.g., only invoked
few times). We term them rare functions. In this study, we consider
functions with fewer than ten invocations as rare. When Linux
v5.19 was released, it had more than 230K rare ones among the
400K functions. What is worse, rare functions often do not have
co-occurring paired functions as the frequent ones do, and func-
tion pair-based reasoning techniques like SinkFinder tend to miss
them. Therefore, there is a necessity to design a reasoning method
specially for identifying rare sensitive functions.

It is also notable that, though few in number, rare sensitive
functions should not be ignored in bug detection. For example, a
vulnerability (CVE-2022-3542) detected in this study is related to
the function elfcorehdr_alloc(), which is invoked only once in Linux.
SinkFinder could not identify the function. According to our study
in Section 4.1, SinkFinder can identify only 30 among thousands of
rare allocation/deallocation functions.

In this paper, we propose a novel context-based analogical rea-
soning method, Raisin, to infer rare sensitive functions using a
single function (not a pair). As far as we know, we are the first to
focus on the problem of identifying rare sensitive functions for bug
detection. Figure 1b illustrates the basic idea. Given a function, such
as kmalloc(), Raisin generates a pair consisting of the function and

its context denoted as𝐶kmalloc . Informally, the context in this study
includes the data correlated function calls around all call sites of
the function (with itself excluded). In Figure 1b, for example, the
data correlated function calls of kmalloc() are ⟨memset(), kvfree()⟩,
i.e., the ones data dependent on kmalloc(). We can then perform
analogical reasoning based on function-context pairs. In Figure 1b,
f() is considered similar to kmalloc() due to the similarity of the
difference vectors (i.e., 𝑣kmalloc − 𝑣𝐶kmalloc ≈ 𝑣 𝑓 − 𝑣𝐶𝑓

as denoted by
the black and green dotted arrows).

To realize the idea, we address two critical technical challenges.
First, context-based analogical reasoning still requires accurate em-
beddings of function names (including the rare ones). However, rare
function names have poor embeddings. Subword-based embedding
techniques can improve embeddings to some extent by emitting
similar embedding vectors for functions with similar subwords, but
the word segmentation method used in traditional methods like
fastText [8] is not semantics-related and hence yields sub-optimal
results. For example, fastText uses a fix-sized window to segment
a word in an n-gram fashion to obtain the subwords. Although
embedding based on such segmentation is acceptable for frequent
functions that have sufficient training samples, it cannot produce
high-quality embedding for rare functions according to our ex-
periment.An ideal way is to split a function name into multiple
semantic units, which may have various sizes. Besides, the subword
indicating the operational logic of function is crucial (e.g., ‘alloc’
in elfcorehdr_alloc() and ‘uninit’ in auxiliary_device_uninit()), but
traditional techniques do not treat such key subwords differently.
To this end, we propose a weighted subword embedding technique.
It leverages WordPiece [44] to split a function name to potential se-
mantic units and introduces a weight for each unit when computing
the embedding, emphasizing the operational key subword(s).

Second, there may be a large number of rare functions in a com-
plex software project. Many of them are not sensitive. However,
they could happen to be associated to function-context pairs that
have close difference with the query, due to the estimation-based
embedding. As such, they may be mistakenly classified as sensitive
functions. We call them noise functions. We need to eliminate these
noise functions. To address the issue, we first identify frequent
sensitive functions via function-context pair based analogical rea-
soning, and then extract operational key subwords from them such
as alloc and free. We then filter out those (noise) functions that do
not contain the key subwords.

We apply Raisin to identify five kinds of rare sensitive functions,
i.e., allocation, deallocation, lock, unlock and format string. The
identified functions are further used to detect bugs. Our experi-
ments on Linux v5.19, the FreeBSD kernel v13.1 (short as FreeBSD),
OpenSSL v3.1.1, FFmpeg v6.0 and QEMU v8.1.0 show an average
identification precision of 91% with a total of 16,897, whereas Sink-
Finder can identify zero and even not support to identify format
string functions. In total, 27 bugs have been reported, with 21
confirmed by the developers. Raisin and the data are available
at https://github.com/jlgithub66/rarefunctions.

Our work makes the following contributions:

• We reveal the importance of identifying rare sensitive func-
tions. To the best of our knowledge, we are the first to explore
automated identification of these functions.

https://github.com/jlgithub66/rarefunctions

Raisin: Identifying Rare Sensitive Functions for Bug Detection ICSE ’24, April 14–20, 2024, Lisbon, Portugal� �
386 // drivers/net/wireless/ath/ath11k/mhi.c
387 // ath11k_mhi_register(struct ath11k_pci*)
388 mhi_ctrl = mhi_alloc_controller();
389 if (!mhi_ctrl)
390 return -ENOMEM;
391 ath11k_core_create_firmware_path(ab, ATH11K_AMSS_FILE,
392 ab_pci->amss_path,
393 sizeof(ab_pci->amss_path));
394 ret = ath11k_mhi_get_msi(ab_pci);
395 if (ret) {
396 ath11k_err(ab, "failed to get msi for mhi\n");
397 mhi_free_controller(mhi_ctrl);
398 return ret;
399 }
400 if (test_bit(ATH11K_FLAG_FIXED_MEM_RGN, &ab->dev_flags)) {
401 ret = ath11k_mhi_read_addr_from_dt(mhi_ctrl);
402 if (ret < 0)
403 return ret;
404 }
405 // ...� �

{

mhi_free_controller(mhi_ctrl);

return ret;

}

+

Figure 2: A resource leak in Linux, in which the sensitive

allocation function mhi_alloc_controller occurs only once in

total.

• Wepropose a new context-based analogical reasoningmethod,
which is further augmented with weighted subword embed-
ding, context expansion and key subwords-based filtering.

• We develop a prototype Raisin and evaluate it on five large
code bases, Linux, FreeBSD, OpenSSL, FFmpeg and QEMU.
Each has 1 ∼ 33 MLoCs. Raisin reports 16,897 rare sensi-
tive functions with 91% accuracy. In contrast, the baseline
SinkFinder identifies only 30 rare sensitive functions.

• Twenty-seven new bugs are detected in the popular systems,
among which 21 bugs related to resource allocation/deallo-
cation have been confirmed by the kernel developers.

2 MOTIVATION

We use a real resource leak bug we found in Linux (v5.19) to
motivate our method. Figure 2 illustrates the simplified code snippet
related to the bug. The function mhi_alloc_controller() at line 388
allocates a memory chunk and stores its address to mhi_ctrl. Along
the execution path, when a read operation at line 401 fails, the
program directly returns with an error code (line 403), without
releasing the memory chunk. It can cause a resource leak. The bug
can be fixed by replacing line 403 with the green box in Figure 2,
i.e., freeing the memory before return.

The allocation function is rare, with only one occurrence in Linux.
The corresponding deallocation function mhi_free_controller() has
four invocations in total and is also a rare operation. It is hence very
difficult for existing mining based approaches [3, 7, 40] to identify
these functions. Moreover, analogical reasoning based methods
like SinkFinder [6] cannot infer that mhi_alloc_controller() and
mhi_free_controller() are a pair of allocation/deallocation functions
since they do not satisfy the required co-occurrence frequency.

Without the knowledge about the rare sensitive functions, we can-
not leverage a static analyzer such as the Clang static analyzer [2]
to detect the resource leak.

In contrast, Raisin is able to infer that mhi_alloc_controller() is
a rare sensitive function with a one-shot example kmalloc(). First,
frequent functions are directly embedded into vectors and function-
context based analogical reasoning is leveraged to infer frequent
sensitive functions, denoted as 𝐹 . Second, operational key sub-
words are extracted from 𝐹 , e.g., ‘alloc’, based on which candidate
rare functions are collected, e.g., mhi_alloc_controller(). Third, we
segment rare functions by WordPiece [44], embed the subwords,
and then associate a frequency-based weight to each subword. A
rare function embedding is computed by aggregating its involved
weighted subword embeddings. By this means, the embedding of
mhi_alloc_controller is dominated by ‘alloc’, making it close to an
allocation operation. Fourth, through a data flow analysis, data cor-
related functions in the neighborhood are collected as its context.
Many of these functions may be rare too. To further improve ef-
fectiveness, rare functions in context are (recursively) inlined until
frequent functions are yielded. In Figure 2, mhi_free_controller() at
line 397 and ath11k_mhi_read_addr_from_dt() at line 401 use the
data defined by mhi_alloc_controller() and thus are correlated with
it. The two functions have only four and two invocations, respec-
tively. They are hence inlined, leading to 25 correlated frequent
functions included in the context of mhi_alloc_controller(), such
as kfree(), vfree(), etc. Finally, analogical reasoning is performed
between the query function-context pair and the target pair. We
leverage the PairDirection [24], using cosine similarity to measure
the pair-wise similarity. The highest similarity exceeds a predefined
threshold and thus mhi_alloc_controller() is reported as a potential
allocation function. With a set of allocation/deallocation functions
configured, the Clang static analyzer can detect the leak at line 403.

