
Hunting Bugs with Accelerated Optimal Graph Vertex Matching
Xiaohui Zhang∗

Renmin University of China
Beijing, China

xiaohuizhang@ruc.edu.cn

Yuanjun Gong∗
Renmin University of China

Beijing, China
gongyuanjun@ruc.edu.cn

Bin Liang†
Renmin University of China

Beijing, China
liangb@ruc.edu.cn

Jianjun Huang
Renmin University of China

Beijing, China
hjj@ruc.edu.cn

Wei You
Renmin University of China

Beijing, China
youwei@ruc.edu.cn

Wenchang Shi
Renmin University of China

Beijing, China
wenchang@ruc.edu.cn

Jian Zhang
University of Chinese Academy of

Sciences
Beijing, China

ABSTRACT
Various techniques based on code similarity measurement have
been proposed to detect bugs. Essentially, the code fragment can be
regarded as a kind of graph. Performing code graph similarity com-
parison to identify the potential bugs is a natural choice. However,
the logic of a bug often involves only a few statements in the code
fragment, while others are bug-irrelevant. They can be considered
as a kind of noise, and can heavily interfere with the code similarity
measurement. In theory, performing optimal vertex matching can
address the problem well, but the task is NP-complete and cannot
be applied to a large-scale code base. In this paper, we propose a
two-phase strategy to accelerate code graph vertex matching for
detecting bugs. In the first phase, a vertex matching embedding
model is trained and used to rapidly filter a limited number of can-
didate code graphs from the target code base, which are likely to
have a high vertex matching degree with the seed, i.e., the known
buggy code. As a result, the number of code graphs needed to be
further analyzed is dramatically reduced. In the second phase, a
high-order similarity embedding model based on graph convolu-
tional neural network is built to efficiently get the approximately
optimal vertex matching between the seed and candidates. On this
basis, the code graph similarity is calculated to identify the potential
buggy code. The proposed method is applied to five open source
projects. In total, 31 unknown bugs were successfully detected and
confirmed by developers. Comparative experiments demonstrate
that our method can effectively mitigate the noise problem, and

∗Both authors contributed equally to the paper
†Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’22, July 18–22, 2022, Virtual, South Korea
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9379-9/22/07. . . $15.00
https://doi.org/10.1145/3533767.3534393

the detection efficiency can be improved dozens of times with the
two-phase strategy.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools; • Security and privacy → Software and application
security.

KEYWORDS
bug detection, code similarity, optimal vertex matching, graph con-
volutional neural network

ACM Reference Format:
Xiaohui Zhang, Yuanjun Gong, Bin Liang, Jianjun Huang, Wei You, Wen-
chang Shi, and Jian Zhang. 2022. Hunting Bugs with Accelerated Opti-
mal Graph Vertex Matching. In Proceedings of the 31st ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis (ISSTA ’22), July
18–22, 2022, Virtual, South Korea. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3533767.3534393

1 INTRODUCTION
In recent years, bug detection techniques based on code similarity
measurement have proven to be very effective [16, 21, 22, 31, 47–52].
Such approaches match a code fragment, e.g., a function containing
known bug (seed) with the target ones to detect the suspects that are
similar to it. The detected fragments are likely to contain unknown
bugs same as the seed.

The code fragments are essentially a kind of graph and can be
naturally represented as various code graphs, such as CFGs (Control
Flow Graphs) and PDGs (Program Dependency Graphs), etc. In fact,
some recent studies have employed the graph embedding technique
to analyze programs [13, 14, 19, 22, 31, 37, 44, 48, 51], and detect
bugs based on code graph similarity comparison [22, 31, 48, 51].

However, in practice, the logic of a bug often involves only a few
statements in the code fragment, while others are bug-irrelevant
and can be considered noise. As shown in Fig. 1a, if we encode the
whole code graph as one vector, the information of the noise code
will also be encoded into the vector. As a result, the code similarity
measurement task will be heavily interfered with by the irrelevant

https://doi.org/10.1145/3533767.3534393
https://doi.org/10.1145/3533767.3534393

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Xiaohui Zhang, Yuanjun Gong, Bin Liang, Jianjun Huang, Wei You, Wenchang Shi, and Jian Zhang

statements and lead to false positives and false negatives. A natural
way to address the noise problem is to remove the noise vertices
before embedding and matching. Actually, we can remove the noise
from the seed graph because the bug-related statements are often
definite and can be identified. For example, in some studies [47, 52],
the noise in the seed function are excluded by applying the slicing
technique. Unfortunately, we cannot assume there is a specific bug
in the target code and mark the related statements to exclude noise
in advance. In other words, it is unavoidable that there is still noise
in the target code when comparing them with seed. As shown in
Fig. 1b, the similarity measurement is still interfered with when
only excluding the noise from the seed.

Essentially, the noise problem can be effectively addressed via op-
timal vertex matching. Namely, if the vertices are optimally paired
one by one, the vertices corresponding to the sliced seed can be
located and recognized from the target code. The code similarity
can be precisely measured based on the paired vertices. As shown
in Fig. 1c, the graph similarity can be measured on the vertices of
interest, i.e., the bug-related vertices in the seed and their counter-
parts in the target graph. As a result, the noise vertices are excluded
and the obtained similarity is reasonable.

Unfortunately, optimal vertex matching will bring great time
overhead. To catch the graph structure information, optimal ver-
tex matching needs to take into account both the first-order and
second-order (or even higher-order) similarity between vertices
from separate graphs. The obtained matching should maximize the
similarity between the matched vertices. Due to its high-order com-
binatorial nature, the task is in general NP-complete [25, 46, 53]. In
practice, it is often necessary to match the seed with hundreds of
thousands of targets, and the total time cost is unacceptable.

Based on the above discussion, an important question arises as
how to accelerate optimal vertex matching for measuring the code
graph similarity scalably. In this paper, we design a two-phase
method to address the efficiency challenge while suppressing the
influence of noise. As illustrated in Fig. 2, we first quickly identify
a limited number of candidates with a vertex-matching-oriented
embedding model. Subsequently, high-order similarity information
between candidates and seed is extracted with a graph convolu-
tional network model, and then be used to get an approximately
but accurate enough optimal vertex matching. Consequently, we
can efficiently measure the code graph similarity and avoid solving
an NP-complete task directly.

Specifically, in the first phase, we train a vertex-matching-oriented
embedding model (VME) to encode code graphs to vectors, which
can be used to quickly estimate the vertex matching degree between
two graphs. With VME, the seed graph and each target graph are
embedded into low dimensional dense vectors. The matching scores
among them are calculated as cosine similarity on vectors. The tar-
get graphs with high matching scores are selected as candidates for
further analysis in the next phase. They are likely to have a high
vertex matching degree with the seed. In this way, we can exclude
most of unmatched target graphs before performing optimal vertex
matching.

In the second phase, a graph convolutional neural network, called
high-order similarity embedding model (HSE), is built to further
speed up vertex matching. Instead of directly seeking an optimal
vertex matching for the seed and a candidate, we first input them

into HSE to get a high-order affinity matrix. The high-order simi-
larity among vertices can be directly encoded into the matrix with
graph convolution layers to avoid combination explosion. From it,
Hungarian algorithm [29] is employed to get an approximately opti-
mal vertex matching. The similarity between the seed and candidate
is computed by averaging the vector similarity of their matched
vertex pairs. Finally, the candidates ranked high similarity will be
audited to determine whether there is a bug.

We evaluate our method on five open source projects: OpenSC,
SQLite, mruby, ImageMagick, and gpac. We successfully detect 31
unknown bugs, which have been confirmed by their developers.
The comparison experiment shows that, our approach can get the
best results in 25 (80.6%) detected bugs compared with the other
methods. At the same time, the two-phase strategy can dramatically
reduce the time by 94%, completing one query in the five projects
only need 18 seconds on the average.

The contributions of this paper are as follows:

• We propose a bug detection method based on code graph sim-
ilarity measurement. The influence of the noise code can be
effectively suppressed by optimal vertex matching to reduce the
false positives and false negatives.
• We design a two-phase strategy to accelerate optimal vertex
matching to avoid solving an NP-complete problem. Two embed-
ding models are designed to get an approximately but accurate
enough optimal vertex matching. As a result, our method can be
applied to large-scale code base.
• We detected 31 confirmed unknown bugs in five real-world
projects with the proposed method. The comparison experiment
shows that many of them are difficult to be detected with other
similar methods.

2 MOTIVATING EXAMPLE
Taking a confirmed bug in gpac to motivate our technique of

optimal vertex matching based code similarity measurement for
bug detection. Fig. 3a involves a known bug [2]. In the function
adts_dmx_process, a crafted file may cause ctx->hdr.frame_-
size to be smaller than ctx->hdr.hdr_size, resulting in size to
be a negative number and a heap overflow in memcpy(). Fig. 3b
includes the same bug, in which, buf_len can be negative.

While both functions contain hundreds of lines of code, the
core logic involves only a few statements. If we represent the code
snippets as graphs in which each vertex relates to one statement,
there are only a few bug-related vertices in each graph and all the
others are bug-irrelevant. In other words, most of the vertices can
be regarded as noise in a code similarity measurement based bug
detection method.

Leveraging graph embedding techniques to encode each graph
to a vector and measuring the similarity between vectors will be
inevitably interfered by the noise vertices. The potential bug can
be difficult to identify. Our experiment shows that such a scheme
ranks Fig. 3b the 212th using Fig. 3a as the seed. Note that removing
the noise from the seed cannot make the situation much better. The
buggy m2psdmx_process is ranked the 5031st, hardly to be noticed
by an analyst in manual auditing.

