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Abstract. Injecting malicious code into benign programs is popular in spreading malware. Unfortunately, for detection, the
prior knowledge about the malware, e.g., the behavior or implementation patterns, isn’t always available. Our observation
shows that the logic of the host program is normally unclear to parasitic malware developers, resulting in very few interactions
between the host and the payloads in lots of parasitic malware. Thus we can expose the injected part by grouping the code based
on the interactive relations. Particularly, we partition a target program into modules, extract the relations, cluster the modules
and further inspect the outliers to identify such malware. In this paper, we design a two-stage code clustering-based approach to
detecting two representative types of malware, the UEFI rootkits and the piggybacked Android applications. Parasitic malware
is reported when (1) any outlier in a UEFI firmware shows a relatively long distance to the largest cluster, or (2) the largest
outlier distance exceeds zero in an Android application, i.e., multiple cluster exist after re-clustering outliers. We evaluate the
approach on 35 pairs of benign/infected UEFI samples we do our best to get and achieve an overall F1 score. of 100%. Applying
the learned threshold to 50 other benign firmwares, we identify them without false positives. In addition, our evaluation on 1079
pairs of Android applications, shows an F1 score of 90.66% when the third-party libraries are eliminated and a score of 87.36%
if we keep the popular third-party libraries, demonstrating the effectiveness of the approach.
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1. Introduction

One of the most popular ways to spread malware is to inject malicious code (payload) into benign pro-
grams (host), taking advantage of their popularity and achieving stealth to some extent. Such malware is
known as the parasitic malware [33]. Studies have shown that such malware spreads in not only the high-
level applications in the mobile and desktop platforms [38,86] but also the fundamental architectures,
e.g., the computer firmware [50].

Great efforts have been taken to detect malware. Traditionally straightforward approaches try to rec-
ognize the software behaviors and check whether the behavior patterns match any known signatures
[11,36,87]. Some other solutions extract the features from the embedded malicious code and apply
mining-based methods to match similar code fragments from unknown programs, using the features as
seeds [23]. Clone detection based approaches have also been presented when multiple instances of one
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application are available [9,10,69,77], inspecting the differences among the instances. In Android plat-
form, third-party libraries that are introduced by developers share some commonness with the injected
payloads and researchers have devised techniques to identify such libraries [5,47,49,57]. Typically, third-
party library detection either works similarly with the above mentioned malware detection by matching
the collected signatures with any target applications [5] or looks for the commonly used code modules
among millions of applications [47].

While all those approaches can be employed to detect malicious payloads within benign programs,
it is notable that the prior knowledge, e.g., the implementation signatures and behavior patterns, is not
always available. For example, we may lack of necessary signatures and thus miss an unknown type
of malware, or we fail to determine a baseline as the seed, leading to massive false alarms. Besides,
in realistic scenarios, obtaining multiple instances of a program or maintaining a corpus of millions of
applications may not be applicable. All these aspects prevent us from finding a way to get a promising
method to detect the parasitic malware. The challenge raises especially when we have only a small
number of unlabeled applications but have to decide which contain the malicious payloads.

Though the parasitic malware can be in the form of advanced persistent threat (APT) that is carefully
crafted with tightly entangled components, our work targets such a type of parasitic malware that holds
merely necessary interactions between the payloads and the host without interfering with each other.
Previous studies have shown many examples of such kind of malware. For example, Wei et al. found
from massive repackaged malware that half of the malware families even isolate their payloads from the
benign part in the code [78] and Tian et al. easily identified thousands of such malware in which the
malicious components are generally independent of the host portion [70]. Although APT-alike parasitic
malware generally attacks a specific target, we think most adversaries are more willing to spread their
payloads to diverse targets while they usually do not essentially understand the logic of the hosts, due
to code obfuscations or unnecessity of in-depth understanding, resulting in loose connections between
the inject components and the original code. As we can see from the examples in Section 2.3 and Sec-
tion 3.3, the host programs typically consists of a large group of tightly connected modules, whereas
the connection between the host and the payloads can be easily broken. Hence, we can expose the in-
jected code by grouping the host and the potential payloads separately based on the interactive relations
in any given program. In particular, we can divide a target program into modules, extract the relations
as features, cluster the modules and further inspect the outliers to identify parasitic malware. By this
means, we leverage only the information contained within the target program to detect the existence of
the payloads, without caring about the signatures or patterns of the malware or requiring the assistance
of many other correlated programs.

To demonstrate the effectiveness of this idea, we choose to detect two representative types of parasitic
malware, the UEFI rootkits at the fundamental architecture and the piggybacked Android applications
at a very high-level of the software system. On one hand, in recent years, UEFI (short for Unified
Extensible Firmware Interface) has been the mainstream firmware standard and equipped in almost all
newly personal computers. Unsurprisingly, adversaries have shown interest in compromising a target
machine by implanting malware directly into its UEFI, and in July 2015, a weapons-grade UEFI rootkit
was found in a leaked dataset from Hacking Team [50]. Such rootkits, existing in the firmware, can
survive from operating system re-installation and even hard disk replacement, causing extreme dangers.
However, we have not found any systematic detection for them. On the other hand, Android, as the
most popular mobile operating system [13], plays an essential role in our daily life. In the meantime,
piggybacked applications have long been a troublesome security threat to the users, the developers and
the application markets. While plenty of work has been proposed to detect such malware [51,65,93], as
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Fig. 1. Overall procedure of UEFI rootkit detection.

we mentioned previously, lack of prior knowledge can prevent us from effectively detecting piggybacked
applications. We aim at devising lightweight techniques with the same core idea that work for the two
different types of applications.

The integrity check could be a naive solution of defending the UEFI rootkits and piggybacked Android
applications. For example, the Intel Boot Guard can be enabled by the motherboard manufacturers, mea-
suring the integrity of the UEFI firmwares and refusing the execution of a parasitic firmware. However,
boot guard mechanisms like the Intel Boot Guard have been reported to be bypassed by the adversaries.
Moreover, the existence of the UEFI rootkits denotes either insufficient deployment or bypassed pro-
tection of the boot guard mechanisms, which motivated us to propose a new solution of the rootkits
detection. Integrity checks can also be enforced by the Android system or the application developers. To
conduct a system-level integrity check in the Android system, the system needs to impossibly maintain a
large pool of the integrity information (i.e., the previously mentioned prior knowledge) for all legitimate
applications, while such checks enforced within the application code can be bypassed by the adversaries
during a repackaging phase.

In this paper, we design a two-stage code clustering based approach to identifying infected UEFI
firmwares and piggybacked Android applications. Take the UEFI rootkit detection as an example. Fig-
ure 1 shows the high-level overview of the procedure. We extract the features (e.g., the GUIDs used in
modules as depicted in Section 2.3) which can represent the interactive relations among modules, and
based on the relations, group the modules into clusters. While the largest cluster contains the major-
ity of the benign modules, all the payloads and some benign modules become left-out modules, a.k.a.,
outliers. We then computes the distance between each outlier and the largest cluster. If the greatest dif-
ference is higher than an empirical threshold, we consider the given UEFI firmware contains rootkits.
Detecting piggybacked Android applications employs a similar code clustering stage, but leverages the
organizational similarities to re-clustering the outliers, moving the left-out modules into bigger ones.
Piggybacked applications are reported when eventually there does not exist a sole dominating cluster,
i.e., multiple clusters exist and the greatest outlier distance is non-zero.

We implemented prototypes for both UEFI rootkit identification and piggybacked Android application
detection, applied them to real-world parasitic malware and achieved good performance. Though a new
implementation may be required for a new type of target, consisting of different preprocessing and
feature extraction, we believe our work can provide guidance to future research for quickly discovering
target specific features.

We make the following major contributions in this paper.