3 APPROACH

3.1 Overview

Raisin is a context-based analogical reasoning method to identify
rare sensitive functions. Figure 3 shows the workflow. Raisin takes
a known sensitive function as the query (i.e., the one-shot in the
top-right corner) and infers whether another given function (i.e.,
the target) is semantically similar to the query (❺), even when the
target function is rare. Confirmed rare sensitive functions are then
included in downstream static analyzers to detect bugs (❼).

Source code preprocessing (❶), i.e., extracting the sequences of
function calls (function sequences), rare functions, call relations and
other necessary information for later analysis, is omitted in this
paper. Identifying sensitive functions is split into two parts, for
frequent functions (in the upper dashed box) and for rare ones (in
the lower dashed box), respectively. In the upper half of Figure 3,
functions sequences are directly used to train a fastText [8] embed-
ding model (❷) that has proven to generate acceptable embeddings
for frequent functions. The context of each frequent function is clus-
tered (❹), allowing every clustered context to concentrate on a kind
of semantically similar operational environment. The vector differ-
ence between a target function and its context is comparedwith that
for the query via analogical reasoning (❺), and functions analogous
to the query are considered as frequent sensitive functions. The

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Jianjun Huang et al.

Source
Code

Query
e.g., kmalloc

or
kfree

Function Embeddings

Context Expansion
Rare Sensitive

Functions

Bug
Detection

Clustering

Segmentation
& Embedding

Filtering

Clustering

Context

Rare Functions

Function
Sequences

Context

Function Sequences Rare Function Embeddings

Frequent Sensitive Functions

Candidate Rare Functions

Frequent Sensitive Function Identification

Rare Sensitive Function Identification

fastText Embedding

Figure 3: Overview workflow of Raisin.

lower half of Figure 3 has similar steps for context clustering (❹)
and analogical reasoning (❺). The differences are three fold. First,
the context of a rare function is expanded (❸) so that infrequent
functions are (recursively) inlined until only frequent functions are
included. Second, rare functions are not directly embedded. Instead,
they are segmented byWordPiece [44], and their weighted subword
embeddings are then aggregated to yield the function embeddings
(❷). Third, rare noise functions are filtered out according to the
operational key subwords collected from the previously identified
frequent sensitive functions (❻). Similar analogical reasoning (❺)
is then performed to infer rare sensitive functions.

We term our approach 1+context analogical reasoning, where ‘1’
denotes a function f() and ‘context’ contains function calls around
all call sites of f(). Note that, a function call must be data correlated
with f() to be included in the context. In this study, two function calls
(f() and g()) are considered data correlated if one of the following
criteria is satisfied.

• f() is data dependent on g() (i.e., there is an argument in f()
that uses a value defined by g),

• g() is data dependent on f(),
• f() and g() appear in the same control-flow path and refer to
the same data (i.e., the same value is used in both function
calls).

3.2 1+Context

In this section, we elaborate the 1+context method, in which context
clustering (❹) and analogical reasoning (❺) have the same proce-
dure for both frequent and rare functions. Identifying rare sensitive
functions takes an extra step for context expansion (❸).

3.2.1 Context Clustering. Various correlated functions can be in-
cluded into the context of a function. Straightforwardly using them
as a whole is not a good choice as different kinds of operations
can interleave each other. Figure 4 shows a simplified example of
the context for kmalloc(). Varied operations, such as free, read, cre-
ate and so on, are correlated with kmalloc() at different call sites.
However, a target allocation function may only be correlated with
few types of these operations and thus its function-context dif-
ference would be far away from that for kmalloc(). For example,
the operations such as init, create and many outliers (e.g., printk())
in Figure 4 do not exist in the context of mhi_alloc_controller().

��������
����	����
�������
	��������������

��	�����
���

��������
�������������

�
�
������
���

�����
������

����	����
���
���

�	���
���������
�
�

��	���
���

�����

���

�
��������

���

��	���������	���
�����������������

���

�������������
�����������������

�����������

�������
���

���������������
����������
����������

����������������	���

��������
����
��

Figure 4: Simplfied context for kmalloc().

Including them in an all-in-one context embedding will prevent
mhi_alloc_controller() from being inferred analogous to kmalloc().

To address the issue, we cluster the context according to func-
tion semantics which have been represented in embedding vectors.
Without any prior knowledge about the number of function clusters,
we adopt DBSCAN [14], a density-based clustering algorithm, to
group the context of a function into sub-contexts, each concentrat-
ing a kind of operation. A function-context pair is then transformed
to multiple function-sub-context pairs.

Lines 2 ∼ 6 in Algorithm 1 describe the above process, where
E holds the embedding vectors of the functions after step ❷ in
Figure 3. Clustering is performed on the context functions and
generates a group of sub-contexts for each target and query (lines 3
and 4). A centroid for each sub-context is computed to denote the
sub-context, which is used to form the function-sub-context pair
(lines 5 and 6).

3.2.2 Analogical Reasoning. Analogical reasoning is hence per-
formed on the function-sub-context pairs to identify sensitive func-
tions, as presented at Lines 7 ∼ 10 in Alg. 1. All pairs associated with
target f are compared with pairs for query q and the most similar
two pairs are gathered as 𝐹𝐶𝑎

𝑓
and 𝐹𝐶𝑏

𝑞 (line 7). If their similarity
is higher than a predefined threshold 𝜏 , we report f as a potential
sensitive function that is analogous to q (lines 8 and 9). In this study,
we set 𝜏 = 0.5.

We use PairDirection [24] as the analogy metric. PairDirection
measures cosine similarity between pairs and has been proven to
be effective in measuring the relational similarity of word pairs in

Raisin: Identifying Rare Sensitive Functions for Bug Detection ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Algorithm 1 Identifying if f is analogously similar to the query q
given a similarity threshold 𝜏 . Contexts of functions are in C and
the function embeddings are denoted by E.

1: procedure identify(f, q, 𝜏 , C, E)
2: 𝑣 𝑓 , 𝑣𝑞 = E[𝑓], E[𝑞];
3: 𝐺 𝑓 = DBSCAN{E[𝑖] | ∀𝑖 ∈ C[𝑓]};
4: 𝐺𝑞 = DBSCAN{E[𝑗] | ∀𝑗 ∈ C[𝑞]};
5: 𝐹𝐶𝑓 = {⟨𝑣 𝑓 , 𝑣𝐶𝑓

⟩ | ∀𝐶𝑓 ∈ 𝐺 𝑓 , 𝑣𝐶𝑓
= avg(∑∀𝑖∈𝐶𝑓

E[𝑖])};
6: 𝐹𝐶𝑞 = {⟨𝑣 𝑓 , 𝑣𝐶𝑞

⟩ | ∀𝐶𝑞 ∈ 𝐺𝑞, 𝑣𝐶𝑞
= avg(∑∀ 𝑗∈𝐶𝑞

E[𝑗])};
7: 𝐹𝐶𝑎

𝑓
, 𝐹𝐶𝑏

𝑞 = 𝑎𝑟𝑔max{𝑠𝑖𝑚(𝐹𝐶𝑖
𝑓
, 𝐹𝐶

𝑗
𝑞)};

8: if 𝑠𝑖𝑚(𝐹𝐶𝑎
𝑓
, 𝐹𝐶𝑏

𝑞) > 𝜏 then

9: f is a potential sensitive function analogous to q;
10: end if

11: end procedure

NLP [24]. Eq. 1 shows how the similarity at line 7 is calculated for
two function-sub-context pairs.

𝑠𝑖𝑚(⟨𝑣 𝑓 , 𝑣𝐶𝑖
𝑓
⟩, ⟨𝑣𝑞, 𝑣𝐶𝑖

𝑞
⟩) = cos(𝑣𝐶𝑖

𝑓
− 𝑣 𝑓 , 𝑣𝐶𝑖

𝑞
− 𝑣𝑞) (1)

3.2.3 Context Expansion. We expand the context only for rare
functions. A rare function has a very limited number of invocations,
resulting in very few functions in its context, with some contextual
functions being rare too. Take Figure 2 as an example. The function
mhi_alloc_controller() has only one invocation and three correlated
functions, i.e.,mhi_free_controller(), ath11k_mhi_read_addr_from_dt()
and mhi_register_controller() (not present in Figure 2 due to space
limit). The three functions have four, two and two calls, respectively,
meaning that they are also rare. Such a condition makes the context
unreliable in sensitive function identification.