A natural way is to match the bug-related statements (vertices)
in the seed exactly to the ones in Fig. 3b, i.e., adopting an optimal

Hunting Bugs with Accelerated Optimal Graph Vertex Matching ISSTA ’22, July 18–22, 2022, Virtual, South Korea

seed vector target vector sanitized seed vector target vector

low similarity low similarity

seed graph target graph sanitized seed graph target graph

high
similarity

sanitized
seed
graph

target
graph

noise vertex in the seednoise vertex in the target key vertex

(a) whole-graph embedding (b) sanitized seed + whole-graph embedding (c) optimal vertex matching

matching

...

... ...

......

Figure 1: A toy example to motivate our approach. Removing noise from the seed is called sanitizing.

targets

seed

Filter:
VME

Matcher:
HSE

candidates

Figure 2: Two-phase bug detection method based on vertex
matching.

vertex matching scheme. We propose to sanitize the seed graph,
embed the vertices via a graph convolution network and adopt
an attention mechanism to suppress the noise interference in the
target graph. Our approach ranks Fig. 3b as the twelfth candidate
to Fig. 3a. We report the bug to the developers and get it confirmed.

It is notable that, in a large-scale bug detection scenario, optimal
vertex matching is extremely expensive. To address the challenge,
we propose a two-phase retrieval method, which quickly filters the
targets and leaves only a small number of candidates for optimal
vertex matching. The efficiency can be significantly improved. More
details will be presented in Section 3.

3 OUR APPROACH
We propose to detect bug by measuring the similarity between the
buggy function (seed) and the other functions (targets) in a code
base. The approach first generates the code graphs for the functions
and adopts BERT [20] to initialize the vertex vectors. After that,
a two-phase method, involving candidate filtering and vertex
matching, is performed on the vectors to detect bugs. Through
a specially designed VME (Vertex-Matching-oriented Embedding
model), the first phase can dramatically reduce the number of can-
didates that are left for vertex matching. In the second phase, we
present HSE (High-order Similarity Embedding model) to encode
the high-order similarity among vertices between a candidate and

1 //file: src/filters/reframe_adts.c in gpac
2 GF_Err adts_dmx_process(GF_Filter *filter)
3 {
4 [...] // omit 187 lines
5 + if (ctx->hdr.frame_size < ctx->hdr.hdr_size) {
6 + GF_LOG(GF_LOG_WARNING, GF_LOG_PARSER, ("[ADTSDmx] Corrupted ADTS

frame header, resyncing\n"));
7 + ctx->nb_frames = 0;
8 + goto drop_byte;
9 + }
10 [...] // omit 9 lines
11 size = ctx->hdr.frame_size - ctx->hdr.hdr_size;
12 [...] // omit 17 lines
13 dst_pck = gf_filter_pck_new_alloc(ctx->opid, size, &output);
14 [...] // omit 2 lines
15 memcpy(output, sync + offset, size);
16 [...] // omit 53 lines
17 }

(a) A known bug

1 //file: src/filters/dmx_mpegps.c in gpac
2 GF_Err m2psdmx_process(GF_Filter *filter)
3 {
4 [...] // omit 71 lines
5 - if((buf[buf_len-4] == 0) && (buf[buf_len-3] == 0) &&

(buf[buf_len-2] == 1)) buf_len -= 4;
6 + if ((buf_len>4) && (buf[buf_len - 4] == 0) && (buf[buf_len - 3] ==

0) && (buf[buf_len - 2] == 1)) buf_len -= 4;
7 [...] // omit 22 lines
8 dst_pck = gf_filter_pck_new_alloc(st->opid, buf_len, &pck_data);
9 memcpy(pck_data, buf, buf_len);
10 [...] // omit 21 lines
11 }

(b) A detected and confirmed bug

Figure 3: An motivating example in gpac.

the seed, and then obtain an approximately optimal vertex match-
ing. The similarity values of the matched vertices are averaged to
denote the similarity between the candidate and the seed. Highly
ranked candidates will be manually audited. Below we will discuss
the code graph preprocessing and the two phases in detail.

3.1 Code Graph Preprocessing
We develop a robust parser to process the source code. The state-
ments are parsed to three-address-code intermediate statements as

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Xiaohui Zhang, Yuanjun Gong, Bin Liang, Jianjun Huang, Wei You, Wenchang Shi, and Jian Zhang

1 int main(){
2 int x, y;
3 scanf("%d", &x);
4 if (x > 0)
5 y = x - 1;
6 else
7 y = 0;
8 printf("%d\n", y);
9 return 0;
10 }

main:
3 (int *) = & (int)
3 (ANY) = scanf()
4 (bool) = (int) > (int)
5 (int) = (int) - (int)
5 (int) = (int)
7 (int) = (int)
8 (ANY) = printf()
9 return

(a) source code (b) intermediate statements

t3(1)
t3(2)
 …

t9

t3(1)
t3(2)

(c) tokens

vertex
vector

train
BERT

Figure 4: An example of code graph preprocessing.

done in GCC. And we extract one code feature graph per function
by combining its CFG and PDG. Note that, different with tradi-
tional CFG [12], each generated basic block corresponds to only
one statement in the source code. Our intuition is that a basic
block containing multiple statements will mix the features together
and cause mutual interference. The PDG vertices are created by
the same way. In other words, the intermediate statements of one
source code statement form a vertex in the code feature graph.
Identifier normalization, i.e., replacing variable names with their
normalized types, is applied to the graph as well. Fig. 4(b) shows
an example of normalized intermediate statements and the split of
vertices (by source code lines). The code graph of the seed is further
sanitized by removing the noise vertices with the knowledge of the
bug and its corresponding patch, as done in [47, 52].

Treating each intermediate statement as a token and the token se-
quence of a function as a sentence, we employ the idea of the mask
language model and leverage BERT [20] to train an embedding
model. By this means, each token (i.e., an intermediate statement)
can be embedded into a vector. If a vertex contains only one token,
the vertex vector is exactly the token vector. Otherwise, we con-
catenate the tokens into a phrase and take the model to compute a
vector for the vertex.

Take the function in Fig. 4(a) as example. Its intermediate repre-
sentation is shown in Fig. 4(b). The corresponding sentence is com-
posed of eight tokens, i.e., 𝑡3(1) , 𝑡3(2) , 𝑡4, . . . , 𝑡9, where the subscripts
indicate the original line numbers and the counters in parenthesis
denote the indices of the intermediate statements corresponding
to one source code statement. The vertex vectors for 𝑡4, . . . , 𝑡9 are
directly the token embeddings and the vertex vector for line 3 in
Fig. 4(a) is the vector of the phrase “𝑡3(1) 𝑡3(2) ”.

3.2 Phase 1: Candidate Filtering
We propose a vertex-matching-oriented embedding model (VME)
in the first phase, which encodes the code graphs to vectors to
support fast estimation of the vertex matching degree between two
graphs. By this means, we can quickly filter the targets and leave
only a limited number of candidates for further vertex matching.

The workflow of VME is shown in Fig. 5. One sanitized seed
graph and a target graph are fed to the network. Each graph is
encoded to a vector via an embedding module and a matching score
between the two vectors is calculated. In the training stage, the
matching score is used to guide the training. In the testing stage, it
can indicate the estimated vertex matching degree.

seed
vector

target
vector

VMEmbedding

VMEmbedding

Matching
Score

Calculation

sanitized
seed

graph

target
graph

matching
score

seed
vector

target
vector

MLP
+

Gate
Matching

Score
Calculation

sanitized
seed

graph

target
graph

matching
score

VMEmbedding

seed
vector

target
vector

Matching
Score

Calculation

sanitized
seed

graph

target
graph

matching
score

VMEmbedding

MLP
σ

⨀

Figure 5: Workflow of VME.

3.2.1 Vertex-Matching-Oriented Embedding. The embedding mod-
ule consists of a multi-layer perceptron network with a gate struc-
ture. The gate structure transforms vertex representations via Eq. 1.

𝒉′𝑖 = 𝜎 (𝑀𝐿𝑃 (𝒉𝑖)) ⊙ 𝑀𝐿𝑃 (𝒉𝑖) (1)

where 𝜎 is the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function, 𝒉𝑖 denotes the initial vector of the
𝑖𝑡ℎ vertex and 𝒉′

𝑖
represents the transformed output. The symbol ⊙

denotes the Hadamard product, i.e., multiplying the elements in the
same positions of the two matrices one by one. Theoretically, when
Hadamard product is used to weight each dimension of the vector
with learnable weights, the model can learn which dimensions
are important or less important. The importance will be reflected
in corresponding weights. Experimental results also show that ⊙
outperforms simple summation.

We use max pooling to aggregate the vertex vectors and generate
the graph vector 𝒈 with 𝑑 dimensions. Each dimension of 𝒈 holds
the maximum values of the same dimension of all 𝒉′

𝑖
, as in Eq. 2.

𝒈 [𝑗] = max(𝒉′1 [𝑗],𝒉
′
2 [𝑗], ...,𝒉

′
𝑛 [𝑗]) 𝑗 = 1, 2, ..., 𝑑 . (2)

To train a proper VME that can generate graph vectors to esti-
mate optimal vertex matching between graphs, we build a series of
quintets ⟨𝐴𝐶𝑅, 𝑃𝑂𝑆, 𝑁𝐸𝐺, 𝑠1, 𝑠2⟩, each with three graphs and two
labels. Given a graph 𝑃𝑂𝑆 , which is randomly chosen from the code
graphs in the target project, we generate a sub-graph 𝐴𝐶𝑅 from it.
More specifically, 𝐴𝐶𝑅 is generated from 𝑃𝑂𝑆 by taking a random
vertex of 𝑃𝑂𝑆 as the centre and including its 𝑟 -hop neighbor ver-
tices. Then we randomly sample another target graph as 𝑁𝐸𝐺 . We
have 𝑠1 = 1, indicating the satisfaction of optimal vertex matching
between 𝐴𝐶𝑅 and 𝑃𝑂𝑆 . The other label, 𝑠2, is calculated via the
Hungarian algorithm [29] to denote the optimal vertex matching
degree between 𝐴𝐶𝑅 and 𝑁𝐸𝐺 .