• We propose a code clustering-based technique to identify parasitic malware, in which the malicious
code is exposed as outliers. We base the idea on the intuition that adversaries do not exactly know
the logic of the host program and build few interactions between the payloads and the host. The
approach leverages merely the given program to complete the detection, without requiring any prior
knowledge about the malware or from other similar programs.
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• We verify the effectiveness by detecting two representative types of parasitic malware, the UEFI
rootkits and the piggybacked Android applications. For UEFI rootkit detection, after a clustering
phase, we calculate the distance from each outlier to the largest cluster, which indicates an infected
firmware if beyond a threshold. Re-clustering outliers based on the organizational similarities is
applied for piggybacked application detection and more than one cluster at the end denotes the
existence of payloads.

• We implement prototypes and evaluate their effectiveness on real-world malware. The experiments
show that our approach achieves F1 scores of 100% and 90.66%, individually for UEFI rootkit and
piggybacked Android application (with third-party libraries eliminated) detection, which indicates
a promising detection method for parasitic malware when prior knowledge is unavailable.

The rest of the paper is organized as follows. Section 2 presents the background information about the
UEFI firmware and rootkits, as well as the detailed detection approach and the evaluation results. Sec-
tion 3 adopts a similar structure as Section 2, but contains a case study section to show some interesting
cases. We examine the limitations and some design decision in Section 4. Then we discuss the related
work in Section 5 and conclude our paper in Section 6.

2. Detecting UEFI rootkits

In this section, we will detail our UEFI rootkit detection by first presenting the background information
about the UEFI firmware and the rootkit, followed by the overview of our code clustering based detection
method. After the overview, we will show the details of the approach and the empirical evaluation.

2.1. Background: UEFI firmware and UEFI rootkit

UEFI firmware is usually stored in some non-volatile storage devices, such as a flash chip or an EEP-
ROM device [74]. The logical structure of the UEFI firmware is illustrated in Fig. 2. In brief, a UEFI
firmware is composed of a series of firmware volumes, each volume contains a series of firmware files,
and each file usually consists of several sections. Every component, i.e., the firmware, volume, file and
section, contains a header, specifying information like the name, type and size. A file can be a driver, an
application or simply a pad file that does not contain any code or meaningful data. The functionalities
of a UEFI firmware are mainly achieved by various protocols, and the drivers and applications commu-
nicate with the protocols to fulfill their tasks [73]. Such modular design helps firmware developers and
engineers better understand and debug the firmware, while at the same time, facilitates adversaries to
write powerful firmware rootkits.

Compared with injecting and spreading rootkits to some high-level applications such as a Windows
program or an Android application, infecting the firmware requires more efforts. Typically, the infection
procedure consists of several steps. First, an adversary needs to reboot the target computer and enter the
UEFI shell [63]. Second, he must dump the firmware out and implant the rootkit into the dumped file.

Fig. 2. The logical structure of the UEFI firmware.
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Fig. 3. The mechanism of Hacking Team’s UEFI rootkit.

Finally, the infected firmware is re-flashed to the device and the computer system is restarted. Despite
the infection difficulties, a UEFI rootkit can run long before the operating system starts and establish
persistent and stealthy presence in the compromised machine, stealing private information or fully con-
trolling the system without the user’s awareness. No anti-virus tools can detect the rootkit as it is stored
in flash chips. Even worse, re-installing the operating system or replacing the hard disk cannot remove
the rootkit.

As an appealing research area, many researchers have devoted to study the firmware rootkit. Never-
theless, no really useful rootkit is released publicly until the Hacking Team data breach incident [81].
Some researchers found a UEFI rootkit in the leaked data and the rootkit could infect a number of com-
puters [79,80]. Figure 3 illustrates the details of the Hacking Team’s UEFI rootkit, which is comprised
of two drivers (rkloader and ntfs) and one application (dropper). When the infected firmware
is powered up, rkloader is loaded and triggers dropper. dropper utilizes the services provided
by ntfs to touch the target file system. If the file system is writable and has not been infected before,
dropper would try to implant two Windows Trojans (i.e., scout.exe and soldier.exe) into the target
system. Every time the target machine boots up, the rootkit would perform the above operations.

To the best of our knowledge, no systematic detection of UEFI rootkits has been proposed yet. Though
some researchers have proposed to correctly implement the UEFI Secure Boot mechanism to enhance
the firmware security [8,82], such lightweight measurement can hardly be sufficiently enough. Boot
guard mechanisms like the Intel Boot Guard intend to protect the firmwares via integrity check, but the
existence of UEFI rootkits have denoted the deficiency of such protection. In this paper, we intend to fill
the gap and design a generalized method for UEFI rootkits detection.

2.2. Approach overview

According to the modular design of UEFI firmwares, our intuition lies in two folds:

• Either malicious or benign functionalities are implemented in various modules, while the mali-
ciously injected tend to behave differently from the benign ones.

• Adversaries do not exact know the logic in the host and thus few interactions occur between payload
and host modules, but modules belonging to either category interact commonly to achieve their
goals.

A straightforward idea is to group the modules, either host or payloads, into different clusters based
on their intrinsic relations and then expose the outliers. Further inspecting the outliers can tell whether
the target is infected. The interactions between modules can act as indicators for separating the modules.
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Fig. 4. Detailed procedure of UEFI rootkit detection.

The behaviors and interactions are represented within the code and can be acquired by static analysis
techniques, and thereby we propose a code clustering based detection against the UEFI rootkits.

The approach consists of two stages, as shown in Fig. 4. During the first stage, we extract the modules,
typically the binary files, from the given UEFI firmware, and then extract the features which represent
the interactions between the modules and the underlying services. Using the filtered features to denote
the relations among modules, we perform code clustering and most host modules (benign) are grouped
into the largest cluster while out of the cluster are the potential rootkit modules and the ones (benign)
without sufficient interactions with that cluster, majorly conforming our second intuition. The decision
cannot be made at this moment because many benign modules become outliers as well. Then during the
second stage, we apply a heuristic code analysis to characterize the module behaviors by their intrinsic
conditional statements. We vectorize the characteristics for the modules, normalize the largest cluster as
a centroid vector C and calculate the distances between outlier vectors and C. By this means, we are
able to examine the top ranked ones for rootkits, and given a threshold of the distance, we can determine
whether the given firmware is likely to be infected.

We will detail the two stages in the following sections and present our experimental results afterwards.

2.3. Code clustering

Since a UEFI protocol encapsulates a group of functionalities, the implementation and purpose can
vary greatly from the others. The UEFI specification [73] claims multiple services for modules to register
the protocol implementations and retrieve them for subsequent uses, or manipulate and access the data
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Table 1

Eight UEFI services for module communications

Service name Key parameters Description
InstallProtocolInterface EFI_GUID *Protocol Installs a protocol interface on a device.
ReinstallProtocolInterface EFI_GUID *Protocol Reinstalls a protocol interface on a device.
InstallMultipleProtocolInterfaces EFI_GUID **Protocol Installs one or more protocol interfaces.
LocateProtocol EFI_GUID *Protocol Returns the first protocol that matches the

given protocol.
HandleProtocol EFI_GUID *Protocol Queries a handle to determine if it supports a

specified protocol.
OpenProtocol EFI_GUID *Protocol Open a protocol if it is supported by a handle.
SetVariable CHAR16 *VariableName

EFI_GUID *VendorGuid
Sets the value of a variable.

GetVariable CHAR16 *VariableName
EFI_GUID *VendorGuid

Gets the value of a variable.

Fig. 5. The clustering results of a UEFI firmware under different configurations.

stored in the protocols. Modules directly communicate with the protocols through such services and
thus indirect communications happen among the modules. Then without considering how a protocol is
implemented, it is reasonable for us to assume that, two modules are correlated if they communicate with
the same protocol.