We propose a context expansion scheme to augment the con-
text by recursively gathering the correlated frequent functions of a
target rare function. Algorithm 2 shows the workflow for a single
occurrence of a rare function f, and outputs a list of collected fre-
quent functions as the context C (line 25). Initially, the caller of f
is acquired. We set V = ∅ for the target function f, meaning that
all the arguments and return value at the callsite will be tracked by
get_related_func_in_caller() at line 5. The analysis collects all calls
in the function that are data correlated with f at the callsite. From
line 6 to 15, we inspect each call in T. A frequent call is added into
C (line 9), while a rare one is inlined and the identified context D
is appended to C (lines 11∼13). Line 11 gets the formal parameters
of interest in callee and line 12 recursively invokes the algorithm
to collect the context in callee. As we go into the callee to collect
function calls correlated to the parameters, tracking back to any
call site of the callee will include uncorrelated context or repeat
the analysis, and should be forbidded (lines 16∼18). To this end, we
use a null call site to perform the expansion, making the algorithm
focus on the given function only (line 3). Besides, a nonempty V′

will force the related function collector at line 5 to care about only
the provided variables (i.e., the formal parameters).

We also collect correlated functions at those points that indirectly
invoke f (lines 19∼ 24). Every call site of caller will be checked to see
if correlated variables exist. For example, f may use a parameter
of caller or caller returns a value that is defined by f. The data

Algorithm 2 Context collection and expansion for a rare function
f at a specific callsite, given the call graph cg. The variables inV
will be tracked if V is not empty.

1: procedure ctx_expand(f, callsite, cg,V)
2: C = [];
3: caller = (callsite ≠ null) ? get_caller(cg, callsite) : f ;
4: cfg = get_cfg(caller);
5: T = get_related_func_in_caller(cfg, callsite,V);
6: for 𝑐𝑠 ∈ T do
7: callee = get_invoke_target(cs);
8: if callee is a frequent function then

9: C = concat(C, callee);
10: else

11: V′ = extract_correlated_vars(callsite, cs);
12: D = ctx_expand(callee, null, cg,V′);
13: C = concat(C, D);
14: end if

15: end for

16: if callsite == null then
17: return C;
18: end if

19: for 𝑐𝑠 ∈ get_callsites(cg, caller) do
20: if (V′ = extract_correlated_vars(cs, callsite)) ≠ ∅ then

21: D = ctx_expand(caller, cs, cg, V′);
22: C = concat(C, D);
23: end if

24: end for

25: return C;
26: end procedure

correlation can potentially introduce substantial functions via a
recursive expansion at line 21.

3.3 Rare Function Embedding

Rare functions are analogous to the out-of-vocabulary words in
NLP. Due to their rarity, existing word embedding techniques (e.g.,
Word2vec [32] and fastText [8]) could not generate as high-quality
embeddings as for frequent functions in the task of identifying rare
sensitive functions. Fortunately, we observe that, though the sensi-
tive functions are rare, they usually contain a similar or the same
operational subword to indicate their sensitive behaviors, compared
to the frequent ones. For example, mhi_alloc_controller() includes
alloc that denotes an allocation and appears commonly in both fre-
quent and rare functions. In other words, the sensitivity-oriented
operational subwords (i.e., key subwords) are general despite the
function rarity.

To highlight the key subwords in the embedding, we present a
weighted subword embedding technique (❷ in the lower half in
Figure 3). Specifically, we use a mature algorithm, WordPiece [44]
that is also leveraged by BERT [11], to segment the function names
into potential semantic units (i.e., subwords) and then remove the
prefix and postfix ‘_’ in each subword. A subword-based Word2vec
embedding model is trained. We use Word2vec because it is light-
weight to run on a normal PC and there is not a need to care about

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Jianjun Huang et al.

further subword information in the segmented corpus. Subword fre-
quency based weight is then applied to each unit when computing
the embedding of a rare function. Given the subword corpus O and
the corresponding subword embedding model S, the embedding of
a rare function f is computed as Eq. 2.

𝑣 𝑓 =

∑
𝑠∈ 𝑓 S[𝑠] × 𝑁 (𝑠,O)∑

𝑠∈ 𝑓 𝑁 (𝑠,O) (2)

In Eq. 2, S[𝑠] retrieves the embedding vector of the input subword
that is a unit in f, and 𝑁 (𝑠,O) counts the number of occurrences of
subword 𝑠 in the segmented corpus. According to the computation,
a rare function’s embedding is dominated by the most frequent sub-
word. Therefore, sensitive functions that contain usual operational
key subwords will be spotted for sensitivity identification.

Take mhi_alloc_controller() in Figure 2 as an example. It is split
into three subwords, ‘mhi’, ‘alloc’ and ‘controller’. The counts of
the subwords are 1634, 54207 and 2308, respectively, through the
whole Linux. As a result, the operational key subword ‘alloc’ should
have the largest impact (>90%) on the function embedding to
highlight its sensitivity. In other words, the embedding vector of
mhi_alloc_controller() should be dominated by the action ‘alloc’,
while the module ‘mhi’ and the object ‘controller’ have little impact
in preventing it being analogous to an allocation function.

3.4 Key Subwords-based Filtering

We filter the target functions (❻) to obtain the most likely candi-
dates for rare sensitive function identification, to avoid the impact
of noise functions. We manually audit the reported frequent sen-
sitive functions and determine whether a function is a sensitive
one of interest by inspecting how it is implemented and used. The
operational key subwords (see Section 3.3) are extracted from the
confirmed sensitive functions. Manually extracting the key sub-
words is a limitation of our approach, but the manual process can
emit accurate key subwords that do represent the core actions of
the functions during auditing.

Using kfree() as a query for Linux, we can extract many opera-
tional key subwords such as free in tee_shm_free(), put in gss_put_ctx(),
destroy in damon_destroy_ctx(), release in op_release() and so on.
For kmalloc(), we have alloc in kzalloc(), get in usb_get_phy(), cre-
ate in debugfs_create_dir(), etc. Though which keywords are ex-
tracted is project-specific, the extraction is general and can be
applied to other projects. For example, we can extract delete from
delete_unrhdr() in FreeBSD, new from EVP_CIPHER_CTX_new() in
OpenSSL, get from ff_get_video_buffer() in FFmpeg, and release from
qcow2_cache_table_release() in QEMU.

The extracted key subwords are then used to filter the rare func-
tions. As a result, only a rare function containing some key subword
will be collected as a candidate for analogical reasoning. For in-
stance,mhi_alloc_controller() is a candidate allocation function, and
mcba_usb_get_free_ctx() is a candidate allocation for kmalloc() or
a candidate deallocation for kfree(). Further analogical reasoning
will determine whether they are actually allocation or deallocation
functions.

Table 1: Large software systems of evaluation

TOE LoC #Functions #Rare Functions

Linux v5.19 31,317,255 456,086 241,366
FreeBSD v13.1 8,399,769 194,913 116,843
OpenSSL v3.1.1 1,048,122 14,206 9,836
FFmpeg v6.0 1,600,078 17,417 14,168
QEMU v8.1.0 22,479,680 86,980 75,443

3.5 Bug Detection

Identified rare sensitive functions are ranked according to their
analogy similarity in a descending order for auditing. A simple
heuristic is adopted to pair the functions to form, for example,
allocation/deallocation and lock/unlock pairs. During auditing the
frequent sensitive functions, we gather the knowledge about which
two keywords are usually paired, e.g., alloc/free, get/put, etc. Then,
two functions are paired if their names contain the paired key
subwords and have the same prefix and postfix. The pairing results
can facilitate us to audit the identified rare sensitive functions.

Confirmed rare sensitive functions will be used to detect bugs,
involving both automated static detection and manual examination.

We choose the wide-used open-source Clang static analyzer [2]
(short as Clang afterwards) as the automated detector. The Clang
checkers are implemented in its frontend and detect bugs along
with compilation. Clang does not require the sensitive functions
to be paired. To detect a memory leak, for example, Clang tracks
the memory chunk returned by an allocation function and reports
a leak if the chunk is not passed to any function in the deallocation
function list. It is a limitation, but enhancing the Clang checkers is
beyond the scope of this paper.

We also manually examine the top ranked or randomly selected
rare sensitive functions to see if bugs exist, as automated static
detector like Clang may have some limitations in analyzing compli-
cated software systems like Linux. In addition, some projects (e.g.,
FreeBSD) may not be compilable in our working environment and
automatic detection is hence infeasible.