We employ a triple loss, as shown in Eq. 3, as the loss function,
to strengthen the model’s ability of identifying that 𝐴𝐶𝑅 and 𝑃𝑂𝑆
are a better matching.

𝐿 = max
(
0,𝑚𝑠𝑐 (𝑣𝑎𝑐𝑟 , 𝑣𝑝𝑜𝑠) −𝑚𝑠𝑐 (𝑣𝑎𝑐𝑟 , 𝑣𝑛𝑒𝑔) − (𝑠1 − 𝑠2)

)
(3)

where𝑚𝑠𝑐 measures the matching score of two graph vectors.
In the traditional triplet loss function, there is a constant margin

𝜖 , which can ensure that there is a gap between the positive sample
and negative sample. In fact, 𝑠1−𝑠2 is themargin in our loss function,
but it is dynamic and specific for each sample. For a positive sample
and a negative one, we can measure the gap in advance (𝑠1 = 1, 𝑠2
can be estimated through the Hungarian algorithm).

3.2.2 Matching Score Calculation. Instead of directly measuring
the similarity between two graph vectors 𝒔 and 𝒕 , we focus on
only the dimensions which, in the seed vector, are greater than a
certain threshold 𝑇 . Those dimensions are extracted to form two
new vectors that are used to calculate the matching score. Eq. 4 and

Hunting Bugs with Accelerated Optimal Graph Vertex Matching ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Eq. 5 show the construction of the new seed and target vectors. Eq. 6
calculates their cosine similarity as the corresponding matching
score. The experiment shows that 𝑇 = 0.02 is a proper threshold.

𝒔′ =
⋃

𝒔 [𝑖]>𝑇
𝒔 [𝑖] (4)

𝒕 ′ =
⋃

𝒔 [𝑖]>𝑇
𝒕 [𝑖] (5)

𝑚𝑠𝑐 (𝒔, 𝒕) = 𝒔′ · 𝒕 ′
∥𝒔′∥∥𝒕 ′∥ (6)

where
⋃

connects the satisfied dimensions and “·” computes the
dot product of two vectors.

In practice, we sort the candidates in a descending order and
retain only the top 𝐾1 for a fine-grained optimal vertex matching.
As a consequence, the filtering can dramatically reduce the number
of candidates and thus significantly speed up the bug detection.

3.2.3 Example. We take Fig. 6 as an example to show that max
pooling + dimension filtering behaves better than other techniques.
Suppose the seed graph contains two vertices and the candidate
contains four, with two the same as the seed and two noise nodes.
Here, we assume that 𝑇 is set to 0, i.e., to filter negative values.

Note that, for a seed vector 𝑠 and a target vector 𝑡 , we find out
which dimensions in 𝑠 are smaller than the threshold 𝑇 . These
dimensions will be deleted from 𝑠 , and the remaining dimensions
form a new vector 𝑠 ′. For 𝑡 , we also delete the counterparts to get 𝑡 ′,
no matter whether the dimensions are smaller than the threshold𝑇
or not. For example, in Fig. 6, although 0.15 and 0.6 in 𝑡 are greater
than 0, they should be filtered out as the corresponding dimension
in s is deleted.

Mean pooling alongwith direct similaritymeasurement produces
a similarity of 0.641. Applying the same dimension filtering policy,
the similarity is 0.903. Max pooling, in contrast, emits a similarity of
0.599, but the combination of max pooling and dimension filtering
brings the similarity to 1.0.

Although mean pooling is commonly used in graph embedding
models, we find it will completely mix the vertex information and
every dimension in the candidate vector can be affected by the
noise vertices. Max pooling keeps the dominant feature of each
dimension, but it also leaves the noise features in the resulting
vector and makes even lower similarity. Filtering the dimensions
based on the seed actually highlights the important dimensions
and reduces the impact of the seed-independent noise as far as
possible. In the above example, the filtering can significantly lift
the similarity and thus rank the candidate sufficiently high for next-
phase analysis. Among the four methods, we can see that filtering
plus max pooling achieves the best result, which has also been
demonstrated in our preliminary experiment.

3.3 Phase 2: Vertex Matching
The second phase performs approximately optimal vertex match-
ing to identify potential buggy candidates. To avoid combinational
explosion resulting from directly solving the optimal vertex match-
ing problem, we build a graph convolution neural network, named
high-order similarity embedding model (HSE), to encode the high-
order similarity among vertices into an affinity matrix. Hungarian

0.2 -0.1 0.3 0.4 -0.2 0.3

0.2 0.3 0.4 0.3

0.2 0.6 0.3 0.4 -0.1 0.3

0.2 0.3 0.4 0.3

filter

Max Pooling

filter

0.1 -0.1 0.2 0.4 -0.2 0.3

0.2 -0.2 0.3 0.0 -0.2 0.1

0.15 -0.15 0.25 0.2 -0.2 0.2

0.1 -0.1 0.2 0.4 -0.2 0.3

0.2 -0.2 0.3 0.0 -0.2 0.1

0.1 0.3 0.2 0.1 -0.2 -0.1

-0.1 0.6 0.1 0.0 -0.1 -0.2

0.075 0.15 0.2 0.125 -0.175 0.025

seed candidate

Mean Pooling

0.15 0.25 0.2 0.2

filter
0.075 0.2 0.125 0.025

filter
0.641

0.903

0.599

1.000

Figure 6: A demo example to show the effect of max pooling
plus dimension filtering.

algorithm is then employed to pair the vertices approximately opti-
mally from the matrix. Fig. 7 shows the above process. Based on
the matching, the similarity between the seed and the candidate is
computed. Candidates are ranked by their similarity scores and the
highly ranked ones will be manually audited.

To ease further discussion, we use𝑉𝑠 , 𝐸𝑠 , and A𝑠 to represent the
vertex set, edge set, and adjacency matrix of graph 𝑠 , respectively.

3.3.1 High-Order Similarity Embedding. As shown in Fig. 7, HSE
consists of a Siamese network, taking a seed graph and a candidate
graph as inputs and employing attentionmechanism to suppress the
influence of noise during embedding. The network contains𝐾 graph
convolution layers, which can encode the structure information of
graphs via a message passing mechanism, i.e., propagating vertex
features from/to neighbors. It is notable that, because a candidate
graph often contains noise vertices, we propose a different message
passing scheme for it to suppress the noise propagation, compared
to the mechanism in the seed graph. In fact, message passing in
the candidate depends on the information from the seed. Therefore,
below we first discuss the message passing scheme in the seed.

The message passing scheme in the seed graph is done as in [46].
In every iteration, the vertex feature, i.e., its vector, is aggregated
from its adjacent vertices and the vertex itself. Eq. 7 averages the
passed messages from the neighbors. Each neighborhood message
is a transformation (𝑓𝑚𝑠𝑔) of the neighbor’s feature 𝒉

(𝑘−1)
𝑠 𝑗

in last
layer. Eq. 8 passes the information of the vertex 𝑖 in last layer to itself
via a transformation 𝑓𝑠𝑒𝑙 𝑓 . Both 𝑓𝑚𝑠𝑔 and 𝑓𝑠𝑒𝑙 𝑓 are implemented
as neural networks. Accumulating the messages, Eq. 9 updates the
state of vertex 𝑖 , where 𝑓𝑎𝑔𝑔𝑟 is an aggregation function. Note that,
we use 𝒉(𝑘)

𝑠𝑖
to indicate the feature vector of vertex 𝑖 , layer 𝑘 in 𝑠 ,

and 𝒉(0)
𝑠𝑖

is the initial feature vector generated by the BERT model,
as mentioned in Section 3.1.

𝒎 (𝑘)
𝑠𝑖

=
1

| (𝑖, 𝑗) ∈ 𝐸𝑠 |
∑︁

𝑗 :(𝑖, 𝑗) ∈𝐸𝑠
𝑓𝑚𝑠𝑔 (𝒉(𝑘−1)𝑠 𝑗

) (7)

𝒏(𝑘)
𝑠𝑖

= 𝑓𝑠𝑒𝑙 𝑓 (𝒉
(𝑘−1)
𝑠𝑖

) (8)

𝒉(𝑘)
𝑠𝑖

= 𝑓𝑎𝑔𝑔𝑟 (𝒎 (𝑘)𝑠𝑖 , 𝒏
(𝑘)
𝑠𝑖
) (9)

Neighbor features in the seed graph are equally fused, as shown
in Eq. 7. However, such a propagation scheme is not suitable for the
candidate, in which the noise propagation should be suppressed.

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Xiaohui Zhang, Yuanjun Gong, Bin Liang, Jianjun Huang, Wei You, Wenchang Shi, and Jian Zhang

×𝐾candidate graph 𝑡

seed graph s

t! t" t# t$ t%
𝑠! 0.05 0.8 0.05 0.05 0.05

𝑠" 0.05 0.05 0.55 0.3 0.05

𝑠# 0.05 0.05 0.3 0.55 0.05

𝑠$ 0.3 0.05 0.05 0.05 0.55

1
2

3 4
5

1
2 3

4

1
2

3 4
5

1
2 3

4
convolution layers matching

affinity matrix 𝑃

Hungarianaffinity
metric
function

message passing weighted by attention in 𝑡
message passing in s

Figure 7: The overview of the optimal vertex matching model. We use vertex 𝑖 in the candidate graph and vertex 𝑗 in the seed
graph as examples to show the message passing scheme.

Take Fig. 8 as an example. Averaging fusion of 𝑖’s neighbor features
will inevitably induce the noise feature from 𝑘 , probably making 𝑖 in
the candidate and 𝑗 in the seed dissimilar. Therefore, the candidate
requires a message passing scheme that can suppress the noise.

1

i

2
k

candidate graph t seed graph s

j

Figure 8: A toy example. The same grains indicate similar
vertices and the arrows indicate the message passing. The
thicker the arrow, the higher the attention weight.