The official EDK II Module Writer’s Guide [35] specifies eight commonly used services for modules
to communicate with protocols. We present a simplified description of the services in Table 1. The first
three services register one or more protocol interfaces, which can then be retrieved in modules by the
three followed services. The last two services allow the modules to write and read specific information
in the protocols. Each individual protocol interface is identified by a 128-bit globally unique identifier
(GUID for short) and the data within a protocol can be accessed via the corresponding key name, a.k.a.,
the variable name in Table 1.

The GUIDs and variable names constitute a good feature, based on which we cluster the modules in
one firmware. From each module, we recognize the aforementioned eight services and extract their key
arguments. The concrete values indicate the connections between the modules. We group the ones with
connections together. Figure 5(a) illustrates the initial clustering result for an infected UEFI firmware,
in which the red dots denote the rootkit modules and the gray ones indicate the host modules that cannot
be clustered into any groups. The majority, including the rootkit modules, form a huge cluster. Table 2
shows the extracted key argument values and the corresponding services in the three rootkit modules.
We also label the values appearing more than once in the last column and it is easy to find that every
two modules are indirectly connected by some protocols. For example, ntfs installs a protocol with
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Table 2

The communication services used by the Hacking Team’s UEFI rootkit

Module Service Key arguments Label
rkloader HandleProtocol 389f751f-1838-4388-83-90-cd-81-54-bd-27-f8

HandleProtocol 5b1b31a1-9562-11d2-8e-3f-00-a0-c9-69-72-3b A
HandleProtocol 09576e91-6d3f-11d2-8e-39-00-a0-c9-69-72-3b B

dropper LocateProtocol 0379be4e-d706-437d-b0-37-ed-b8-2f-b7-72-a4 C
HandleProtocol 5b1b31a1-9562-11d2-8e-3f-00-a0-c9-69-72-3b A
HandleProtocol 09576e91-6d3f-11d2-8e-39-00-a0-c9-69-72-3b B
HandleProtocol 964e5b22-6459-11d2-8e-39-00-a0-c9-69-72-3b D
SetVariable fTA, 8be4df61-93ca-11d2-aa-0d-00-e0-98-30-22-88 E
GetVariable fTA, 8be4df61-93ca-11d2-aa-0d-00-e0-98-30-22-88 E

ntfs InstallMultipleProtocolInterfaces 18a031ab-b443-4d1a-a5-c0-0c-09-26-1e-9f-71
964e5b22-6459-11d2-8e-39-00-a0-c9-69-72-3b D

LocateProtocol 0379be4e-d706-437d-b0-37-ed-b8-2f-b7-72-a4 C
HandleProtocol 5b1b31a1-9562-11d2-8e-3f-00-a0-c9-69-72-3b A
OpenProtocol 964e5b21-6459-11d2-8e-39-00-a0-c9-69-72-3b
OpenProtocol 964e5b22-6459-11d2-8e-39-00-a0-c9-69-72-3b D
OpenProtocol ce345171-ba0b-11d2-8e-4f-00-a0-c9-69-72-3b

label D which is retrieved by both ntfs and dropper via OpenProtocol and HandleProtocol
respectively. All the three modules also query the corresponding handles to determine if the handles
support the specified protocol labeled with A, which implies their intention of interacting with the same
protocol.

While all the three rootkit modules are clustered together, unfortunately, as we can see in Fig. 5(a),
they are tightly linked with the largest cluster, which should be recognized as the benign part. Our
investigation shows that all the protocols listed in Table 2 are defined either in the UEFI specification
or in the open source implementation of EDK II [71]. These standard GUIDs can be directly utilized
by firmware developers to accelerate the development process as the corresponding protocols have been
supported by the UEFI environment. For instance, the GUID 964e5b22-6459-11d2-8e-39-0-a0-c9-69-
72-3b labeled with D corresponds to the simple file system protocol which allows the code to obtain file
based access to a device [73]. The uses of standard protocols in the original firmware modules and the
rootkit make the huge cluster to enclose both benign and malicious.

Our solution to this problem is to exclude the standard GUIDs during the clustering phase with the
help of a white list from [24]. The refined clustering generates a result shown in Fig. 5(b). The three
rootkit modules in red are now disconnected with any other modules. The largest cluster contains only
the original modules.

2.4. Rootkit detection

The preliminary experiments show that the white list aids code clustering in producing a huge cluster
and a lot of outlier modules including the rootkit modules (Fig. 5(b)). While most benign modules are
grouped together, we cannot directly distinguish the rootkit modules from the left-out host modules. Our
intuition lies in that, to keep the usability, the rootkit tends to probe the environment often to avoid expos-
ing itself by an improper operation but the host modules are unlikely to do the same things. In practice,
an industrial or weapons-grade UEFI rootkit may face various platforms whose implementations differ
largely. A simple UEFI firmware may only support minimal functionalities for the system to boot up and
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Fig. 6. A branch statement example in assembly language.

can only be accessed with a shabby user interface comprised of a white background and blue characters,
but a well-designed firmware may look like a lightweight operating system with fancy functionalities
such as Internet surfing. In order to adapt to varied environment, a rootkit usually avoids improper oper-
ations that may interfere with the infected system and then expose itself. Hence, the rootkit modules are
likely to probe the environment to check whether certain properties are satisfied for specific operations,
which illustrates different behaviors from the host modules. We are inspired to compute the differences
between the outliers and the ones within the huge cluster, rank the outliers based on the differences and
discover the most likely rootkit modules.

We concretize the probing as condition checks in the code, extract the branches from each module and
characterize each module with the branches. In this paper, we limit a branch to four tightly correlated
instructions, namely, a “jump”, a “comparison” and two “assignment” instructions. The assignments
define values that are used in the comparison and the comparison result determines where to jump. An
example is shown in Fig. 6(a). After extracting all such branches inside all modules, we utilize the Bag-
of-Words (BoW for short) [90] model to vectorize the modules. Specifically, each module is treated
as a document and each branch instruction as a word. If a given UEFI firmware contains n different
branch instructions, we sort the instructions in alphabetical order and represent each module with an
n-dimension vector. The value of each entry in the vector indicates how many times the corresponding
instruction occurs. For example, if a module contains only one branch as Fig. 6(a) shows, the vector
would look like (. . . , 1, . . . , 1, . . . , 1, . . . , 1, . . .) in which the dots denote the absence of the other
branch instructions in other modules. The vectors are then used to calculate the differences between
modules.

Apparently, the raw instructions can introduce noises that affect the difference calculation. For exam-
ple, two instructions “lea ecx, ds:dword_ A152B8” and “lea ecx, ds:dword_A142D4”
perform semantically the same operations, fetching the value stored in the specified address and assign
it to the ecx register. However, in the above naive approach, each instruction will occupy a position in
the vectors, leading to different representation for the semantically same behaviors. In the simplest case,
a firmware contains only two modules, one with the branch in Fig. 6(a) and the other with a slightly
different lea instruction in the branch. Even though they are semantically the same, the corresponding
vectors, (1, 1, 0, 1, 1) and (1, 1, 1, 0, 1) respectively, clearly show the differences. For a complicated
firmware, the noises enlarge the effect and result in unusable difference values.