4 EVALUATION

In this section, we evaluate Raisin on large software systems to
answer the following four questions.
RQ1: How effective is the rare sensitive function identification

(Section 4.1) ?
RQ2: Are the proposed filtering, weighted subword embedding

and context expansion necessary in Raisin (Section 4.2)?
RQ3: Is the bug detection effective with the identified rare sensi-

tive functions (Section 4.3)?
RQ4: Is the approach efficient (Section 4.4) ?
All experiments are conducted on a desktop computer with 16

GB memory, an Intel Core i5-10400F CPU @ 2.9GHz and Ubuntu
20.04. Source code parsing and lightweight data flow analysis are
implemented in Java on top of fuzzyc2cpg v1.1.19 [1], which al-
lows to preprocess code bases even if they are not compilable in
the experiment environment, e.g., FreeBSD. The static analyzer is
LLVM/Clang 12.0.0. All other components, including clustering,
expansion, training and reasoning, etc., are implemented in Python.

Raisin: Identifying Rare Sensitive Functions for Bug Detection ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 2: Identification result. ‘#RSF’ for number of rare sensitive functions and ‘P’ for precision.

Category

Linux FreeBSD OpenSSL FFmpeg QEMU

Query #RSF P Query #RSF P Query #RSF P Query #RSF P Query #RSF P

Alloc kmalloc 3,223 83% malloc 2,342 78% OPENSSL_malloc 244 92% av_malloc 127 94% g_malloc 1,204 82%
Dealloc kfree 4,990 92% free 1,759 91% OPENSSL_free 228 97% av_free 73 96% g_free 352 92%

Lock mutex_lock 763 65% pthread_
mutex_lock 603 76% CRYPTO_THREAD

_lock_new 11 91% pthread_
mutex_lock 2 100% qemu_mutex

_lock 38 90%

Unlock mutex_
unlock 338 90% pthread_

mutex_unlock 239 93% CRYPTO_THREAD
_lock_free 6 100% pthread_

mutex_unlock 2 100% qemu_mutex
_unlock 23 100%

FormatStr sprintf 46 96% sprintf 257 78% sprintf 10 100% snprintf 3 100% sprintf 14 100%
Overall 9,360 85% 5,200 83% 499 96% 207 98% 1,631 93%

We have evaluated Raisin on five large open-source software
systems, as shown in Table 1, two kernels and three popular projects.
Each has 1 MLoC (million lines of code) to 31 MLoC and 14K to
456K functions. The number of rare functions (with fewer than ten
invocations) ranges from 9.8K to 241K.

4.1 Effectiveness

We apply Raisin to identify five categories of rare sensitive func-
tions in the five software systems, using the most popular sensi-
tive function in each system as a query (e.g., OPENSSL_malloc() in
OpenSSL). Table 2 shows the queries and the reported numbers
(#RSF) of rare sensitive functions. It is impractical to manually con-
firm all the reported functions, so we inspect at most 100 for each
query to a system. For a query with more than 100 reported func-
tions, we randomly select 100. Their similarity range from 0.503 to
0.927. The auditing took one-person day.

Raisin identifies 9360, 5200, 499, 207 and 1631 rare sensitive func-
tions, respectively, in five systems and the average precision ranges
from 83% to 98%. There are only a few rare sensitive functions for
lock/unlock/format string categories in OpenSSL and FFmpeg, but
the numbers are relatively large in the kernels that have much more
rare functions. QEMU contains more lines of code than FreeBSD,
but fewer functions (see Table 1) leads to much fewer rare sensitive
ones. The result shows that Raisin is effective in identifying rare
sensitive functions.

Comparison with SinkFinder [6]. We compare with Sink-
Finder, which analogically reasons about frequent function pairs
from a one-shot pair, using its default setting. SinkFinder leverages
GCC to compile and preprocess the source code and fails to analyze
FreeBSD that is not compilable on Ubuntu. In addition, SinkFinder
cannot work for the format string category, which does not have
paired functions as allocation/deallocation or lock/unlock.

We use the same query functions to form query pairs and iden-
tify allocation/deallocation pairs. SinkFinder successfully identifies
285 sensitive function pairs, with 15/4, 5/3, 0/0, 2/1 distinct rare
allocation/deallocation functions, respectively, in Linux, OpenSSL,
FFmpeg and QEMU. SinkFinder can discover the 30 rare functions
because it extracts up to 100 control flow paths in each function,
which could have a chance to increase the frequency of co-occurring
rare sensitive function pairs in the mining corpus. However, the
result demonstrates that analogical reasoning for frequent function
pairs is ineffective to identify rare sensitive functions compared
to Raisin. The reasons are twofold. First, the pairs often may not
occur in the same function. And second, even if the frequency of a

Table 3: Ablation study on Linux. The symbols

√
and × indi-

cate whether a technique, i.e., filtering (Fil.), weighted sub-

word embedding (WSE) or context expansion (Exp.), is en-
abled.

ID Fil. WSE Exp.

Precision Recall

F1

Alloc Dealloc Avg. Alloc Dealloc Avg.

1 × × × 11.8% 13.4% 12.6% 9.9% 6.0% 8.0% 9.8%
2 × × √

15.1% 13.0% 14.1% 25.6% 16.4% 21.0% 14.9%
3 × √ × 24.6% 13.5% 19.1% 71.6% 76.7% 74.2% 30.4%
4 × √ √

32.9% 12.5% 22.7% 90.4% 94.5% 92.5% 36.6%
5

√ × × 71.0% 80.5% 75.8% 9.9% 6.0% 8.0% 11.1%
6

√ × √
82.2% 92.5% 87.4% 25.6% 16.4% 21.0% 33.9%

7
√ √ × 75.4% 85.9% 80.7% 71.6% 76.7% 74.2% 77.3%

8
√ √ √

80.5% 90.7% 85.6% 90.4% 94.5% 92.5% 88.9%

function pair is inflated by considering more paths, the frequency
may not satisfy the minimum requirement of SinkFinder.

4.2 Ablation Study

In this section, we evaluate the effectiveness of the three techniques
in Raisin, i.e., key subword-based filtering, weighted subword em-
bedding and context expansion. We apply eight combinations of
the techniques to identify rare allocation/deallocation functions in
Linux. In total, more than 50K rare sensitive functions are reported.
It takes two authors about one week to confirm 2,869 allocation
and 4,788 deallocation functions. These confirmed functions are
used to estimate the ground truth. The precision, recall and F1 for
each group are then computed.

In Table 3, we can see that, the filtering makes a great contri-
bution to the precision (e.g., #4→#8) and the weighted subword
embedding helps Raisin find much more rare sensitive functions
compared with the full-name Word2vec embedding (e.g., #6→#8).
Context expansion generally increases both precision and recall
(e.g., #7→#8). Group #6 achieves the highest precision but very low
recall (21.0%) with only 1,740 functions reported. Group #4 has the
same highest recall with group #8 but too many reported functions
(>46K) emit a relatively low precision (22.7%). By measuring the
overall performance, we observe that, any single technique cannot
produce sufficiently high F1 (#2, #3 and #5) and the combinations of
two techniques can at most produce an F1 of 77.3% (#7). Compared
to the other groups, Raisin (i.e., #8) reports over 8,000 functions
and achieves the best overall F1 score (88.9%).

Though context expansion does not show as great contribution
to precision or recall as the other two techniques, it is necessary to
find more true rare sensitive functions and eliminate false positives.
The function mhi_alloc_controller() in Figure 2 is a good example.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Jianjun Huang et al.

Table 4: Detected bugs that have been confirmed by the maintainers.

ID Target Systems Rare Sensitive Function #Occurrences Bug Type Confirmation

1 Linux mhi_alloc_controller 1 Memory Leak [Github]: 43e7c350
2 Linux sfp_alloc 1 Memory Leak [Github]: 0a18d802
3 Linux xhci_alloc_stream_ctx 1 Memory Leak [Github]: 7e271f42
4 Linux audioreach_alloc_graph_pkt 1 Memory Leak [Github]: df5b4aca
5 Linux elfcorehdr_alloc 1 Memory Leak [Github]: 12b9d301
6 Linux aq_nic_init 2 Memory Leak [Github]: 65e5d27d
7 Linux nfp_cpp_area_alloc 3 Memory Leak [Github]: c56c9630
8 Linux auxiliary_device_uninit 1 Use After Free [Github]: 1c11289b
9 Linux nouveau_bo_del_ttm 3 Use After Free [Github]: 540dfd18
10 Linux amdgpu_vm_init 2 Resource Leak [Github]: c3c48339
11 Linux hfi1_alloc_ctxt_rcv_groups 2 Memory Leak [Github]: aa2a1df3
12 Linux init_mr_info 2 Memory Leak [Github]: b3236a64
13 Linux damon_new_ctx 3 Memory Leak [Github]: 188043c7
14 Linux init_rx_sa 1 Resource Leak [Github]: c7b205fb
15 Linux init_tx_sa 1 Resource Leak [Github]: c7b205fb
16 Linux hsi_claim_port 3 Resource Leak [Github]: b28dbcb3
17 Linux bnx2x_frag_alloc 3 Memory Leak [Github]: b43f9acb
18 Linux sec_queue_aw_alloc 1 Inconsistent Argument [Github]: 32c0f7d4

19 Linux mcba_usb_get_free_ctx 2 Resource Leak [Lore]: 20221124144532.
6u3hnvb6b2ninlxy@pengutronix.de

20 FreeBSD ext4_ext_alloc_meta 2 Memory Leak [Bugzilla]: 265071
21 FreeBSD bhnd_alloc_pmu 3 Resource Leak [Bugzilla]: 265147
#1∼ #18: Submitted patches have been applied to themaster branch of Linux, which can be retrieved by appending the commit ID to https://github.com/torvalds/linux/commit/.
#19: The patch was confirmed and applied to linux-can by the maintainer, reachable by appending the email to https://lore.kernel.org/all/. #20 and #21: FreeBSD uses
Bugzilla to track the issues and the two confirmations can be reached by searching the issue ID in https://bugs.freebsd.org/bugzilla.