To this end, we design the following message passing mechanism
and leverage attention mechanism to pass messages from neighbor
vertices in the candidate to every current vertex with a certain
weight. First, for vertex 𝑖 in a candidate 𝑡 , its most similar vertex 𝑗
in the seed graph is sought via Eq. 10.

𝑗 = 𝑎𝑟𝑔max
𝑗 ∈𝑉𝑠

𝑠𝑖𝑚
(𝑘)
𝑡𝑖,𝑠 𝑗

(10)

where 𝑠𝑖𝑚 (𝑘)
𝑡𝑖,𝑠 𝑗

indicates the cosine similarity of the feature vectors
on layer 𝑘 between vertex 𝑖 in 𝑡 and vertex 𝑗 in 𝑠 .

Second, for 𝑖’s every neighbor vertex𝑛, we search its most similar
vertex among 𝑗 ’s neighbors in the seed and record the similarity.
The similarity is then normalized as Eq. 11 to represent the attention
weights of message passing from the vertex to 𝑖 .

𝛽
(𝑘)
𝑡𝑖←𝑛 =

𝑒𝑥𝑝

(
max

𝑗 ′:(𝑗, 𝑗 ′) ∈𝐸𝑠
(𝑠𝑖𝑚 (𝑘)

𝑡𝑛,𝑠 𝑗 ′)
)

∑
𝑖′:(𝑖,𝑖′) ∈𝐸𝑡

𝑒𝑥𝑝

(
max

𝑗 ′:(𝑗, 𝑗 ′) ∈𝐸𝑠
(𝑠𝑖𝑚 (𝑘)

𝑡𝑖′,𝑠 𝑗 ′)
) (11)

Finally, the neighbor vertices’ features are fused based on their
attention weights, as shown in Eq. 12.

𝒎 (𝑘)
𝑡𝑖

=
∑︁

𝑛:(𝑖,𝑛) ∈𝐸𝑡
𝛽
(𝑘)
𝑡𝑖←𝑛 × 𝑓𝑚𝑠𝑔 (𝒉

(𝑘)
𝑡𝑛) (12)

The above scheme guarantees that the noise propagation can
be restrained as far as possible while the vertices possessing high

similarity with seed vertices will play an important role in message
passing. For example, in Fig.8, the message from 𝑘 has negligible
impact on 𝑖 .

Aggregating the messages from other vertices and 𝑖 itself, we
get an updated feature for 𝑖 using Eq. 13.

𝒉(𝑘)
𝑡𝑖

= 𝑓𝑎𝑔𝑔𝑟 (𝒎 (𝑘)𝑡𝑖 , 𝒏
(𝑘)
𝑡𝑖
) (13)

where 𝒏(𝑘)
𝑡𝑖

takes the same transformation as in Eq 8.
Based on the above techniques, the convolution layers encode

each vertex in the seed graph and candidate graphs into vectors.
Then, we model the high-order similarity among vertices using a
vertex-vertex affinity matrix. The affinity between 𝑗 ∈ 𝑉𝑠 and 𝑖 ∈ 𝑉𝑡
is computed by Eq. 14.

S𝑗𝑖 = 𝑓𝑎𝑓 𝑓 (𝒉
(𝐾)
𝑠 𝑗

,𝒉(𝐾)
𝑡𝑖
), 𝑗 ∈ 𝑉𝑠 , 𝑖 ∈ 𝑉𝑡 (14)

where 𝐾 denotes the number of graph convolution layers, and S
denotes the affinity matrix and we implement 𝑓𝑎𝑓 𝑓 as Eq. 15 [46].

S𝑗𝑖 = 𝑒𝑥𝑝 (
𝒉(𝐾)⊤
𝑠 𝑗

W𝒉(𝐾)
𝑡𝑖

𝜏
), 𝜏 > 0 (15)

in which, W is a matrix of learnable parameters and 𝜏 is a hyper
parameter. The smaller 𝜏 is, the more discriminative the affinity
matrix is.

We further employ Sinkhorn algorithm [11] to normalize the
matrix (Eq. 16) as done in [46] and eventually acquire a normalized
affinity matrix P.

P = 𝑆𝑖𝑛𝑘ℎ𝑜𝑟𝑛(S) (16)
Using the ground truth vertex-vertex correspondence P𝑔𝑡 as the

supervision, we train the model by minimizing the cross entropy
loss between P and P𝑔𝑡 , as done in Eq. 17 [46].

𝐿 = −
∑︁

𝑗 ∈𝑉𝑠 ,𝑖∈𝑉𝑡
(P𝑔𝑡
𝑗,𝑖
log P𝑗,𝑖 + (1 − P𝑔𝑡𝑗,𝑖) log(1 − P𝑗,𝑖)) (17)

We build the training samples as follows. Picking a variable in a
statement, we take the corresponding vertex as the slicing criteria
and then traverse all its 𝑟 -hop neighbors from the PDG to obtain a
sub-graph. The sub-graph 𝑔𝑠 and the whole graph 𝑔𝑤 is paired and
the ground truth P𝑔𝑡 can be recorded during the slicing, making
a training sample in a form of a triplet ⟨𝑔𝑠 , 𝑔𝑤 , P𝑔𝑡 ⟩. In order to
improve the robustness of our model, some random noise is added
to the initial vertex feature vectors of 𝑔𝑠 .

Hunting Bugs with Accelerated Optimal Graph Vertex Matching ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Table 1: The basic features of five comparative methods.

Method Name Noise in Seed Matching Approach
GCN preserved Graph-level Matching

ReGCN removed Graph-level Matching
VGraph preserved Set Matching
PM removed Set Matching
HSE– removed Optimal Vertex Matching

3.3.2 Similarity Measurement for Bug Detection. After the embed-
ding model is trained, a normalized affinity matrix P is generated
for a seed graph 𝑠 and a given candidate 𝑡 . Hungarian algorithm [29]
is then applied to get an approximately optimal vertex matching
based on the matrix and a similarity is computed between 𝑠 and
𝑡 . The similarity computation is done as Eq. 18, by averaging the
similarity of the initial feature vectors between matched vertices.

𝑠𝑖𝑚(𝑠, 𝑡) =
∑
𝑗 ∈𝑉𝑠 𝑠𝑖𝑚

(0)
𝑡𝑖 𝑗 ,𝑠 𝑗

𝑁
(18)

where 𝑁 is the number of vertices in 𝑠 . Note that a candidate graph
with fewer vertices than the seed will be excluded in our model.

For a given seed graph, its similarity with all candidates will be
measured and the candidates are ranked according to their simi-
larity scores. Due to the extensive workload of code auditing, we
choose only the top 𝐾2 candidates (top 25 in our experiment) for
manual inspection.

4 EVALUATION
4.1 Experimental Environment and Parameters
All experiments are carried out on a server with Ubuntu 18.04, 64G
memory and two GeForce RTX 2080 Ti GPUs.

To demonstrate the effectiveness of our approach, we implement
a prototype and evaluate it on five open-source projects, ImageMag-
ick, gpac, OpenSC, mruby and SQLite. We train one VME and one
HSE model by treating the five projects (34,129 functions) as a
whole, to assess the efficiency of the two-phase approach.

We also perform a comparative analysis with five other similarity
measurement based methods. Table 1 shows their basic features,
including the seed noise suppression policies and the matching
methods. The details of the five methods are as follows.
• GCN: measuring code similarity based on the whole-graph em-
bedding extracted by a traditional graph convolution network
implemented by us as in [22, 31, 48, 51]. We extend the training
samples of HSE by adding a negative sample to each triplet and
use it to train GCN with the triplet loss [41] adopted.
• ReGCN: same as GCN but refining the seed graph, i.e., removing
the noise vertices.
• PM: leveraging patch information tomatch vulnerable candidates.
We refer to the work [52] and [47], and reproduce the method
therein. The work, based on bag of words model and TF-IDF
algorithm [23], measures the similarity with both the vulnerable
code slice and the patched code slice. We rank the targets by their
similarity to the vulnerable code slice.
• VGraph [16]: converting the code graphs into a set of code prop-
erty triplets and calculating the overlap ratio between a target
triplet set and the positive triplets, context triplets and negative

triplets of a seed graph, respectively. We rank the targets by the
sum of their similarity to the positive triplets and context triplets.
• HSE–: same as HSE but excluding the attention mechanism.
Namely, the seed graph is sanitized and optimal vertex matching
is employed.
All the above methods, plus our approach, are applied to the five

projects. If not specified, we manually audit the top 25 reported by
each method, i.e., 𝐾2 = 25.

Below we discuss the hyper-parameter settings.
BERT.Most of the hyper-parameters in our BERT model take the

default values of the bert-base model [20]. Limited by GPU capacity,
use smaller hidden size (384) and max sequence length (256).

VME. The dimension filtering threshold𝑇 is 0.02, as our empirical
experiment achieves the best performance with this value.

HSE. Most of the hyper-parameters of the HSE model are the
same as [46], except that, the FEATURE_CHANNEL is 384 to fit the
output size of BERT.
𝐾1 and 𝐾2. The number of candidates retained for further vertex

matching,𝐾1, varies depending on the requirement of the detection
rate. We set 𝐾1 = 1, 000 in our experiment and will further discuss
its impact on the effectiveness and efficiency in Section 4.2.2. 𝐾2,
the number of matched candidates for manual auditing, is fixed to
25 due to the burdensome task of code auditing.

4.2 Experiment Results
In this section, we discuss in detail the performance of our approach
over two aspects, i.e., effectiveness and efficiency. Section 4.2.1 will
show how effective our approach can detect unknown bugs and
Section 4.2.2 will present the advantage of the filtering stage in
accelerating the detection.

25 50 100 200
K2

0%

25%

50%

75%

100%

R
ec
al
l

GCN
ReGCN.
VGraph

PM
HSE-
HSE

Figure 9: Recall rates with different 𝐾2.

4.2.1 Effectiveness. Totally, we have detected 31 bugs that have
been confirmed by the developers of the open-source projects. The
seeds and the corresponding buggy functions are listed in Table 2.
More details about the bugs can be found at [1, 3–9].