We adopt a normalization phase to address the issue. Simply, we use “o_mem” to represent the mem-
ory references (e.g., “ds:dword_A152B8”), “o_phrase” for the operands consisting of a base regis-
ter and/or an index register (e.g., “[edi+ecx]”), “o_displ” for operands with one or more registers
and a displacement value (e.g., “[edi+18h]”) and “o_imm” for immediate values. We do not normal-
ize any single register as each register has its unique application, for example, eax usually for storing
the return value of a function call. The normalized form of Fig. 6(a) is shown in Fig. 6(b). By this means,
the above simple case would generate the same vector (1, 1, 1, 1) for the two modules.
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It is notable that we do not compute the difference between each outlier module and every module
in the huge cluster. Instead, we treat the cluster as a whole and denote its vector as the centroid of the
vectors for the enclosed modules. Specifically, the ith entry in the resultant n-dimension vector C is
computed as below, where we assume the cluster contains m modules and b[j ] indicates the j th vector.

C[i] =
∑m

j=1 b[j ][i]
m

, i = 1, 2, . . . , n. (1)

With the vectors, we calculate the difference between each outlier and C, and rank the results in a
descending order. We can then inspect the top ranked to detect the rootkit modules which are more
likely to behave differently with the benign modules. Moreover, the outlier with greatest difference can
indicate whether the firmware is infected or not.

2.5. Evaluation

We leverage the IDA Pro [19] to generate the assembly instructions of a UEFI firmware and implement
the code analyzer in a Python plugin. We use the plugin to collect the communication services, extract
the key parameters such as the variable names and the GUIDs. We filter out the standard protocol GUIDs
using the white list from [24] and group the modules based on the remaining GUIDs and variable names.
After that, we apply another IDA plugin to extract the branch instructions in the modules and vectorize
the normalized instructions before computing the differences between outliers and the known benign
modules.

In this section, we first present the evaluation metrics and then talk about the dataset. Finally, we
present the experimental results.

2.5.1. Evaluation metrics
A decent detection method should be able to detect malware with both low false positive rate and low

false negative rate. A false positive means that the detection mistakenly identifies a benign sample as
malware, while a false negative occurs when a malware sample is recognized as benign. To evaluate the
effectiveness of the proposed method, we adopt the recall rate, precision rate and F1 score to quantify
the detection performance, which are calculated with the following equations. TP indicates the number
of true positives, i.e., the number of malware which is detected as malware. FN denotes the number of
false negatives and FP expresses the number of false positives. A high F1 score represents good detection
performance. Ideally, if the F1 score is 1, it means the method can detect all the malware without any
false positives or false negatives.

recall = TP

TP + FN
, precision = TP

TP + FP
, F1 = 2 ∗ recall ∗ precision

recall + precision
. (2)

2.5.2. Evaluation dataset
UEFI rootkit is a fascinating technology that has been studied by researchers from both academia and

industry. However, to the best of our knowledge, no actually exploitable rootkit has been released except
the Hacking Team’s UEFI rootkit. Thus, we choose this rootkit as our detection target. We’ve done a lot
investigations online, and find several computer models that can be implanted with the Hacking Team’s
rootkit [79,80]. The vulnerable models are Dell Precision T1600, Dell Latitude 6320, Asus X550C, Asus
F550C and an unknown model. We’ve managed to implant the UEFI rootkit into the firmware of a Dell
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Table 3

The basic information of the 35 benign experiment firmware samples

ID Firm Model Version #Module ID Firm Model Version #Module
1 Dell Precision T1600 A01 324 19 Dell Latitude 6320 A08 351
2 Dell Precision T1600 A04 328 20 Dell Latitude 6320 A12 352
3 Dell Precision T1600 A05 328 21 Dell Latitude 6320 A13 352
4 Dell Precision T1600 A07 331 22 Dell Latitude 6320 A14 352
5 Dell Precision T1600 A08 331 23 Dell Latitude 6320 A15 352
6 Dell Precision T1600 A10 331 24 Dell Latitude 6320 A16 352
7 Dell Precision T1600 A11 331 25 Dell Latitude 6320 A17 351
8 Dell Precision T1600 A13 331 26 Dell Latitude 6320 A18 351
9 Dell Precision T1600 A14 331 27 Dell Latitude 6320 A19 351

10 Dell Precision T1600 A15 330 28 Dell Latitude 6320 A20 351
11 Dell Precision T1600 A16 330 29 Dell Latitude 6320 A21 351
12 Dell Precision T1600 A17 330 30 Asus X550C/F550C 205 139
13 Dell Precision T1600 A20 330 31 Asus X550C/F550C 212 139
14 Dell Precision T1600 A21 330 32 Asus X550C/F550C 217 139
15 Dell Latitude 6320 A04 343 33 Asus X550C/F550C 218 139
16 Dell Latitude 6320 A05 348 34 Asus X550C/F550C 300 139
17 Dell Latitude 6320 A06 348 35 Unknown Unknown Unknown 219
18 Dell Latitude 6320 A07 351

Precision T1600 machine, and the rootkit works as expected. Every time the infected machine powers
on, the rootkit will start and try to implant Trojans into the target system. The operations are performed
very stealthily and can hardly be noticed.

Implanting the rootkit into real machines and then extracting the firmware code for detection can cost a
lot and is really a waste. Fortunately, the infected firmware samples can be obtained through another way.
We download benign firmware samples from the official websites, i.e., Dell [16] and Asus [4], and then
manually insert the rootkit modules into the firmware samples with the help of some firmware editing
tools, such as UEFITool [25]. In this way, we obtain 34 pairs of firmware samples for the experiments,
each pair consisting of an infected sample and the corresponding benign sample. We also have one
additional pair for an unknown model, the infected version of which is provided by the Hacking Team
[80] and the benign part is manually extracted by removing the rootkit modules. The basic information
of the 35 benign samples are presented in Table 3. The #Module column presents the number of modules
in each firmware.

2.5.3. Results and analysis
Recall that the second stage ranks the outliers based on the differences between them and the centroid

vector of the huge cluster. The top ranked modules are more likely to be the rootkit. Given the fact that
our dataset is too small, instead of applying a cross-validation scheme to evaluate the effectiveness of our
approach, we reasonably make the following assumption: The legitimate UEFI firmwares for the same
model but different versions should have very similar behaviors. Namely, the maximum distance from
the top one outlier to the huge cluster for one version is very close to that for another version. While
the rootkit modules are expected to behave differently with the benign modules, we presume that the
maximum distance from the top outlier to the centroid cluster in an infected firmware is at least multiple
times of that in a legitimate version.
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Table 4

Maximum distances of the three baseline sample pairs and the
corresponding thresholds

ID dbenign dinfected N T
9 730.36 5027.37 4 2921.44

27 728.85 5026.61 4 2915.40
31 496.86 5025.02 6 2981.16

Therefore, we evaluate our approach as follows. First, we randomly select three sample pairs from the
three major models, Dell Precision T1600, Dell Latitude 6320 and Asus X550C/F550C, one pair for one
model, and compute the largest distances dbenign and dinfected for each pair. Each dbenign is treated as the
baseline dbase for the corresponding model. We set the threshold of the outlier distance as T = N ×dbase,
where a reasonable coefficient can be computed as N = � dbenign+dinfected

2×dbase
�. Then, we cluster all the samples,

and compute the maximum distance dtest for each firmware. At last, we compare each dtest with T for the
same model and if dtest > T , we report the corresponding firmware infected with the rootkit. Otherwise,
we think the firmware does not contain any rootkit modules. We use the maximum threshold to test the
unknown model (#35 in Table 3). By this means, we can inspect the precision and recall of our approach
on the UEFI rootkit detection.

We present the maximum Euclidean distances and the corresponding thresholds for the three baseline
sample pairs (#9, #27 and #31) in Table 4. When the three values are used to test the corresponding
UEFI firmwares, we apply the highest value 2981.16 to the unknown model detection (#35).

Table 5 shows the final detection results for all samples and also the clustering statistics of the infected
versions. The dtest column in the Benign column shows the maximum outlier distance of each benign
sample. With the model-specific thresholds, we correctly identify all the targets without false warnings.