Without context expansion, the function is not recognized as a
sensitive one because of a low similarity (0.31) in group #7. How-
ever, in group #8, the similarity increases to 0.65, making it flagged
sensitive. In addition, some functions may be considered sensitive
due to the operational key subwords in group #7. For example,
db2k_initialize_tmrs() and pqm_get_user_queue() contain the sub-
words init and get, respectively. In group #7, both are reported
because their similarity values are 0.55 and 0.57, above the thresh-
old. But they are actually insensitive. In group #8, the similarity is
reduced to 0.35 and 0.31, with the support of context expansion.
Therefore, they are eliminated.

Overall, the ablation study demonstrates the necessity of the pro-
posed techniques. All three techniques can improve rare sensitive
function identification.

4.3 Bug Detection

We configure the Clang static analyzer [2] with the identified rare al-
location/deallocation functions to detect resource/memory-related
bugs. In addition, we manually inspect 1,000 randomly selected
functions for Linux and 100 for FreeBSD. The inspection takes
only two days for two authors since each function has very few
occurrences.

We have reported 21 and six bugs to the Linux and FreeBSD
maintainers, respectively. Among them, 19 and two are confirmed
by the developers. Table 4 lists the confirmed bugs. The last column
shows the confirmation information, e.g., the commit IDs.

Note that, bug #18 in Linux was spotted by manual inspection
as Clang does not support this kind of bug. The developer uses
an inconsistent argument when calling the sensitive function, i.e.,
‘W ’ in SEC_QUEUE_AW_FROCE_NOALLOC was misspelled as ‘R’,
which is consistent to another sensitive function.

From the #Occurrences column, we can see that nine (47.4%) of
the Linux bugs result from sensitive functions that are invoked only
once in Linux. All the other bugs are associated with rare functions
that have at most three occurrences.

The real bugs have demonstrated the performance of bug de-
tection with the identified rare sensitive functions. It also shows
that rare sensitive functions can lead to many bugs. Therefore,
identifying them is a crucial step for bug detection. As a contrast,
SinkFinder [6] cannot identify these rare sensitive functions and
thus these bugs would be missed.

4.4 Efficiency

We break down the time cost of one complete pass step by step.
Table 5 shows the time for identifying rare allocation functions
and detecting related bugs using Clang. Automated bug detection
on FreeBSD is not applicable and the total time includes only the
other steps. Note that, filtering is a human effort and for each
target system, we take 15∼30 minutes to extract the operational
key subwords.

In addition to the Clang-based bug detection, preprocessing costs
the most time for each target. This step involves parsing source code
and extracting context with an intra-procedural data flow analysis.

https://github.com/torvalds/linux/commit/
https://lore.kernel.org/all/
https://bugs.freebsd.org/bugzilla

Raisin: Identifying Rare Sensitive Functions for Bug Detection ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 5: Time cost for identifying rare allocation functions and detecting related bugs.

Target Preprocessing

Frequent Functions Rare Functions Bug

Detection

Total

Embedding Analogy Filtering Embedding Expansion Analogy

Linux 8h43m 3m25s 5m36s 30m 5m11s 15m28s 1m21s 11h37m 21h21m
FreeBSD 3h42m 46s 16s 30m 2m13s 1m43s 12s N/A 4h17m
OpenSSL 46m23s 18s 5s 15m 40s 21s 2s 14m18s 1h17m
FFmpeg 1h24m 22s 7s 15m 1m17s 21s 5s 39m24s 2h21m
QEMU 5h19m 1m9s 38s 30m 3m19s 4m38s 14s 3h24m 9h23m

� �
923 // driver/hsi/clients/ssi_protocol.c
924 // in ssip_pn_open(struct net_device *)
925 err = hsi_claim_port(cl, 1);
926 if (err < 0) {
927 dev_err(&cl->device, "SSI port already claimed\n");
928 return err;
929 }
930 err = hsi_register_port_event(cl, ssip_port_event);
931 if (err < 0) {
932 dev_err(&cl->device, "Register HSI port event failed

(%d)\n", err);
933

934 return err;
935 }� �

hsi_release_port(cl);
+

Figure 5: Claimed port not released in Linux.

Embedding rare functions requires more time than that for frequent
ones, as the former contains three steps (i.e., segmentation, training
and weighted subword embedding) while the latter consists of only
a one-step training. However, we notice that, analogical reasoning
(including context clustering) for rare sensitive functions is faster
than that for frequent ones. The filtering has significantly reduced
the number of rare functions for analogy and the rare functions
have fewer clustered contexts than frequent ones.

Recall that the time cost in Figure 5 is only for allocation function
identification. When a different query is chosen, we can reuse the
proprocessing result, embedding vectors and expanded contexts.
In other words, we need just to redo analogy for frequent and
rare functions plus a filtering step, which can be quickly finished
according to Table 5. Hence, we believe the time cost is acceptable
for large software systems.

4.5 Case Study

In this section, we present two more cases.
Case 1: Claimed port is not released. Figure 5 presents a

resource leak bug (#16 in Table 4). The rare sensitive function
hsi_claim_port() claims a port for an HSI (High speed synchronous
Serial Interface) client at line 925. The claim process involves in-
crementing a reference count, setting flags for sharing, etc. When
the port is no longer needed at line 934, it should be released with
hsi_release_port() as shown in the green box. Analogous to kmalloc()
and kfree(), hsi_claim_port() allocates a kind of special resource and
hsi_release_port() deallocates that resource. In Linux v5.19, both
functions are rare, with only three and four calls, respectively. What

is worse, hsi_claim_port() does not call any explicit memory allo-
cation functions such as kmalloc(), making static analyzers unable
to detect the leak even with powerful inter-procedural analysis.
Raisin identifies that hsi_claim_port() is a kind of allocation op-
eration. With the knowledge, Clang can report the bug via an
intra-procedural analysis.

Case 2: Initialized virtual memory (vm) instance is not

finalized. Figure 6 shows a simplified code snippet for another
resource leak in Linux. The function amdgpu_vm_init() performs a
series of initializations to the given AMD GPU vm instance, which
has two invocations in total. In the presented code snippet, a mem-
ory chunk is allocated before the initialization at line 1151 and
deallocated at line 1222 if any subsequent operation fails (e.g., 2)
or the execution succeeds (1). Along the normal work flow (1),
the vm instance will be finalized via amdgpu_vm_fini() at line 1217
and freed at line 1222. However, when the immediate operation
(line 1155) after the initialization fails, the error handling (3) does
not call amdgpu_vm_fini() to tear down the vm instance, leading to
a resource leak. Later, if mapping meta data at line 1161 fails, error
handling (4) can well address the finalization. Therefore, the bug
is caused because of a wrong execution flow (3).

Raisin successfully highlights that amdgpu_vm_init() is a kind
of resource allocation and therefore the bug in Figure 6 is detected.
Fixing the bug is to insert a label (as in the right green box) and
route the error handling to the label (3 , i.e., replacing the crossed
line 1157 with the code in the left green box).

5 DISCUSSION

Though we have demonstrated the effectiveness of Raisin and bug
detection, there are some points to be further discussed.

Sensitivity-oriented tokenizer. WordPiece [44] is a generic
tokenizer and it does not pay special attention to the semantics of
function subwords. We have also tried another popular segmen-
tation algorithm in NLP, i.e., BPE [37], but it shows even worse
results. In fact, existing popular word segmentation algorithms such
as WordPiece [44] and BPE [37] do not fully fit the requirement of
highlighting the key behavior for sensitive function identification.
The statistics-based techniques do not take the semantics of the key
subwords into account, and they improperly or even incorrectly
segment certain function names, which impedes subsequent em-
bedding and reasoning. Therefore, a subword semantics-oriented
segmentation algorithm can improve Raisin. We will address this
big challenge in our future work.