If a bug is within the top 25 reported by a method, we also check
its ranking in the results by other methods. For example, the bug
#17 is ranked 14th by HSE and 15th by HSE–, but exceeds the
scope of top 25 for the other four methods. Note that, the bug #30
ranks beyond 25 in all six methods, but in the VME+HSE scheme
(i.e., filtering before optimal vertex matching, with 𝐾1 = 1000),
it ranks 17th and gets noticed by us. Besides, to demonstrate the
effectiveness of filtering, we list the rankings of the bugs in the
candidate filtering phase, in the last column of Table 2 (VME).

There are some noticeable findings in the results.

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Xiaohui Zhang, Yuanjun Gong, Bin Liang, Jianjun Huang, Wei You, Wenchang Shi, and Jian Zhang

Table 2: Experiment result. The symbol “-” means that the corresponding function cannot be identified due to a parsing failure.

ID Project Seeds Detected Buggy Functions GCN ReGCN VGraph PM HSE- HSE VME
1

ImageMagick-
7.0.10-29

WritePDFImage

WriteVIFFImage 63 72 10 20 1 1 10
2 WriteXWDImage 173 244 19 66 1 1 33
3 WriteBMPImage 20 59 7 4 1 1 14
4 WriteDIBImage 47 11 16 40 1 1 11
5 WriteMAPImage 59 6 49 103 1 1 4
6 WritePCLImage 4 212 9 13 1 1 6
7 WritePCXImage 12 82 8 9 8 1 8
8 WritePS2Image 2 94 1 1 8 1 24
9 SerializeImageIndexes 79 10 139 152 1 1 1
10 WritePALMImage 8 155 24 38 11 11 42
11 WritePICTImage 247 439 18 23 12 12 67
12 LevelPixel GenerateDifferentialNoise 1000 10 31 91 5 12 88
13 ScaleResampleFilter 6385 5 18 91 19 4 71
14 RemoveDuplicateLayers OptimizeLayerFrames 540 5 - 61 1 1 2
15

gpac-1.0.1 HintFile

gf_sm_encode_od 73 2 23 208 1 3 1
16 gf_media_export_saf 647 8 9 130 57 33 8
17 gf_media_make_3gpp 201 36 93 154 15 14 42
18 gf_import_isomedia_track 144 37 60 33 75 17 14
19 gf_media_export_webvtt_metadata 1430 157 1 3 62 12 17
20 gf_export_isom_copy_track 280 10 4 144 16 25 4
21 UpdateODCommand 390 4 1169 291 55 61 112
22 gf_media_export_six 647 24 3 8 33 26 16
23 AV1_RewriteESDescriptorEx VP9_RewriteESDescriptorEx 1 3 1 9 1 1 1
24 adts_dmx_process m2psdmx_process 212 5031 48 133 12 12 622
25

OpenSC-0.19.0 main @ src/tools/eidenv.c main @ src/tools/netkey-tool.c 14 22 11 14 154 6 11
26 main @ src/tests/p15dump.c 46 974 670 - 106 21 166
27 sc_oberthur_read_file sc_pkcs15_read_file 3 17 8 3 12 2 1
28 mruby-3.0.0-

preview mrb_irep_free
codedump_recur 146 16 3811 166 9 10 1

29 lv_defined_p 47 19 4532 166 5 7 2
30 ipa_draw_polypolygon@ImageMagick 4247 2359 4029 75 588 30 168
31 sqlite-3.33.0 fts5TriTokenize fts5UnicodeTokenize 1 1 1 - 1 1 1

First, the optimal vertex matching methods, i.e., HSE and HSE–,
discover 27 out of the 31 bugs (87.1%) with 𝐾2 = 25. In contrast,
under the same setting, the graph-level matching based methods
(GCN and ReGCN) can report 22 bugs and the set matching based
methods (PM and VGraph) reports 19, 16.1% and 25.8% fewer than
our method.

Second, 25 (80.6%) bugs get the highest rank by HSE and HSE–.
In particular, 13 (41.9%) of them are ranked top one. The higher the
ranking, the easier to hit the bug during auditing. In other words,
our method makes the bugs stand out to be discovered.

Third, the largest ranking is 61 for HSE and the second largest
is only 33. That means, all the bugs (or at least 30 of them) can be
relatively easily discovered by an analyst with an acceptable larger
𝐾2, e.g., 50. On the contrary, more than ten bugs are ranked after
50 for GCN, ReGCN and PM, and the number is eight for VGraph.
Even worse, some bugs are ranked after one thousand, which will
never attract the eyes of the analyst. We conduct a further study by
taking the 31 bugs as the benchmark and calculating the recall rates
of the six methods under different𝐾2. Fig. 9 shows the result. When
𝐾2 = 200, the HSE method reports all the 31 bugs, HSE- reports
96.8% but all the other methods (graph or set matching) can only
reach a maximum recall of 87.1%.

We owe the better detection performance of HSE to the consid-
eration of fine-grained semantic and structural information in the
code graphs. Graph-level matching based methods mix the seman-
tics and structures and generally lower down the distinguishability
of dissimilar graphs. The set matching based methods, on the other
hand, do not embed statements into vectors containing their se-
mantics, making it difficult to identify the statements with similar
semantics. Based on the above findings, we can claim that our ap-
proach can uncover more bugs when incorporating human efforts.

In addition, compared to HSE– that does not employ the at-
tention mechanism to the message passing in candidate graphs,
HSE has 12 (38.7%) bugs ranking higher than HSE– and 13 (41.9%)
equally ranked (10/13 are top one). The remaining six bugs get
lower rankings in HSE than in HSE–. We inspect those cases and
find that some functions that look quite similar to the seed but with-
out a bug are ranked higher when the noise is suppressed by HSE.
However, such cases do not pose important impact on the result
and the overall results illustrate the effectiveness of the attention
mechanism on noise suppression.

Besides, most of the bugs get high rankings in the filtering phase.
24 (77.4%) are ranked top 50, 27 (87.1%) are within top 100 and all
are within top 1000. It demonstrates that, the VME-based candidate

Hunting Bugs with Accelerated Optimal Graph Vertex Matching ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Table 3: Experiment results with different 𝐾1.

𝐾1 1000 200 100 HSE (w/o VME)
Recall 100% 96.8% 87.1% -

Time (s)
Phase 1 7 7 7 0
Phase 2 11 4 4 290
Total 18 11 11 290

Time Reduction 94% 96% 96% -

filtering will not pose important influence to our optimal vertex
matching method. With a proper 𝐾1, nearly all bugs can be covered.

At last, our approach successfully detect a cross-project bug (bug
#30). Taking a bug in mruby as the seed, it matches a similar bug
in ImageMagick, which proves that our approach has the ability of
cross-project detection.

We also apply Fortify [10], one of the most prominent static
analysis tools, on the target projects. However, none of the bugs
detected with our proposed method can be found by Fortify. The
main reason is that the performance of traditional static analyzers
does depend on the priori knowledge about the bugs (detection
rules). When there is no rule for a specific bug, it cannot be found by
the analyzer. For the detected bugs in this paper, there are no corre-
sponding rules in Fortify. It is demonstrated again that developing
the match-based methodology is necessary.

4.2.2 Efficiency. Optimal vertex matching inevitably brings great
time overhead. In fact, it takes 290 seconds on average to measure
the similarity between one seed and all candidates without the
filtering phase. The other methods, e.g., GCN, consume less than
20 seconds. Fortunately, candidate filtering by VME can dramati-
cally reduce the number of candidates with a proper 𝐾1 and thus
significantly accelerate the similarity measurement.

It is notable that, different 𝐾1 can affect the detection effective-
ness and the efficiency. We have studied the influence of 𝐾1 and
put the result in Table 3. When 𝐾1 = 1000, all the 31 bugs will be
kept for the second-phase analysis that takes about ten seconds for
optimal vertex matching. The filtering phase costs only 7 seconds
and the total time cost (18 seconds) is reduced by 94%. Smaller 𝐾1,
e.g., 200 or 100, drops the recall but further speeds up the detection.
Only 11 seconds are required, with a reduction of 96%, illustrating
a comparable speed with the other methods but in the meantime
higher detection rate than others.

4.3 Case Studies
We examine two cases to demonstrate the advantages of considering
fine-grained semantic and structural information and the attention
mechanism respectively. Besides, we analyze the limitation of our
approach with a negative example.

4.3.1 Fine-Grained Structure and Semantics. Fig. 10 shows two code
snippets. One has a known bug (Fig. 10a) and the other (Fig. 10b)
is reported by our approach. We refer them to main_1 and main_2,
respectively, to ease our discussion. In main_1, line 5 allocates the
memory that is used at line 7. If a failure occurs at line 7, an error
message is dumped and the function returns. A missing release
causes memory leak. We can find similar logic in main_2, which
calls different functions and requires a different release function.

Fig. 11 shows the seed graph (left, with noise removed) and part
of the candidate graph (right). The whole-graph matching methods
and set matching methods are affected by the noise and rank it far
beyond top 25, e.g., 974th by ReGCN and 670th by VGraph. On the
contrary, since our BERT model generates similar vectors for APIs
with similar semantics, optimal vertex matching can succeed when
the influence of the noise in the candidate can be suppressed as far
as possible. Our HSE model ranks Fig. 10b the 21st.

Besides, although the memory leakage is a well-known bug type,
the related memory allocation/release operations (i.e., sc_test_-
init and sc_test_cleanup) in this bug are application-specific.
There are often not corresponding detection rules in the traditional
static analysis tools, preventing the bug to be discovered.