In the Infected column, the #Module column presents the total number of modules within each
firmware, including the rootkit modules. The %Huge column shows how many modules are grouped
into the largest cluster. From this column, we see that for all the Dell models and the unknown model,
more than 80% of the modules finally belong to the huge cluster in each sample, while for the ASUS
models, the percentages are greater than 79%. We further list the distances from the three rootkit mod-
ules to the corresponding largest cluster in each infected firmware. The maximum distance appear to be
the distance from the ntfs module to the huge cluster. Since dtest > T is satisfied for all the 35 infected
samples, we successfully report them to contain rootkit modules.

Eventually, we get zero false positives and zero false negatives, indicating that both the precision and
the recall are 100% for our approach to detect the UEFI rootkits, resulting in a maximum F1 score of
one.

Despite the good detection performance, we must also notice that, not all the three rootkit modules
have the distances greater than the threshold. In fact, the distances for the rkloader and dropper
modules are much smaller than the baseline distances as shown in Table 5. The infected versions are
reported because the ntfs module shows a substantial difference with all other host modules. As pre-
sented in Fig. 3, the rkloader driver only loads the dropper application into memory, and drop-
per leverages ntfs to implant Trojans. The major probing operations and core functionalities, such
as checking whether the target system is writable and implanting Trojans into the target system, are
handled by ntfs. Such differences can be observed from the assembly code. Moreover, rkloader
contains only 197 instructions with 6 branches, and dropper contains 1144 instructions with 111
branches, while ntfs consists of up to 51,539 instructions with 7420 branches. Among all the benign
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Table 5

The UEFI firmware clustering and rootkit detection results. “�” in the detection column indicates a correct identification

ID Threshold Benign Infected
dtest Detection #Module %Huge drkloader ddropper dntfs(dtest) Detection

1 2921.44 729.62 � 327 81.35% 11.33 60.43 5027.47 �
2 2921.44 729.56 � 331 81.27% 11.36 60.37 5027.44 �
3 2921.44 729.54 � 331 81.27% 11.37 60.35 5027.42 �
4 2921.44 729.53 � 334 81.14% 11.38 60.35 5027.41 �
5 2921.44 729.53 � 334 81.14% 11.38 60.35 5027.41 �
6 2921.44 729.89 � 334 81.14% 11.37 60.34 5027.41 �
7 2921.44 729.88 � 334 81.14% 11.39 60.33 5027.40 �
8 2921.44 730.36 � 334 81.14% 9.82 60.10 5027.37 �
9 2921.44 730.36 � 334 81.14% 9.82 60.10 5027.37 �

10 2921.44 729.08 � 333 80.78% 11.83 59.72 5026.77 �
11 2921.44 729.08 � 333 80.78% 11.83 59.72 5026.77 �
12 2921.44 729.08 � 333 80.78% 11.83 59.72 5026.77 �
13 2921.44 729.08 � 333 80.78% 11.83 59.72 5026.77 �
14 2921.44 729.08 � 333 80.78% 11.83 59.72 5026.77 �
15 2915.40 729.37 � 346 84.10% 11.46 60.21 5027.29 �
16 2915.40 729.34 � 351 84.05% 11.47 60.17 5027.28 �
17 2915.40 729.32 � 351 84.05% 11.48 60.16 5027.26 �
18 2915.40 729.32 � 354 83.90% 11.48 60.16 5027.26 �
19 2915.40 729.30 � 354 83.90% 11.50 60.15 5027.25 �
20 2915.40 729.64 � 355 83.66% 11.51 60.12 5027.23 �
21 2915.40 728.87 � 355 83.66% 9.99 59.91 5027.21 �
22 2915.40 730.12 � 355 83.66% 9.99 59.91 5027.21 �
23 2915.40 730.12 � 355 83.66% 9.99 59.90 5027.21 �
24 2915.40 730.12 � 355 83.66% 9.99 59.90 5027.21 �
25 2915.40 728.86 � 354 83.33% 11.96 59.53 5026.61 �
26 2915.40 728.86 � 354 83.33% 11.97 59.53 5026.61 �
27 2915.40 728.85 � 354 83.33% 11.97 59.52 5026.61 �
28 2915.40 728.85 � 354 83.33% 11.97 59.52 5026.61 �
29 2915.40 728.85 � 354 83.33% 11.97 59.52 5026.61 �
30 2981.16 496.87 � 142 79.58% 56.65 72.51 5025.03 �
31 2981.16 496.86 � 142 79.58% 56.71 72.54 5025.02 �
32 2981.16 496.83 � 142 79.58% 56.60 72.46 5025.00 �
33 2981.16 496.83 � 142 79.58% 56.60 72.46 5025.00 �
34 2981.16 496.83 � 142 79.58% 56.60 72.46 5025.00 �
35 2981.16 728.75 � 222 85.59% 92.58 107.88 5026.83 �

test modules, the average and median number of branches are 282 and 57, respectively. The heterogene-
ity between ntfs and the host modules may account for the huge difference we observe.

2.5.4. Results on more firmwares
Due to the fact that we do not have many UEFI rootkit samples, we have no way to verify the ef-

fectiveness of the approach on other infected firmwares. However, we are able to test if it is capable to
correctly identify the other benign UEFI firmwares not listed in the Hacking Team’s dataset [50] with the
above thresholds. To this end, we download 50 UEFI firmwares from different manufacturers, models
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Table 6

Additional UEFI firmwares and detection results with the threshold as 2981.16. “�” in the result column indicates a correct
identification

ID UEFI information dtest Result ID UEFI information dtest Result
1 Acer Aspire E5-771 1.23-v1 221.45 � 26 ASUS TUF B450-PLUS Gaming 0402 445.58 �
2 Acer Aspire E5-771 1.23-v2 367.91 � 27 ASUS VivoBook 17 M705BA 300 457.18 �
3 Acer Aspire TC-703 P11.B4 948.48 � 28 ASUS VivoBook Flip TP501UQ 301 453.28 �
4 Acer Extensa 2511 1.31 367.26 � 29 ASUS ZenBook UX410UA 200 453.28 �
5 Dell Alienware X51 R2 A04 419.49 � 30 Gigabyte Aorus X3 Plus v6 04 v1 1912.68 �
6 Dell Inspiron 5521_A14 221.77 � 31 Gigabyte Aorus X3 Plus v6 04 v2 1912.68 �
7 Dell Optiplex 9010 A22 1098.01 � 32 Gigabyte Aorus X7 DT FB03FD03 v1 370.03 �
8 Gigabyte Aero 14 FB07 1911.81 � 33 Gigabyte Aorus X7 DT FB03FD03 v2 370.03 �
9 HP 245 G3 Notebook F.45 v1 874.61 � 34 HP ENVY 17-j000 Leap Motion F69 v1 519.14 �

10 HP 245 G3 Notebook F.45 v2 1010.64 � 35 HP ENVY 17-j000 Leap Motion F69 v2 220.67 �
11 HP ENVY 17 k200 F57 v1 220.52 � 36 Lenovo Flex 3-1130 C8CN31WW 367.08 �
12 HP ENVY 17 k200 F57 v2 366.66 � 37 Lenovo IdeaPad 110-17ISK 4RCN11WW 428.78 �
13 HP ENVY 17 k200 F57 v3 366.66 � 38 Lenovo IdeaPad 305-15IBD A8CN54WW 487.46 �
14 HP ENVY 17 k200 F57 v4 368.01 � 39 Lenovo ideaPad Yoga 530-14IKB 7QCN42WW 377.09 �
15 HP ENVY 17 k200 F57 v5 220.52 � 40 Lenovo IdeaPad Yoga 720-13IKB-80X6 2.07 363.13 �
16 Lenovo ThinkPad E555 1.23 1006.01 � 41 Lenovo V110-14AST 1PCN63WW 1903.99 �
17 Lenovo ThinkPad E565 1.18 1043.39 � 42 Lenovo Yoga 530-14ARR 8MCN52WW 850.71 �
18 Lenovo ThinkPad E575 1.17 1037.33 � 43 MSI GT73VR 6RF Titan Pro E17A1IMS.106 369.95 �
19 Lenovo ThinkPad P70 1.15 1450.95 � 44 MSI MPG Z390 Gaming Pro Carbon AC 1.1 1560.44 �
20 Lenovo ThinkPad T460s 1.06 673.63 � 45 Sony VAIO SVE14A15FXW R0300V4 933.99 �
21 Lenovo ThinkPad T560 1.06 673.63 � 46 Sony VAIO SVF1532DCXW R1100DB 480.92 �
22 Lenovo ThinkPad X270 1.09 672.74 � 47 Sony VAIO SVF15A1ACXB R0250DA 221.29 �
23 Lenovo ThinkPad Yoga 15 1.20 319.72 � 48 Sony VAIO SVT11223CXW R1170V8 221.87 �
24 MSI MPG Z390 Gaming Plus 1.1 1560.44 � 49 Toshiba Satellite Pro C850-B 6.80 v1 223.79 �
25 Toshiba Satellite L50DT-A 1.30 932.02 � 50 Toshiba Satellite Pro C850-B 6.80 v2 915.77 �

and versions and apply the maximum threshold 2981.16 to them as done for #35 in Table 5. The UEFI
information and detection results are presented in Table 6. We can see the diversity of the firmwares.
Not to say those for different manufacturers, even for the same model, different versions can result in
different clustering results. For example, #50 has a relative larger distance than that for #49, while both
are developed for the same model. With the threshold as 2981.16, all the firmwares are reported not to
contain rootkits, showing a zero false positive rate.

3. Detecting piggybacked Android applications

As we have mentioned in Section 1, piggybacked Android applications have resulted in many secu-
rity problems with the proliferation of the Android system. In this section, we first give a background
introduction of the Android applications and the piggybacking and then talk about the overview of our
approach. The details of the code clustering and piggybacking detection are then discussed, followed
by the empirical evaluation of our approach on real-world applications. At the end of this section, we
present two examples to show why false positives and false negatives may occur and how we can further
solve those problems.
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Fig. 7. The structure of a common APK file.

3.1. Background: Android application and piggybacking

An Android Package (APK) file is deployed by developers and installed as an Android application
by the users. It is essentially a kind of ZIP file containing many directories and files, as Fig. 7 shows.
AndroidManifest.xml declares the application name, version, requested permissions, components
and some other application related information. classes.dex file contains the compiled Dalvik byte-
code. Generally, an Android application implements the major functionalities in Java, which follows the
design pattern of normal Java programs, dividing the code into packages, classes and methods [3]. For
more details about the APK file, please refer to the online development documents [29].

In practice, with the help of reverse engineering tools, e.g., ApkTool [72], anyone can unpack an APK
file, de-compile the code and get everything that constitutes the application. Then, injecting malicious
code and redistributing the repackaged application can follow. Applications that are injected with ma-
licious code are known as piggybacked applications. They may be injected/replaced with multiple Ad
libraries for Ad revenues, or even steal confidential user information. From the dataset we described
in Section 3.5.1, we find a pair of applications. One1 is an utility tool, providing tutorials to help peo-
ple keep fitness. The other2 is the corresponding piggybacked version. We show the package structure
of the piggybacked application in Fig. 8, in which the fivefeiwo part is the injected code and the
google subtree corresponds to the third-party libraries. The core functionality of the fitness applica-
tion is achieved by the remaining parts. The injected code launches a background service to perform
stealthy operations, such as collecting the private information, e.g., the mobile number, the contacts and
the SMS messages, and sending the information to a remote server.

As the widespread of Android applications, there is an urgent need for detecting the piggybacked ap-
plications effectively. Some researchers proposed clone detection-based techniques [9,10,69,77]. How-
ever, such approaches require both the original application and its piggybacked versions are in the same
repository for detection, which apparently are not always applicable. Some others present matching-
based solutions which match the applications features with known signatures [15,22,70], or monitor the
runtime behaviors [67,85,88]. As we discussed in Section 1, such approaches heavily depend on the
prior knowledge and can largely influence the detection performance with poor knowledge. We, in this
paper, aim to propose an effective detection method that does not require any extrinsic information other
than the given application itself.

1SHA-256 value: 03828A4CD0D2DCA3EC3441802FB35665AF42A894B5C794BE81A8873A3BE4FED7.
2SHA-256 value: 00B4C41891BC44B63A6A1C4B7ACA6B9B645B1B8579BAC2597D3503DD504F4612.
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Fig. 8. The package structure of a piggybacked app.

Fig. 9. Detailed procedure of piggybacking detection.

3.2. Approach overview

The fact that piggybacked Android applications work in common with the UEFI rootkit by implanting
malicious payloads into benign applications and benefit from their wide spread motivates us to make the
same assumption that the injected functionalities exist in modules and such modules are loosely con-
nected with the host’s code. Hence, we are inspired to design a similar code clustering based approach
to detect the existence of piggybacking in Android applications. Considering the different implemen-
tation scheme, our approach treats each Java class as an individual module and groups the classes into
different clusters after removing known third-party libraries. The outliers are further re-clustered based
on their organizational similarities. If eventually two or more clusters exist, we consider the application
piggybacked. In other words, we set the threshold of the maximum distance for outliers as zero and if the
outlier’s distance is larger than zero, the application is considered piggybacked. The two-stage workflow
is shown in Fig. 9.

3.3. Code clustering

We treat a single Java class as a module and aim at clustering modules with strong interactive rela-
tions together. However, modules within Android applications do not interact with each other through
GUIDs as what have been done in UEFI firmwares. Instead, they are connected by method calls, class
inheritance, data access, etc. In this paper, we choose four types of interactive relations to feature the
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connections between any two modules and exemplify the relations with the piggybacked Samsung fit-
ness application mentioned in Section 3.1.

An is_a(C, S) relation indicates that one class C is a subclass of S. Class inheritance occurs com-
monly in Java programming as well as in Android programming. Typically we don’t think the payloads
will inherit many host classes when they are not specially designed for the target host application. This
intuition makes the is_a relation suitable to weaken the connection between host classes and payload
classes. The following code snippet presents an example in a piggybacked application. According to the
Java grammar, we have is_a(CPManager, A), omitting the package name for brevity.

has_a(C, F) tells whether a class C contains a field of type F. Enclosing an F-typed field enables
C to access the full functions of F across all C’s member methods with only one instance of F. In the
simplified example below, has_a(MyApp, HomeKeyEventBroadCastReceiver) is satisfied.

In addition to the above relations, we take into account the data access via method invocations between
modules. Method calls usually connect different code segments in a sequential manner and pass data bi-
directionally via parameters and return values. It is reasonable to believe the application developers
organize the functions into smaller modules (i.e., methods), chain them together and mostly transfer the
data by method calls. Connections between methods further connect the enclosing classes. While inside
the payloads method calls happen often, invocations from host modules to payload classes are assumed
uncommon, let alone the data transmission between the host and the payloads. Since many method calls
do not return data, we derive two relations to represent the effects of a method call concerning the data
transmission. Figure 10 illustrates an example with the two relations, in which the left side shows the
simplified code snippet and the right side presents how the relations are constructed on top of the data
flows. The line numbers follow the ‘@’ symbols.