Large code models. While we trained a lightweight model
specific for each given software system, we think that the large
code models [15, 17, 18] pre-trained on many different code projects

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Jianjun Huang et al.� �
1148 // driver/gpu/drm/amd/amdgpu/amdgpu_mes.c
1149 // in amdgpu_mes_self_test(struct amdgpu_device *)
1150 vm = kzalloc(sizeof(*vm), GFP_KERNEL);
1151 r = amdgpu_vm_init(adev, vm);
1152 if (r) {
1153 goto error_pasid;
1154 }
1155 r = amdgpu_mes_ctx_alloc_meta_data(adev, &ctx_data);
1156 if (r) {
1157 goto error_pasid;
1158

1159 }
1160 ctx_data.meta_data_gpu_addr = AMDGPU_VA_RESERVED_SIZE;
1161 r = amdgpu_mes_ctx_map_meta_data(adev, vm, &ctx_data);
1162 if (r) {
1163 goto error_vm;
1164 }� �

� �
1214error_vm:
1215amdgpu_vm_bo_del(adev, ctx_data.meta_data_va);
1216

1217amdgpu_vm_fini(adev, vm);
1218error_pasid:
1219if (pasid)
1220amdgpu_pasid_free(pasid);
1221amdgpu_mes_ctx_free_meta_data(&ctx_data);
1222kfree(vm);� �

goto error_fini;
+

error_fini:
+

Falling through1

Initialization fails2

Allocating meta data fails3

Allocating meta data fails3

Mapping meta data fails4

3 connects an incomplete error handling when allocating the
meta data fails at line 1155, resulting a resource leak.
3 fixes the bug with a proper finalization of the vm instance
(line 1217) when meta data allocation fails.

Figure 6: A case of non-finalized vm instance in Linux and the corresponding simplified execution flows.

may be helpful in generating higher-quality embedding vectors
and augment sensitive function identification. However, lack of
the aforementioned tokenizer may also reduce a large model’s
capability of recognizing analogous rare sensitive functions due to
the out-of-vocabulary problem, compared to their achievement in
other downstream tasks, e.g., code clone detection, code search, etc.

Abetter static checker.Weuse Clang static analyzer to perform
bug detection with the discovered rare sensitive functions. However,
the general-purpose checker does not show great performance on
large and complicated software systems like Linux. It emit 427
warnings for Linux but manual inspection confirms only 21 real
bugs. In addition, some special code patterns are not supported
by the checker, e.g., transmitting a deallocation function as an
argument of a function. We believe a customized static checker is
necessary and will be developed for our future studies.

The order of filtering and reasoning. Filtering the target
functions before the analogical reasoning introduces the potential
to miss some highly semantically similar (HSS) functions that have
completely different names. However, the impact is very limited.
We conduct a study to perform the filtering after the reasoning
with a filtering threshold as 0.75 to ensure the HSS functions can
be kept. Above the threshold, there are 96 allocation functions
in Linux. Among them, 39 do not contain any key subwords for
allocation, with 38 confirmed false positives and one uncertain
(i.e., walk_down_tree()) due to its complicated logic. Therefore, the
filtering strategy in Raisin can miss very few, if not zero, HSS
functions. Moreover, Raisin takes only 80 seconds in the analogy
step, while more than ten minutes are needed if filtering is done
after the reasoning.

6 RELATEDWORK

Engler et al. [13] and Kremenek et al. [22] defined semantic prop-
erties that sensitive functions should satisfy. Ganapathy et al. [16]
leveraged the domain knowledge to cluster resource manipula-
tions as the fingerprints of sensitive operations. Saha et al. [36] and

Emamdoost et al. [12] discover allocation functions by heuristically
checking the returned pointers and then infer the corresponding
deallocation functions in the control-flow paths. SuSi [35] prepared
hundreds of known taint sources and sinks in Android framework,
based on which an SVM classifier is trained. The classifier consumes
the extracted code features and predicts source/sink functions to
facilitate taint analysis on Android apps. Raisin chooses another
path compared with the above techniques. Instead of depending
on predefined heuristics or a mass of prior knowledge about target
system, Raisin requires only a few known sensitive functions and
usually a single one is enough. SinkFinder [6] utilized a more re-
cent NLP-inspired technique, i.e., analogical reasoning, to automat-
ically identify hundreds of application-specific security functions
using only one pair of query functions. We have demonstrated that
SinkFinder is not suitable for identifying rare sensitive functions.
However, inspired by SinkFinder, we design Raisin particularly to
effectively identify rare sensitive function.

Various techniques to discover the programming rules with ma-
chine learning for bug detection have also been proposed [4, 7, 9,
21, 23, 25, 26, 28, 29, 39–41]. Some studies also explicitly identify
sensitive operations, with or without prior knowledge. Based on
a set of security check functions, AutoISES [38] infers the secu-
rity rules, i.e., which sensitive operations should be protected by
security checks. RRFinder [42] heuristically and iteratively mines
resource acquiring-releasing functions and the specifications for
object-oriented programming languages. PR-Miner [25] and NAR-
Miner [7] mines the specification for sequential function usages.
APISan [46], FICS [3] and Crix [31] leveraged majority-voting to
infer common behaviors and detect inconsistencies as bugs. Wu et
al. [43] identifies paired functions involved in error handling paths,
but some rare functions are not called in pairs due to various reasons.
For example, the deallocation function of xhci_alloc_stream_ctx()
in Table 4 is forgotten, leading to a resource leak. Nguyen et al. [34]
embedded APIs usingWord2vec to mine the API pairs sharing same
usage relations. Our work addresses the problem of identifying rare

Raisin: Identifying Rare Sensitive Functions for Bug Detection ICSE ’24, April 14–20, 2024, Lisbon, Portugal

sensitive functions using limited prior knowledge. The function
rarity makes pattern mining non-applicable.

In fact, many bug detection techniques do require the knowledge
of sensitive functions in advance. For example, Chelf et al. [10] and
his colleagues [13, 19] developed rule specifications to detect bugs
and the rules require not only the sensitive functions but also their
semantics. Privacy leak detection on Android apps [5, 20] must have
a predefined set of source/sink functions. Some recent studies that
try to identify security checks [30], detect double-fetch bugs [45], or
detect other security bugs based on paired path inconsistencies [27,
47] have explicitly claimed that they manually collect sensitive
functions of interest. The knowledge generated by our work can be
employed by the above techniques. Researchers can extend their
rules to the sensitive functions to effectively detect more bugs.

7 CONCLUSION

We are the first to present the problem of analogically reasoning
about rare sensitive functions that occur very few times through a
large software system. Despite their rarity, many bugs are related to
such functions. In this paper, we propose Raisin, which presents a
1+context scheme to make constrained pairs for effective analogical
reasoning. Each pair consists of a function and its context, i.e., data
correlated calls around it. We devise a weighted subword embed-
ding to highlight the operational semantics for sensitive function
identification, and expand the context recursively by inlining rare
functions. Key subwords in frequent sensitive functions are also
identified as a filter criterion to screen out the identification can-
didates. Experiments on five large open-source code bases have
shown the efficiency and effectiveness of Raisin. Besides, 21 bugs
resulting from rare sensitive functions have been confirmed by the
developers, further demonstrating the importance of our work.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their constructive
comments. The work is supported in part by National Natural Sci-
ence Foundation of China (NSFC) under grants 62272465, 62002361
and U1836209, and the Fundamental Research Funds for the Central
Universities and the Research Funds of Renmin University of China
under grant 22XNKJ29, and the CCF-Huawei Populus euphratica
Innovation Research Funding under grant CCF-HuaweiSE2021002.

REFERENCES

[1] 2019. fuzzyc2cpg: A fuzzy parser for C/C++ that creates semantic code property
graphs. https://github.com/ShiftLeftSecurity/fuzzyc2cpg.

[2] 2023. Clang Static Analyzer. https://clang-analyzer.llvm.org/.
[3] Mansour Ahmadi, Reza Mirzazade Farkhani, Ryan Williams, and Long Lu. 2021.

Finding Bugs Using Your Own Code: Detecting Functionally-similar yet Inconsis-
tent Code. In 30th USENIX Security Symposium, USENIX Security 2021, August 11-
13, 2021, Michael Bailey and Rachel Greenstadt (Eds.). USENIX Association, 2025–
2040. https://www.usenix.org/conference/usenixsecurity21/presentation/ahmadi

[4] Glenn Ammons, Rastislav Bodík, and James R. Larus. 2002. Mining specifications.
In Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Portland, OR, USA, January 16-18, 2002.
ACM, 4–16.