4.3.2 Attention. Fig. 12 shows an example in gpac. A NULL pointer
dereference may occur at line 8 in Fig. 12a. Using the code snippet
as a seed, we find an unknown bug in Fig. 12b (#18 in Table 2). The
sanitized seed graph is very small, consisting of only a few lines.
Many other statements are indeed noise in optimal vertex matching.
For example, line 5 in Fig. 12a and line 5 in Fig. 12b should be exactly
matched, while the corresponding vertex in the candidate graph
has many noise neighbors. Among its 22 neighbors, 19 are noise.
Without the attention mechanism, the vertex in the seed graph can
hardly match the one in the candidate. In fact, HSE– ranks Fig. 12b
the 75th, which is potentially neglected by the analyst. HSE, on the
contrary, ranks it the 17th, illustrating that the attentionmechanism
can help suppress the noise propagation in candidate graphs.

In fact, null pointer dereference is also a well-known bug type.
However, the involved function gf_isom_get_esd and the type of
origin_esd are also application-specific. Therefore, it is difficult
for the rule-based methods to detect the bugs.

4.3.3 A Negative Example. As shown in Table 2, the HSE model
has not achieved good results in all examples. For example, bug
#21 ranks only 61st with HSE. The function involved in bug #21 is
UpdateODCommand in gpac project, whose bug-related statements
are shown in Fig. 13. In fact, line 5 in Fig. 13 should have matched
line 5 in the seed function in Fig. 12a. However, because of the differ-
ent key functions gf_list_enum and gf_isom_get_esd, they can
not match successfully. The essential cause is that the BERT model
cannot capture the similarity of the two key functions. But if we
specifically generate data and train the model for the gpac project,
UpdateODCommand will be ranked the 20th, because a specifically
trained BERT model is of higher quality for the specific project.

5 DISCUSSION
5.1 Multiple or Single Project?
In this paper, we built the models by treating multiple projects as a
whole. In fact, we can also do it for each single project, which can
even achieve better detection results. Take gpac as an example. The
bugs in Table 2 can all be ranked within top 25 by HSE, indicating
less manual audit cost. At the same time, the experiment also shows
that the efficiency can be improved 10 times by applying the two-
phase strategy to a single project.

The difference in modeling multiple projects lies in that the nor-
malization is not sufficient due to the diverse naming habits across
the projects, resulting in different distributions for corresponding

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Xiaohui Zhang, Yuanjun Gong, Bin Liang, Jianjun Huang, Wei You, Wenchang Shi, and Jian Zhang

1 //file: src/tools/eidenv.c in OpenSC
2 int main(int argc, char **argv)
3 {
4 [...] // omit 13 lines
5 r = sc_context_create(&ctx, &ctx_param);
6 [...] // omit 4 lines
7 r = util_connect_card(ctx, &card, opt_reader, opt_wait, 0);
8 if (r) {
9 fprintf(stderr, "Failed to connect to card: %s\n",
10 sc_strerror(r));
11 + sc_release_context(ctx);
12 return 1;
13 }
14 [...] // omit 27 lines
15 }
16

(a) The seed function with a known bug

1 //file: src/tests/p15dump.c in OpenSC
2 int main(int argc, char *argv[])
3 {
4 int i;
5
6 i = sc_test_init(&argc, argv);
7 [...] // omit 6 lines
8 i = sc_pkcs15_bind(card, NULL, &p15card);
9 /* Keep card locked to prevent useless calls to sc_logout */
10 if (i) {
11 fprintf(stderr, "failed: %s\n", sc_strerror(i));
12 + sc_test_cleanup();
13 return 1;
14 }
15 [...] // omit 15 lines
16 }

(b) A candidate function with a detected bug

Figure 10: An example in OpenSC.

(sc_context_t * *) = & (sc_context_t *)

(sc_context_param_t *) = & (sc_context_param_t)

(ANY) = sc_context_create()

(int) = (ANY)

(sc_card_t * *) = & (sc_card_t *)

(ANY) = util_connect_card()

(int) = (ANY)

(ANY) = sc_strerror()

(ANY) = fprintf()

(int *) = & (int)

(ANY) = sc_test_init()

(int) = (ANY)

(bool) = (int) < (int)

(ANY) = printf()

(ANY) = fflush()

(ANY) = sc_lock()

(bool) = (ANY) != (ANY)

(ANY *) = & (ANY)

(ANY) = sc_pkcs15_bind()

(int) = (ANY)

(ANY) = sc_strerror()

(ANY) = fprintf()

control flow

data dependency

control dependency

matching

Figure 11: Optimal vertexmatching between main_1 (left) and
main_2 (right). Some vertices in main_2 (right) are omitted.

corpus. Therefore, the quality of the BERT model and the vectors
are affected. In the future work, we intend to investigate a better
normalization technique that fits multi-project embedding.

5.2 Why Not Use Patches?
Patch involves very important information of a bug. Existing set
matching methods [16, 47, 52] have leveraged patches to filter out
the false positives. The idea does not work well in our approach.
In practice, integrating the idea can lead to serious false negatives.
We have carefully examined the causes and found that, existing ap-
proaches treat each element orthogonal while in our method, each
vertex may contribute differently to the similarity metric. Therefore,
the patch information is not suitable to be directly employed and
integrating it is left as a future work.

5.3 Limitation on Bug Type
Theoretically, the bug detection method based on code similarity
is suitable for any type of bugs. But in fact, our approach does
better in detecting intra-procedural bugs than inter-procedural
bugs. This limitation seems to be the essential disadvantage of bug
detection methods based on code similarity measurement, because

1 //file: applications/mp4box/main.c in gpac
2 GF_Err HintFile(GF_ISOFile *file, u32 MTUSize, u32 max_ptime, u32

rtp_rate, u32 base_flags, Bool copy_data, Bool interleave, Bool
regular_iod, Bool single_group, Bool hint_no_offset)

3 {
4 [...] // omit 93 lines
5 esd = gf_isom_get_esd(file, i+1, 1);
6 - if (esd) {
7 + if (esd && esd->decoderConfig) {
8 streamType = esd->decoderConfig->streamType;
9 [...] // omit 79 lines
10 }

(a) Buggy HintFile

1 //file: src/media_tools/media_import.c in gpac
2 static GF_Err gf_import_isomedia_track(GF_MediaImporter *import)
3 {
4 [...] // omit 63 lines
5 origin_esd = gf_isom_get_esd(import->orig, track_in, 1);
6 [...] // omit 16 lines
7 if (mtype==GF_ISOM_MEDIA_VISUAL) {
8 [...] // omit 7 lines
9 - if (origin_esd &&
10 - (origin_esd->decoderConfig->objectTypeIndication
11 - ==GF_CODECID_MPEG4_PART2)) {
12 + if (origin_esd && origin_esd->decoderConfig &&
13 + (origin_esd->decoderConfig->objectTypeIndication
14 + ==GF_CODECID_MPEG4_PART2)) {
15 [...] // omit 334 lines
16 }

(b) Detected gf_import_isomedia_track

Figure 12: An example in gpac.

1 //file: src/scene_manager/loader_isom.c in gpac
2 static void UpdateODCommand(GF_ISOFile *mp4, GF_ODCom *com)
3 {
4 [...] // omit 12 lines
5 while ((esd = (GF_ESD *)gf_list_enum(od->ESDescriptors, &j))) {
6 [...] // omit 6 lines
7 switch (esd->decoderConfig->streamType) {
8 case GF_STREAM_OD:
9 continue;
10 [...] // omit 80 lines
11 }

Figure 13: The source code of UpdateODCommand.

most match-based bug detection methods only consider the feature
of the implementation of a function. Li et al. [30, 33] propose a
novel method to extract the context-based code representation for

Hunting Bugs with Accelerated Optimal Graph Vertex Matching ISSTA ’22, July 18–22, 2022, Virtual, South Korea

the bug detection. The function is embedded not only based on its
implementation (AST), but also its context in the PDG and DFG
(Data Flow Graph). The introduction of the function context can
greatly reduce the false positives when matching a given code with
a known buggy one. The method presented by Li et al. extends
the scope of the embedded information and improves the model
performance. In theory, the method is compatible with our method,
and can be directly integrated in our model. We plan to introduce
the function context in our embedding model as done in [30, 33] to
further improve the detection performance in the future.

5.4 Other Available Code Features
We measure code similarity based on code graphs which combine
CFG and PDG. In fact, there are more features that can be utilized.
The study [38] discusses the effectiveness of various graph-based
representations in detecting off-by-one bugs. Experiments show
that the heterogeneous graph is a good choice because it allows us to
take advantage of the rich grammatical and semantic relationships
between nodes and edges in AST. Our graph representation can
also be converted to be heterogeneous by labelling the edges in
CFGs and PDGs with their properties explicitly, such as the data
dependence or the control dependence. In addition to using code as
a query to retrieve bugs, there are some studies devoted to studying
how to search code by a natural language query. For example, Gu
et al. [26] embeds the code description (comment) and the source
code into the same vector space for code searching, and Wang et
al. [45] directly generate code description from user’s query with
reinforcement learning. We believe the code description is also a
kind of beneficial knowledge for bug detection. How to properly
bring the code description to our model is one of our future works.

6 RELATEDWORK
6.1 Bug Detection Based on Code Similarity
Static code analysis techniques have proven to be very effective
for bug detection. The mainstream approaches are rule-based [15,
18, 24, 27, 34, 35, 42, 43]. Different from the rule-based scheme, the
bug detection methods based on code similarity do not need rules
for specific bug types. One of the most representative approaches
is the vulnerability extrapolation method proposed by Yamaguchi
et al. [49, 50]. In this approach, the API symbols [49] and AST [50]
are chosen as features, and mapped into vectors to measure the
similarity between functions.

It is also a natural way to represent code fragments as graphs and
employ graph embedding techniques [17, 22, 28, 31, 32, 39, 40, 48,
51]. For example, Feng et al. [22] encode the ACFGs of functions into
vectors by clustering algorithm. Ji, Li, Xu, and Yu et al. [28, 31, 48, 51]
embed binary code graphs through a Siamese graph neural network.
Among them, BugGraph [28] presents a method to measure the
source-binary code similarity. It first identifies which compiler is
used to build an application. The target source code is compiled
to binary with the same compiler. As a result, the source-binary
matching can be done in the binary level graph matching.