Relation call_with(C, P, νC) means within a class C, some method in P is invoked and some
data ν belonging to C is passed into the callee as an actual argument. We further reduce the re-
lation to call_with(C, P), denoting that C invokes P’s method somewhere. In Fig. 10, we say
call_with(DetailActivity, S) satisfies because s.f(i) uses the local variable i at line 7.

Fig. 10. Relations of call_with and use_ret in the simplified Samsung fitness application.



AUTHOR  C
OPY

174 H. Li et al. / Identifying parasitic malware as outliers by code clustering

Note that we do not take the ‘this’ reference of an instance call into consideration, e.g., s in this
example.

Relation use_ret(C, P) is used to represent that within some method of C, invoking a method of P
returns some data which is further used in C. The return value is used if it appears in the right hand side
of an assignment, the actual arguments of a method call, a return statement, etc. Similarly, in Fig. 10,
use_ret(DetailActivity, S) holds.

To measure the strength of the connections, we think the amount of usages of another class Cb or
relevant data in class Ca matters. For instance, if in Ca , a field of type Cb is used tens of times, the relation
between Ca and Cb is much stronger than that between Ca and Cc when the field of type Cc is used only
once. Similarly, if multiple method calls from Ca to Cb occur, it is natural to infer a close connection.
In addition, for a single method call, heavy use of the actual argument or the return value represents a
tight relation as well. We use n(R, Ca, Cb) to express the amount of mutual usages. n(is_a, Ca, Cb) is
always 1 or 0, depending on whether Ca is a subclass of Cb or vice versa. Below we will omit Ca and
Cb for the sake of simplicity. n(has_a) counts in Ca all uses of the fields typed with Cb and all uses
of the fields of type Ca in Cb. For the other two types of relations, we count the accumulated uses of
correlated values (i.e., the arguments or returns) for all methods calls between Ca and Cb. For instance,
in Fig. 10, from what we have seen in the code, we have n(use_ret,DetailActivity,S) = 1 and
n(call_with,DetailActivity,S) = 1.

While the above measurements are able to characterize the relations between classes, it is reasonable
to assign different weights to them as we don’t know which relations better describe the connection. For
example, we think is_a denotes a much stronger relation than call_with because for adversaries it
is easier to insert method calls in some host classes than to implement payload classes inheriting from
host classes. We notate the weight with w(R) where R is one of the four types of relations.

Considering both n and w, we compute the strength of relation between two classes as follows:

S(Ca, Cb) =
∑(

n(R, Ca, Cb) × w(R)
)
,

where R ∈ (is_a,has_a,call_with,use_ret). (3)

The larger S is, the closer Ca and Cb are. However, we need a threshold to determine when S is large
enough. Connections with S not larger than the threshold can be broken up. In this way, the modules are
grouped into disconnected clusters. So far, we have five hyper parameters, including the four weights and
one threshold. We will show later in the evaluation that different configurations can result in different
clustering results. Take the piggybacked Samsung fitness application for example. If we assign the same
weight to all types of relations and every connection is preserved with the threshold being zero, the
payloads (red dots) are mostly connected with the host modules (green dots), as shown in Fig. 11(a).
A better configuration will separate the payload cluster from the host cluster for the same application
and the result is presented in Fig. 11(b).

3.3.1. Eliminating third-party libraries
It is notable that the third-party libraries in the applications are likely to cause false positives. An-

droid application developers are fond of utilizing third-party libraries to accelerate the development, to
enrich the functionality of the application, or to earn some Ad revenues. Take the original Samsung
fitness application for example, it utilizes several third-party libraries. The com.google.analytics library
help developers to better understand their customers by collecting and processing the network data that
customers accessed, while the com.google.android.gms library provides services for users to use Google
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Fig. 11. Clustering results of the piggybacked Samsung fitness application with different hyper parameter configurations.

Fig. 12. The clustering result of the original Samsung fitness application containing third-party libraries (blue).

Search, Google Map, Gmail and other Google products. The com.google.ads package is an Ad library
which can bring potential revenues to the developers. These libraries are of great help to developers,
but can be pretty annoying when it comes to detecting piggybacked applications. In fact, none of the
third-party libraries has many interactions with the core functionality of the application, which aim to
providing tutorials on physical fitness. In other words, the third-party libraries possess similar relations
to the host modules as the payloads, which introduce potential false positives. Figure 12 shows a clus-
tering result of the original application under certain configuration. Most library modules in blue are
clustered into two groups, demonstrating a similar result with the red payload modules in Fig. 11(b).

Our investigation shows that, a lot of studies have demonstrated the adverse effect of third-party li-
braries on malware detection and choose to remove the libraries [9,10,15,22,27,31,52,55,58,65,67,69,
70,77,85,89,91–93]. We follow the same schema, identify and eliminate the third-party libraries from
the target applications with existing tools before the clustering process.

3.4. Piggybacked application detection

After removing the third-party libraries and clustering the modules based on the aforementioned rela-
tions with certain configurations of weights and threshold, the results still cannot directly tell us whether
a target application is piggybacked. As Fig. 11(b) and Fig. 12 show, not all green dots fit into the majori-
ties, violating our assumption that benign modules should be clustered into one group. This phenomenon
can be caused by dead code, limitations of the underlying analysis framework, etc. We skip deep pro-
gram analysis and propose a lightweight solution. In this stage, we care about the organizational relations
among the modules. According to the package organization property, we think classes under the same
package have closer relation. Thus we try to re-cluster the outliers to generate fewer but larger clusters.
In particular, for a left-out class cls belonging to a package pkg, if most (over 50%) classes within pkg
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are clustered into a large group G, we move cls to G. If we cannot find such a cluster G, we leave cls as
is.

Ideally, we have only one cluster for a benign application but at least two groups for a piggybacked
one. We can then report the potentially piggybacked application if seeing multiple clusters.

3.5. Evaluation

We use the Soot framework [75] to analyze the Android applications and collect the relations, and
utilize LibRadar [57] to identify the third-party libraries. To demonstrate the effectiveness, we apply the
same evaluation metrics as in Section 2.5.1. We discuss below the dataset and our experimental results.
The experiments are all conducted on a Dell laptop equipped with a four-core CPU and 8 GB memory.

3.5.1. Evaluation dataset
Though the Android application repackaging problem has been researched for years and a lot of work

has been proposed to detect such malware, only a few work has released their experiment datasets pub-
licly. Li et al. conducted massive experiments to collect original-repackaged application pairs [46,48].
An original-repackaged pair contains two applications, one repackaged and the corresponding original
version. They have released a list containing all the pairs they collected, where each application is repre-
sented by its SHA-256 value and the applications are available from Androzoo [2], a growing repository
of Android applications. We build our dataset on top of Li’s work.

Since we focus on detecting malicious piggybacked applications, other types of repackaged applica-
tions are beyond the scope of this paper. However, Li’s list contains various repackaged applications. To
better evaluate the proposed approach, we exclude some pairs that do not meet our requirements. First,
we exclude the pairs in which the original application is malicious or the repackaged is benign. It is fair
to expect that natural applications coming from legal developers typically do not contain any malicious
code, while piggybacked applications are usually meant to do something evil. Those pairs that do not
fit into such expectation should not be taken into our dataset. By querying the VirusTotal website [76]
with an application’s SHA-256 value, we can get the feedback of whether the application is a malware.
Second, we limit our method to detect piggybacked applications which are injected with some payloads.
Therefore, we exclude the pairs in which the repackaged application only removes or modifies a few
host code segments. We use ApkTool [72] to extract the classes from the application pairs. We consider
the repackaged application to be piggybacked if it contains more classes than its counterpart. Finally, we
obtain a dataset consisting of 1079 pairs. The APK file size ranges from a minimal value of 29.13 KB to a
maximum value of 49.40 MB, with an average and median size of 11.13 MB and 9.20 MB, respectively.