[5] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel. 2014.
FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June
09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 259–269.
https://doi.org/10.1145/2594291.2594299

[6] Pan Bian, Bin Liang, Jianjun Huang,Wenchang Shi, XidongWang, and Jian Zhang.
2020. SinkFinder: harvesting hundreds of unknown interesting function pairs
with just one seed. In ESEC/FSE ’20: 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Virtual
Event, USA, November 8-13, 2020. ACM, 1101–1113.

[7] Pan Bian, Bin Liang, Wenchang Shi, Jianjun Huang, and Yan Cai. 2018. NAR-
miner: discovering negative association rules from code for bug detection. In
Proceedings of the 2018 ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ES-
EC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018, Gary T.
Leavens, Alessandro Garcia, and Corina S. Pasareanu (Eds.). ACM, 411–422.
https://doi.org/10.1145/3236024.3236032

[8] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomás Mikolov. 2017.
Enriching Word Vectors with Subword Information. Trans. Assoc. Comput. Lin-
guistics 5 (2017), 135–146.

[9] Ray-Yaung Chang, Andy Podgurski, and Jiong Yang. 2007. Finding what’s not
there: a new approach to revealing neglected conditions in software. In Pro-
ceedings of the ACM/SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2007, London, UK, July 9-12, 2007. ACM, 163–173.

[10] Benjamin Chelf, Dawson R. Engler, and Seth Hallem. 2002. How to write system-
specific, static checkers in metal. In Proceedings of the 2002 ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis For Software Tools and Engineering,
PASTE’02, Charleston, South Carolina, USA, November 18-19, 2002. ACM, 51–60.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Jill
Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computa-
tional Linguistics, 4171–4186. https://doi.org/10.18653/v1/n19-1423

[12] Navid Emamdoost, Qiushi Wu, Kangjie Lu, and Stephen McCamant. 2021.
Detecting Kernel Memory Leaks in Specialized Modules with Ownership
Reasoning. In 28th Annual Network and Distributed System Security Sym-
posium, NDSS 2021, virtually, February 21-25, 2021. The Internet Soci-
ety. https://www.ndss-symposium.org/ndss-paper/detecting-kernel-memory-
leaks-in-specialized-modules-with-ownership-reasoning/

[13] Dawson R. Engler, David Yu Chen, and Andy Chou. 2001. Bugs as Deviant
Behavior: A General Approach to Inferring Errors in Systems Code. In Proceedings
of the 18th ACM Symposium on Operating System Principles, SOSP 2001, Chateau
Lake Louise, Banff, Alberta, Canada, October 21-24, 2001, Keith Marzullo and
Mahadev Satyanarayanan (Eds.). ACM, 57–72. https://doi.org/10.1145/502034.
502041

[14] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD-96), Portland, Oregon, USA, Evangelos Simoudis, Jiawei Han,
and Usama M. Fayyad (Eds.). AAAI Press, 226–231. http://www.aaai.org/Library/
KDD/1996/kdd96-037.php

[15] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of
the Association for Computational Linguistics: EMNLP 2020, Online Event, 16-20
November 2020 (Findings of ACL, Vol. EMNLP 2020), Trevor Cohn, Yulan He, and
Yang Liu (Eds.). Association for Computational Linguistics, 1536–1547. https:
//doi.org/10.18653/v1/2020.findings-emnlp.139

[16] Vinod Ganapathy, Dave King, Trent Jaeger, and Somesh Jha. 2007. Mining
Security-Sensitive Operations in Legacy Code Using Concept Analysis. In 29th
International Conference on Software Engineering (ICSE 2007), Minneapolis, MN,
USA, May 20-26, 2007. IEEE Computer Society, 458–467. https://doi.org/10.1109/
ICSE.2007.54

[17] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.
UniXcoder: Unified Cross-Modal Pre-training for Code Representation. In Pro-
ceedings of the 60th AnnualMeeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, Smaranda
Muresan, Preslav Nakov, and Aline Villavicencio (Eds.). Association for Compu-
tational Linguistics, 7212–7225. https://doi.org/10.18653/v1/2022.acl-long.499

[18] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,
and Ming Zhou. 2021. GraphCodeBERT: Pre-training Code Representations with
Data Flow. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net. https://openreview.net/
forum?id=jLoC4ez43PZ

[19] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson R. Engler. 2002. A System
and Language for Building System-Specific, Static Analyses. In Proceedings of
the 2002 ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI), Berlin, Germany, June 17-19, 2002, Jens Knoop and Laurie J.
Hendren (Eds.). ACM, 69–82. https://doi.org/10.1145/512529.512539

https://github.com/ShiftLeftSecurity/fuzzyc2cpg
https://www.usenix.org/conference/usenixsecurity21/presentation/ahmadi
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/3236024.3236032
https://doi.org/10.18653/v1/n19-1423
https://www.ndss-symposium.org/ndss-paper/detecting-kernel-memory-leaks-in-specialized-modules-with-ownership-reasoning/
https://www.ndss-symposium.org/ndss-paper/detecting-kernel-memory-leaks-in-specialized-modules-with-ownership-reasoning/
https://doi.org/10.1145/502034.502041
https://doi.org/10.1145/502034.502041
http://www.aaai.org/Library/KDD/1996/kdd96-037.php
http://www.aaai.org/Library/KDD/1996/kdd96-037.php
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1109/ICSE.2007.54
https://doi.org/10.1109/ICSE.2007.54
https://doi.org/10.18653/v1/2022.acl-long.499
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://doi.org/10.1145/512529.512539

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Jianjun Huang et al.

[20] Jianjun Huang, Xiangyu Zhang, and Lin Tan. 2016. Detecting sensitive data
disclosure via bi-directional text correlation analysis. In Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE 2016, Seattle, WA, USA, November 13-18, 2016, Thomas Zimmermann, Jane
Cleland-Huang, and Zhendong Su (Eds.). ACM, 169–180. https://doi.org/10.1145/
2950290.2950348

[21] Samantha Syeda Khairunnesa, Hoan Anh Nguyen, Tien N. Nguyen, and Hridesh
Rajan. 2017. Exploiting implicit beliefs to resolve sparse usage problem in usage-
based specification mining. Proc. ACM Program. Lang. 1, OOPSLA (2017), 83:1–
83:29.

[22] Ted Kremenek, Paul Twohey, Godmar Back, Andrew Y. Ng, and Dawson R.
Engler. 2006. From Uncertainty to Belief: Inferring the SpecificationWithin. In 7th
Symposium on Operating Systems Design and Implementation (OSDI ’06), November
6-8, Seattle, WA, USA, Brian N. Bershad and Jeffrey C. Mogul (Eds.). USENIX
Association, 161–176. http://www.usenix.org/events/osdi06/tech/kremenek.html

[23] Ivo Krka, Yuriy Brun, and Nenad Medvidovic. 2014. Automatic mining of spec-
ifications from invocation traces and method invariants. In Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, (FSE-22), Hong Kong, China, November 16 - 22, 2014, Shing-Chi Che-
ung, Alessandro Orso, and Margaret-Anne D. Storey (Eds.). ACM, 178–189.
https://doi.org/10.1145/2635868.2635890

[24] Omer Levy and Yoav Goldberg. 2014. Linguistic Regularities in Sparse and
Explicit Word Representations. In Proceedings of the Eighteenth Conference on
Computational Natural Language Learning, CoNLL 2014, Baltimore, Maryland,
USA, June 26-27, 2014, Roser Morante and Wen-tau Yih (Eds.). ACL, 171–180.
https://doi.org/10.3115/v1/w14-1618

[25] Zhenmin Li and Yuanyuan Zhou. 2005. PR-Miner: automatically extracting
implicit programming rules and detecting violations in large software code. In
Proceedings of the 10th European Software Engineering Conference held jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2005, Lisbon, Portugal, September 5-9, 2005, Michel Wermelinger and
Harald C. Gall (Eds.). ACM, 306–315. https://doi.org/10.1145/1081706.1081755

[26] Bin Liang, Pan Bian, Yan Zhang, Wenchang Shi, Wei You, and Yan Cai. 2016.
AntMiner: mining more bugs by reducing noise interference. In Proceedings of
the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX,
USA, May 14-22, 2016. ACM, 333–344.

[27] Dinghao Liu, Qiushi Wu, Shouling Ji, Kangjie Lu, Zhenguang Liu, Jianhai Chen,
and Qinming He. 2021. Detecting Missed Security Operations Through Differ-
ential Checking of Object-based Similar Paths. In CCS ’21: 2021 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event, Republic
of Korea, November 15 - 19, 2021, Yongdae Kim, Jong Kim, Giovanni Vigna, and
Elaine Shi (Eds.). ACM, 1627–1644. https://doi.org/10.1145/3460120.3485373

[28] V. Benjamin Livshits and Thomas Zimmermann. 2005. DynaMine: finding com-
mon error patterns by mining software revision histories. In Proceedings of the
10th European Software Engineering Conference held jointly with 13th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, 2005,
Lisbon, Portugal, September 5-9, 2005, Michel Wermelinger and Harald C. Gall
(Eds.). ACM, 296–305. https://doi.org/10.1145/1081706.1081754

[29] David Lo, Siau-Cheng Khoo, and Chao Liu. 2008. Mining past-time temporal
rules from execution traces. In Proceedings of the 2008 International Workshop
on Dynamic Analysis: held in conjunction with the ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2008), WODA 2008. ACM,
50–56.