Thesemethods transform awhole code graph into a vector which
contains the structure features of code, thus the code similarity can
be measured effectively. However, sometimes a large number of

bug-irrelevant statements will be encoded into the whole-graph
level vector, and interfere the bug detection results consequently.

There are also some researchers trying to address the noise
problem. For example, Li et al. [52] and Xiao et al. [47] use slicing
method to remove the noise statements in the seed. Besides, Li,
Xiao and Benjamin et al. [16, 47, 52] measure code similarity based
on set matching rate. Through slicing techniques and set matching,
the noise problem can be alleviated. However, when the code are
represented as a set of orthogonal elements, all or part of their
structure information will be lost, and the different statements with
similar semantics will be omitted while detecting bugs.

6.2 Vertex Matching
In this paper, we base our bug detection on optimal vertex matching.
Vertex matching is actually an NP-complete problem [25, 46, 53].
Sometimes, people choose to ignore the edges in the graph directly
and simplify it into a set matching problem, but the structure in-
formation of graphs will be completely lost in this way. Therefore,
there are many studies devoted to finding approximate solutions.
The matching problem is essentially a general quadratic assign-
ment programming (QAP) problem [36], where we need to define
an affinity matrix to record the first-order, second-order or even
higher-order similarity between graphs. The quality of affinity ma-
trix determines howmuch graph information themodel can capture.
In this paper, we base our vertex matching on the model proposed
in [46]. Through the model we can get a learnable affinity matrix,
which can better model the graph structure. The original model
is designed to match two graphs of the same size. However, we
need to match a small graph (seed graph) with a large graph (target
graph) in our task, so we modify the model structure and design
an asymmetric network with attention mechanisms to adapt to the
asymmetric matching task.

7 CONCLUSION
In this paper, we propose a two-phase bug detection approach
based on optimal code graph vertex matching. The noise propaga-
tion is suppressed through a seed-based attention mechanism and
we accelerate large-scale optimal vertex matching by presenting
a filtering phase, which leverages the vertex-matching-oriented
embeddings to quickly filter the targets and leaves a limited num-
ber of candidates for fine-grained analysis. We have evaluated our
approach on five real-world open-source projects and detected 31
bugs. The experiment has demonstrated that our approach outper-
forms the other matching-based methods in the effectiveness and
achieves high efficiency due to the two-phase design.

ACKNOWLEDGMENTS
The authors would like to thank the reviewers for their constructive
comments. The RUC authors are supported in part by National Nat-
ural Science Foundation of China (NSFC) under grants U1836209,
61802413, and 62002361, and the Fundamental Research Funds for
the Central Universities and the Research Funds of Renmin Univer-
sity of China under grant 22XNKJ29. The ISCAS author is supported
by the National Natural Science Foundation of China (Grant No.
62132020), and the Key Research Program of Frontier Sciences,
Chinese Academy of Sciences (Grant No. QYZDJ-SSW-JSC036).

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Xiaohui Zhang, Yuanjun Gong, Bin Liang, Jianjun Huang, Wei You, Wenchang Shi, and Jian Zhang

REFERENCES
[1] 2020. SQLite Forum. https://www.sqlite.org/forum
[2] 2021. CVE-2021-30019. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2021-30019
[3] 2021. Issue list of gpac. https://github.com/gpac/gpac/issues
[4] 2021. Issue list of ImageMagick. https://github.com/ImageMagick/ImageMagick/

issues
[5] 2021. Issue list of OpenSC. https://github.com/OpenSC/OpenSC/issues
[6] 2021. Pull Request list of gpac. https://github.com/gpac/gpac/pulls
[7] 2021. Pull Request list of ImageMagick. https://github.com/ImageMagick/

ImageMagick/pulls
[8] 2021. Pull Request list of mruby. https://github.com/mruby/mruby/pulls
[9] 2021. Pull Request list of OpenSC. https://github.com/OpenSC/OpenSC/pulls
[10] 2022. Fortify. http://www.fortify.net/
[11] Ryan Prescott Adams and Richard S. Zemel. 2011. Ranking via Sinkhorn Propaga-

tion. CoRR abs/1106.1925 (2011). arXiv:1106.1925 http://arxiv.org/abs/1106.1925
[12] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers: Principles,

Techniques, and Tools. Addison-Wesley. https://www.worldcat.org/oclc/12285707
[13] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learning

to Represent Programs with Graphs. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Con-
ference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=
BJOFETxR-

[14] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. 2018. Neu-
ral Code Comprehension: A Learnable Representation of Code Semantics. In
Advances in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada. 3589–3601. https://proceedings.neurips.cc/paper/2018/hash/
17c3433fecc21b57000debdf7ad5c930-Abstract.html

[15] Pan Bian, Bin Liang, Wenchang Shi, Jianjun Huang, and Yan Cai. 2018. NAR-
miner: discovering negative association rules from code for bug detection. In
Proceedings of the 2018 ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/SIG-
SOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018. ACM, 411–422.
https://doi.org/10.1145/3236024.3236032

[16] Benjamin Bowman and H. Huang. 2020. VGRAPH: A Robust Vulnerable Code
Clone Detection System Using Code Property Triplets. 53–69. https://doi.org/10.
1109/EuroSP48549.2020.00012

[17] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral
Networks and Locally Connected Networks on Graphs. In 2nd International
Conference on Learning Representations, ICLR 2014.

[18] Heming Cui, Gang Hu, Jingyue Wu, and Junfeng Yang. 2013. Verifying systems
rules using rule-directed symbolic execution. In Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS 2013, Houston, TX, USA,
March 16-20, 2013. ACM, 329–342. https://doi.org/10.1145/2451116.2451152

[19] Milan Cvitkovic, Badal Singh, and Animashree Anandkumar. 2019. Open Vocab-
ulary Learning on Source Code with a Graph-Structured Cache. In Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA (Proceedings of Machine Learning Research,
Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 1475–1485.
http://proceedings.mlr.press/v97/cvitkovic19b.html

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers). Association for Computational Linguistics, 4171–4186.
https://doi.org/10.18653/v1/n19-1423

[21] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. 2016. dis-
covRE: Efficient Cross-Architecture Identification of Bugs in Binary Code.
In 23rd Annual Network and Distributed System Security Symposium, NDSS
2016, San Diego, California, USA, February 21-24, 2016. The Internet Soci-
ety. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/
discovre-efficient-cross-architecture-identification-bugs-binary-code.pdf

[22] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng
Yin. 2016. Scalable Graph-based Bug Search for Firmware Images. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016. ACM, 480–491. https://doi.org/10.1145/
2976749.2978370

[23] Stuart James Fitz-Gerald and Bob Wiggins. 2010. Introduction to modern infor-
mation retrieval, 3rd ed., C.G. Chowdhury. Facit Publishing, London (2010). Int. J.
Inf. Manag. 30, 6 (2010), 573–574. https://doi.org/10.1016/j.ijinfomgt.2010.08.004

[24] Chushu Gao and Jun Wei. 2013. Generating Open API Usage Rule from Error
Descriptions. In Seventh IEEE International Symposium on Service-Oriented System
Engineering, SOSE 2013, San Francisco, CA, USA, March 25-28, 2013. IEEE Computer
Society, 245–253. https://doi.org/10.1109/SOSE.2013.32

[25] M. R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman.

[26] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In
Proceedings of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018. ACM, 933–944. https://doi.
org/10.1145/3180155.3180167

[27] Boyuan He, Vaibhav Rastogi, Yinzhi Cao, Yan Chen, V. N. Venkatakrishnan,
Runqing Yang, and Zhenrui Zhang. 2015. Vetting SSL Usage in Applications with
SSLINT. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015. IEEE Computer Society, 519–534. https://doi.org/10.1109/
SP.2015.38

[28] Yuede Ji, Lei Cui, and H. Howie Huang. 2021. BugGraph: Differentiating Source-
Binary Code Similarity with Graph Triplet-Loss Network. In ASIA CCS ’21: ACM
Asia Conference on Computer and Communications Security, Virtual Event, Hong
Kong, June 7-11, 2021. ACM, 702–715. https://doi.org/10.1145/3433210.3437533

[29] Harold W. Kuhn. 2010. The Hungarian Method for the Assignment Problem. In
50 Years of Integer Programming 1958-2008 - From the Early Years to the State-of-
the-Art. Springer, 29–47. https://doi.org/10.1007/978-3-540-68279-0_2

[30] Yi Li. 2020. Improving bug detection and fixing via code representation learning.
In ICSE ’20: 42nd International Conference on Software Engineering, Companion
Volume, Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rothermel and Doo-
Hwan Bae (Eds.). ACM, 137–139. https://doi.org/10.1145/3377812.3382172

[31] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. 2019.
Graph Matching Networks for Learning the Similarity of Graph Structured Ob-
jects. In Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA (Proceedings of Machine
Learning Research, Vol. 97). PMLR, 3835–3845. http://proceedings.mlr.press/v97/
li19d.html

[32] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated
Graph Sequence Neural Networks. In 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings. http://arxiv.org/abs/1511.05493

[33] Yi Li, ShaohuaWang, Tien N. Nguyen, and Son Van Nguyen. 2019. Improving bug
detection via context-based code representation learning and attention-based
neural networks. Proc. ACM Program. Lang. 3, OOPSLA (2019), 162:1–162:30.
https://doi.org/10.1145/3360588

[34] Zhenmin Li and Yuanyuan Zhou. 2005. PR-Miner: automatically extracting
implicit programming rules and detecting violations in large software code. In
Proceedings of the 10th European Software Engineering Conference held jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2005, Lisbon, Portugal, September 5-9, 2005. ACM, 306–315. https:
//doi.org/10.1145/1081706.1081755

[35] Bin Liang, Pan Bian, Yan Zhang, Wenchang Shi, Wei You, and Yan Cai. 2016.
AntMiner: mining more bugs by reducing noise interference. In Proceedings of
the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX,
USA, May 14-22, 2016. ACM, 333–344. https://doi.org/10.1145/2884781.2884870

[36] Eliane Maria Loiola, Nair Maria Maia de Abreu, Paulo Oswaldo Boaventura Netto,
Peter Hahn, and Tania Maia Querido. 2007. A survey for the quadratic assignment
problem. Eur. J. Oper. Res. 176, 2 (2007), 657–690. https://doi.org/10.1016/j.ejor.
2005.09.032

[37] Mingming Lu, Yan Liu, Haifeng Li, Dingwu Tan, Xiaoxian He, Wenjie Bi, and
Wendbo Li. 2019. Hyperbolic Function Embedding: Learning Hierarchical Rep-
resentation for Functions of Source Code in Hyperbolic Space. Symmetry 11, 2
(2019), 254. https://doi.org/10.3390/sym11020254

[38] Amir Makhshari and Mifta Sintaha. [n.d.]. On The Effect of Graph Representation
of Source Code in Bug Detection. ([n. d.]).