[30] Kangjie Lu, Aditya Pakki, and Qiushi Wu. 2019. Automatically Identifying
Security Checks for Detecting Kernel Semantic Bugs. In Computer Security -
ESORICS 2019 - 24th European Symposium on Research in Computer Security,
Luxembourg, September 23-27, 2019, Proceedings, Part II (Lecture Notes in Computer
Science, Vol. 11736), Kazue Sako, Steve A. Schneider, and Peter Y. A. Ryan (Eds.).
Springer, 3–25. https://doi.org/10.1007/978-3-030-29962-0_1

[31] Kangjie Lu, Aditya Pakki, and Qiushi Wu. 2019. Detecting Missing-Check Bugs
via Semantic- and Context-Aware Criticalness and Constraints Inferences. In 28th
USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August
14-16, 2019, Nadia Heninger and Patrick Traynor (Eds.). USENIX Association,
1769–1786. https://www.usenix.org/conference/usenixsecurity19/presentation/
lu

[32] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Esti-
mation of Word Representations in Vector Space. In 1st International Conference
on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013,
Workshop Track Proceedings.

[33] Tomás Mikolov, Wen-tau Yih, and Geoffrey Zweig. 2013. Linguistic Regularities
in Continuous Space Word Representations. In Human Language Technologies:
Conference of the North American Chapter of the Association of Computational
Linguistics, Proceedings, June 9-14, 2013, Westin Peachtree Plaza Hotel, Atlanta,
Georgia, USA, Lucy Vanderwende, Hal Daumé III, and Katrin Kirchhoff (Eds.).
The Association for Computational Linguistics, 746–751. https://aclanthology.
org/N13-1090/

[34] Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N. Nguyen.
2017. Exploring API embedding for API usages and applications. In Proceedings
of the 39th International Conference on Software Engineering, ICSE 2017, Buenos
Aires, Argentina, May 20-28, 2017. IEEE / ACM, 438–449.

[35] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. 2014. A Machine-learning
Approach for Classifying and Categorizing Android Sources and Sinks. In 21st
Annual Network and Distributed System Security Symposium, NDSS 2014, San
Diego, California, USA, February 23-26, 2014. The Internet Society.

[36] Suman Saha, Jean-Pierre Lozi, Gaël Thomas, Julia L. Lawall, and Gilles Muller.
2013. Hector: Detecting Resource-Release Omission Faults in error-handling
code for systems software. In 2013 43rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), Budapest, Hungary, June 24-27, 2013.
IEEE Computer Society, 1–12. https://doi.org/10.1109/DSN.2013.6575307

[37] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine
Translation of Rare Words with Subword Units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12,
2016, Berlin, Germany, Volume 1: Long Papers. The Association for Computer
Linguistics. https://doi.org/10.18653/v1/p16-1162

[38] Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and Yuanyuan Zhou. 2008. Au-
toISES: Automatically Inferring Security Specification and Detecting Violations.
In Proceedings of the 17th USENIX Security Symposium, July 28-August 1, 2008,
San Jose, CA, USA. USENIX Association, 379–394.

[39] Suresh Thummalapenta and Tao Xie. 2009. Alattin: Mining Alternative Patterns
for Detecting Neglected Conditions. In ASE 2009, 24th IEEE/ACM International
Conference on Automated Software Engineering, Auckland, New Zealand, November
16-20, 2009. IEEE Computer Society, 283–294. https://doi.org/10.1109/ASE.2009.72

[40] Song Wang, Devin Chollak, Dana Movshovitz-Attias, and Lin Tan. 2016. Bugram:
bug detection with n-gram language models. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE 2016, Singapore,
September 3-7, 2016, David Lo, Sven Apel, and Sarfraz Khurshid (Eds.). ACM,
708–719. https://doi.org/10.1145/2970276.2970341

[41] Westley Weimer and George C. Necula. 2005. Mining Temporal Specifications
for Error Detection. In Tools and Algorithms for the Construction and Analysis
of Systems, 11th International Conference, TACAS 2005, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh,
UK, April 4-8, 2005, Proceedings (Lecture Notes in Computer Science, Vol. 3440),
Nicolas Halbwachs and Lenore D. Zuck (Eds.). Springer, 461–476. https://doi.
org/10.1007/978-3-540-31980-1_30

[42] Qian Wu, Guangtai Liang, Qianxiang Wang, Tao Xie, and Hong Mei. 2011. Itera-
tive mining of resource-releasing specifications. In 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011), Lawrence, KS, USA,
November 6-10, 2011, Perry Alexander, Corina S. Pasareanu, and John G. Hosk-
ing (Eds.). IEEE Computer Society, 233–242. https://doi.org/10.1109/ASE.2011.
6100058

[43] Qiushi Wu, Aditya Pakki, Navid Emamdoost, Stephen McCamant, and Kangjie Lu.
2021. Understanding and Detecting Disordered Error Handling with Precise Func-
tion Pairing. In 30th USENIX Security Symposium, USENIX Security 2021, August 11-
13, 2021, Michael Bailey and Rachel Greenstadt (Eds.). USENIX Association, 2041–
2058. https://www.usenix.org/conference/usenixsecurity21/presentation/wu-
qiushi

[44] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick,
Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google’s
Neural Machine Translation System: Bridging the Gap between Human and
Machine Translation. CoRR abs/1609.08144 (2016). arXiv:1609.08144 http://arxiv.
org/abs/1609.08144

[45] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael Backes, and Taesoo Kim. 2018.
Precise and Scalable Detection of Double-Fetch Bugs in OS Kernels. In 2018 IEEE
Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San
Francisco, California, USA. IEEE Computer Society, 661–678. https://doi.org/10.
1109/SP.2018.00017

[46] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and Mayur Naik.
2016. APISan: Sanitizing API Usages through Semantic Cross-Checking. In
25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August
10-12, 2016, Thorsten Holz and Stefan Savage (Eds.). USENIX Association, 363–
378. https://www.usenix.org/conference/usenixsecurity16/technical-sessions/
presentation/yun

[47] Qingyang Zhou, Qiushi Wu, Dinghao Liu, Shouling Ji, and Kangjie Lu. 2022.
Non-Distinguishable Inconsistencies as a Deterministic Oracle for Detecting
Security Bugs. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11,
2022, Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi (Eds.). ACM,
3253–3267. https://doi.org/10.1145/3548606.3560661

https://doi.org/10.1145/2950290.2950348
https://doi.org/10.1145/2950290.2950348
http://www.usenix.org/events/osdi06/tech/kremenek.html
https://doi.org/10.1145/2635868.2635890
https://doi.org/10.3115/v1/w14-1618
https://doi.org/10.1145/1081706.1081755
https://doi.org/10.1145/3460120.3485373
https://doi.org/10.1145/1081706.1081754
https://doi.org/10.1007/978-3-030-29962-0_1
https://www.usenix.org/conference/usenixsecurity19/presentation/lu
https://www.usenix.org/conference/usenixsecurity19/presentation/lu
https://aclanthology.org/N13-1090/
https://aclanthology.org/N13-1090/
https://doi.org/10.1109/DSN.2013.6575307
https://doi.org/10.18653/v1/p16-1162
https://doi.org/10.1109/ASE.2009.72
https://doi.org/10.1145/2970276.2970341
https://doi.org/10.1007/978-3-540-31980-1_30
https://doi.org/10.1007/978-3-540-31980-1_30
https://doi.org/10.1109/ASE.2011.6100058
https://doi.org/10.1109/ASE.2011.6100058
https://www.usenix.org/conference/usenixsecurity21/presentation/wu-qiushi
https://www.usenix.org/conference/usenixsecurity21/presentation/wu-qiushi
https://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://doi.org/10.1109/SP.2018.00017
https://doi.org/10.1109/SP.2018.00017
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/yun
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/yun
https://doi.org/10.1145/3548606.3560661

	Abstract
	1 Introduction
	2 Motivation
	3 Approach
	3.1 Overview
	3.2 1+Context
	3.3 Rare Function Embedding
	3.4 Key Subwords-based Filtering
	3.5 Bug Detection

	4 Evaluation
	4.1 Effectiveness
	4.2 Ablation Study
	4.3 Bug Detection
	4.4 Efficiency
	4.5 Case Study

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