[39] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
Convolutional Neural Networks for Graphs. In Proceedings of the 33nd Inter-
national Conference on Machine Learning, ICML 2016, New York City, NY, USA,
June 19-24, 2016 (JMLR Workshop and Conference Proceedings, Vol. 48). JMLR.org,
2014–2023. http://proceedings.mlr.press/v48/niepert16.html

[40] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2009. The Graph Neural NetworkModel. IEEE Trans. Neural Networks
20, 1 (2009), 61–80. https://doi.org/10.1109/TNN.2008.2005605

[41] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. FaceNet: A unified
embedding for face recognition and clustering. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE
Computer Society, 815–823. https://doi.org/10.1109/CVPR.2015.7298682

[42] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /*icomment: bugs
or bad comments?*/. In Proceedings of the 21st ACM Symposium on Operating
Systems Principles 2007, SOSP 2007, Stevenson, Washington, USA, October 14-17,
2007. ACM, 145–158. https://doi.org/10.1145/1294261.1294276

[43] Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and Yuanyuan Zhou. 2008. Au-
toISES: Automatically Inferring Security Specification and Detecting Violations.
In Proceedings of the 17th USENIX Security Symposium, July 28-August 1, 2008, San
Jose, CA, USA. USENIX Association, 379–394. http://www.usenix.org/events/
sec08/tech/full_papers/tan_l/tan_l.pdf

[44] Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou Zhao, Jian Wu, and
Philip S. Yu. 2019. Multi-modal Attention Network Learning for Semantic Source
Code Retrieval. In 34th IEEE/ACM International Conference on Automated Software

https://www.sqlite.org/forum
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30019
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30019
https://github.com/gpac/gpac/issues
https://github.com/ImageMagick/ImageMagick/issues
https://github.com/ImageMagick/ImageMagick/issues
https://github.com/OpenSC/OpenSC/issues
https://github.com/gpac/gpac/pulls
https://github.com/ImageMagick/ImageMagick/pulls
https://github.com/ImageMagick/ImageMagick/pulls
https://github.com/mruby/mruby/pulls
https://github.com/OpenSC/OpenSC/pulls
http://www.fortify.net/
https://arxiv.org/abs/1106.1925
http://arxiv.org/abs/1106.1925
https://www.worldcat.org/oclc/12285707
https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-
https://proceedings.neurips.cc/paper/2018/hash/17c3433fecc21b57000debdf7ad5c930-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/17c3433fecc21b57000debdf7ad5c930-Abstract.html
https://doi.org/10.1145/3236024.3236032
https://doi.org/10.1109/EuroSP48549.2020.00012
https://doi.org/10.1109/EuroSP48549.2020.00012
https://doi.org/10.1145/2451116.2451152
http://proceedings.mlr.press/v97/cvitkovic19b.html
https://doi.org/10.18653/v1/n19-1423
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/discovre-efficient-cross-architecture-identification-bugs-binary-code.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/discovre-efficient-cross-architecture-identification-bugs-binary-code.pdf
https://doi.org/10.1145/2976749.2978370
https://doi.org/10.1145/2976749.2978370
https://doi.org/10.1016/j.ijinfomgt.2010.08.004
https://doi.org/10.1109/SOSE.2013.32
https://doi.org/10.1145/3180155.3180167
https://doi.org/10.1145/3180155.3180167
https://doi.org/10.1109/SP.2015.38
https://doi.org/10.1109/SP.2015.38
https://doi.org/10.1145/3433210.3437533
https://doi.org/10.1007/978-3-540-68279-0_2
https://doi.org/10.1145/3377812.3382172
http://proceedings.mlr.press/v97/li19d.html
http://proceedings.mlr.press/v97/li19d.html
http://arxiv.org/abs/1511.05493
https://doi.org/10.1145/3360588
https://doi.org/10.1145/1081706.1081755
https://doi.org/10.1145/1081706.1081755
https://doi.org/10.1145/2884781.2884870
https://doi.org/10.1016/j.ejor.2005.09.032
https://doi.org/10.1016/j.ejor.2005.09.032
https://doi.org/10.3390/sym11020254
http://proceedings.mlr.press/v48/niepert16.html
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1145/1294261.1294276
http://www.usenix.org/events/sec08/tech/full_papers/tan_l/tan_l.pdf
http://www.usenix.org/events/sec08/tech/full_papers/tan_l/tan_l.pdf

Hunting Bugs with Accelerated Optimal Graph Vertex Matching ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019. IEEE, 13–25.
https://doi.org/10.1109/ASE.2019.00012

[45] Chaozheng Wang, Zhenhao Nong, Cuiyun Gao, Zongjie Li, Jichuan Zeng, Zhen-
chang Xing, and Yang Liu. 2022. Enriching query semantics for code search
with reinforcement learning. Neural Networks 145 (2022), 22–32. https:
//doi.org/10.1016/j.neunet.2021.09.025

[46] Runzhong Wang, Junchi Yan, and Xiaokang Yang. 2019. Learning Combinatorial
Embedding Networks for Deep Graph Matching. In 2019 IEEE/CVF International
Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 -
November 2, 2019. IEEE, 3056–3065. https://doi.org/10.1109/ICCV.2019.00315

[47] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu, Zimu Yuan, Feng Li,
Binghong Liu, Yang Liu, Wei Huo, Wei Zou, and Wenchang Shi. 2020. MVP:
Detecting Vulnerabilities using Patch-Enhanced Vulnerability Signatures. In 29th
USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020. USENIX
Association, 1165–1182. https://www.usenix.org/conference/usenixsecurity20/
presentation/xiao

[48] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural Network-based Graph Embedding for Cross-Platform Binary Code Simi-
larity Detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017. ACM, 363–376. https://doi.org/10.1145/3133956.3134018

[49] Fabian Yamaguchi, Felix "FX" Lindner, and Konrad Rieck. 2011. Vulnerability
Extrapolation: Assisted Discovery of Vulnerabilities Using Machine Learning.

In 5th USENIX Workshop on Offensive Technologies, WOOT’11, August 8, 2011,
San Francisco, CA, USA, Proceedings, David Brumley and Michal Zalewski (Eds.).
USENIX Association, 118–127. http://static.usenix.org/event/woot11/tech/final_
files/Yamaguchi.pdf

[50] Fabian Yamaguchi, Markus Lottmann, and Konrad Rieck. 2012. Generalized
vulnerability extrapolation using abstract syntax trees. In 28th Annual Computer
Security Applications Conference, ACSAC 2012, Orlando, FL, USA, 3-7 December
2012. ACM, 359–368. https://doi.org/10.1145/2420950.2421003

[51] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu. 2020. Order
Matters: Semantic-Aware Neural Networks for Binary Code Similarity Detection.
In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, 1145–1152.
https://ojs.aaai.org/index.php/AAAI/article/view/5466

[52] LI Zan, BIANPan, SHIWen-Chang, and LIANGBin. 2018. Approach of Leveraging
Patches to Discover Unknown Vulnerabilities. Journal of Software 005 (2018),
1199–1212. (in Chinese).

[53] Andrei Zanfir and Cristian Sminchisescu. 2018. Deep Learning of GraphMatching.
In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018,
Salt Lake City, UT, USA, June 18-22, 2018. Computer Vision Foundation / IEEE
Computer Society, 2684–2693. https://doi.org/10.1109/CVPR.2018.00284

https://doi.org/10.1109/ASE.2019.00012
https://doi.org/10.1016/j.neunet.2021.09.025
https://doi.org/10.1016/j.neunet.2021.09.025
https://doi.org/10.1109/ICCV.2019.00315
https://www.usenix.org/conference/usenixsecurity20/presentation/xiao
https://www.usenix.org/conference/usenixsecurity20/presentation/xiao
https://doi.org/10.1145/3133956.3134018
http://static.usenix.org/event/woot11/tech/final_files/Yamaguchi.pdf
http://static.usenix.org/event/woot11/tech/final_files/Yamaguchi.pdf
https://doi.org/10.1145/2420950.2421003
https://ojs.aaai.org/index.php/AAAI/article/view/5466
https://doi.org/10.1109/CVPR.2018.00284

	Abstract
	1 Introduction
	2 Motivating Example
	3 Our Approach
	3.1 Code Graph Preprocessing
	3.2 Phase 1: Candidate Filtering
	3.3 Phase 2: Vertex Matching

	4 Evaluation
	4.1 Experimental Environment and Parameters
	4.2 Experiment Results
	4.3 Case Studies

	5 Discussion
	5.1 Multiple or Single Project?
	5.2 Why Not Use Patches?
	5.3 Limitation on Bug Type
	5.4 Other Available Code Features

	6 Related Work
	6.1 Bug Detection Based on Code Similarity
	6.2 Vertex Matching

	7 Conclusion
	Acknowledgments
	References