3.5.2. Results and analysis
We evaluate our approach on the dataset. But first of all, the approach has four types of relations and

five hyper parameters including the weights and threshold. We need to determine a suitable configuration
of parameters and thus apply a cross validation to verify the effectiveness. Particularly, we divide the
dataset into two parts, one for training and the other for testing. The training set contains 755 application
pairs (70% of the dataset) and the testing set contains 324 pairs.

Arbitrary configurations may cost unlimited time to tune the parameters. To reduce the training cost,
we empirically set small but suitable ranges for the parameters. In particular, the threshold ranges from
1 to 10 and the weights for has_a, call_with and use_ret range from 1 to 5. Considering that
in Android application development, class heritage is a common feature to connect classes. Hence,
we set w(is_a) as the value of the threshold plus one. We evaluate all the 1250 candidate parameter
configurations on the training set, i.e., the 755 application pairs.
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Table 7

Evaluation results for applications with the third-party libraries eliminated, corresponding to the highest, a top 4% and the
lowest F1 scores during the training phase

w(is_a) w(has_a) w(call_with) w(use_ret) threshold TP FP FN Precision Recall F1
Training 5 5 1 1 4 690 71 65 90.67% 91.39% 91.03%

5 5 1 5 4 678 67 77 91.01% 89.80% 90.40%
11 1 1 1 10 724 208 34 77.68% 95.89% 85.83%

Testing 5 5 1 1 4 301 39 23 88.53% 92.90% 90.66%
5 5 1 5 4 301 37 23 89.05% 92.90% 90.94%

11 1 1 1 10 306 186 18 62.20% 94.44% 75.00%

Table 8

Evaluation results for applications without the third-party libraries eliminated, for the best parameter configuration during
current training phase and the two selected in Table 7

w(is_a) w(has_a) w(call_with) w(use_ret) threshold TP FP FN Precision Recall F1
Training 5 5 1 5 4 694 310 61 69.12% 91.92% 78.91%
Testing 5 5 1 5 4 311 77 13 80.15% 95.99% 87.36%

5 5 1 1 4 312 86 12 78.39% 96.30% 86.43%
11 1 1 1 10 316 278 8 53.20% 97.52% 68.85%

Table 7 presents the results for three parameter configurations, in which (5, 5, 1, 1, 4) and
(11, 1, 1, 1, 10) represent the ones with highest and lowest F1 scores during the training phase, re-
spectively. The configuration (5, 5, 1, 5, 4) generates a top 4% F1 score and is left for a subsequent
comparison in Section 3.5.3. The top two configuration trades off the precision and recall with higher
F1 score, while the bottom one reduces false negatives (higher recall) but leads to more false positives
(lower precision). In realistic scenarios, users can tune the parameters for either better precision or better
recall, depending on their purposes.

We also present the testing results corresponding to the three parameter configurations in Table 7. The
top configuration (5, 5, 1, 1, 4) results in a detection performance of a 90.66% F1 score, with 301 TPs,
39 FPs and 23 FNs. Compared with that, the bottom configuration (11, 1, 1, 1, 10) leads to 145 more
false positives but only 5 fewer false negatives, resulting in a low F1 score of 75.00%.

3.5.3. The effect of third-party libraries
Due to the similarity between third-party libraries and the parasitic payloads, we eliminated the third-

party libraries before the code clustering stage. In this section, we quantitatively show how the third-party
libraries can affect the detection performance.

Without eliminating the third-party libraries, we conduct the same evaluation process on the dataset.
In Table 8, we first present the parameter configuration that emits the best F1 score in the training phase.
We show the testing result of the configuration (5, 5, 1, 5, 4) and the corresponding precision, recall
and F1 score are 80.15%, 95.99% and 87.36%, respectively. The recall is relatively higher, compared
with the precision, leading to an acceptable F1 score. We also test the top and bottom configurations we
present in Table 7. From the results, we can see that (5, 5, 1, 1, 4) continues to produce relatively high
F1 score while the other configuration results in low precision (53.20%) and F1 score (68.85%).

When we further compare the results in Table 7 and Table 8, we observe that keeping the third-party
libraries largely increase the number of false positives, more than 40 for top configurations and more
than 100 for the bottom configurations. Considering the small number of testing application pairs, the
precision rates are reduced by about 9%.
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In contrast, fewer false negatives are reported if we do not eliminate the third-party libraries. That
means, some adversaries inject the common third-party libraries as the payloads into legitimate applica-
tions and thus removing them from the detection can lead to false negatives. However, the side-effect of
removing the third-party libraries is small. The recall rates show the decrement of only 3% from Table 8
to Table 7.

3.6. Case study

It can be noted that even the best configuration produces certain number of false positives and false
negatives. In this section, we will present two typical examples.

The false positives are mainly caused by the loose connections among host classes. Take an original
application3 for example. The simplified code is shown in Fig. 13. As we can see, the class LogEven-
tReporter is merely connected with Config via one simple call_with and one use_ret re-
lation. The involved argument and return value are both used only once in LogEventReporter,
resulting in the strength of relation S(LogEventReporter,Config) = 2. However, our best con-
figuration determines a threshold of 4, as shown in Table 7. Hence, the two classes will not be clustered
together. Such kind of loose connections separate many host classes away from one major cluster in
this application, generating too many small clusters which beyond the capacity of the second phase to
build larger clusters. Thereby, a false positive emits when we see more than one cluster and report it
piggybacked.

A potential solution to suppress such false warnings would be to take the indirect correlations into
account. Currently, we only count the direct use of obj at line 6 for the use_ret relation. If we further
consider the connection between obj and json at line 6 and impose a weighted value for the indirect
uses of json and any further ones to the use_ret relation, we may probably avoid the false positive.

False negatives are produced because more connections than the threshold are found between host
modules and the payloads. Figure 14 shows an example,4 in which multiple connections from a host
class APPEntry to a payload class VManager are constructed. The adversaries insert a field of type
VManager into class APPEntry, which is used twice to call methods with the local values inside
APPEntry. According to the best configuration, the strength of relation between two classes is at

Fig. 13. A false positive caused by loose connections.

3SHA-256 value: 72C93B805A8DC118E2683C96F0AE67304D81999DC1EA4E215A54B58080D93E85.
4SHA-256 value: BE6D651F9BFFE1949D178A7B392E596CC9B949E140A797C287BE3BACDCABF561.



AUTHOR  C
OPY

H. Li et al. / Identifying parasitic malware as outliers by code clustering 179

Fig. 14. A false negative caused by adversarially established connections.

least 12, based on only the code snippet in Fig. 14. While the strength threshold is only 4, two classes are
grouped together and finally all payload classes are put into the sole cluster, leading to a false negative.

A possible way to evade the false negative is to apply a bottom configuration, e.g., (11, 1, 1, 1, 10)

which will emit higher recall rate, according to Table 7. However, it obviously produces much more false
warnings. We may also resort to some existing techniques, e.g., AsDroid [34], to identify the unexpected
behaviors in such applications, so as to reduce the false negatives.

4. Discussion

The code clustering based parasitic malware detection approach has proven to produce acceptable
performance for both UEFI rootkit detection and piggybacked Android application detection, with high
F1 scores. However, we have some additional concerns about our work.

The boot guard mechanisms like the Intel Boot Guard are supposed to be effectively protect the
firmwares from being illegally modified. However, as discussed in Section 1, either the lack of the
protection or the bypassed guards in real-world scenarios result in the existence of the UEFI rootkits.
Our work aims at presenting a new detection approach to detecting such rootkits.

Our work focuses on detecting such a type of parasitic malware that introduces the malicious payloads
as individual modules, so other types of repackaged malware, such as removing some code from the
program or simply inject code deeply into the benign part (e.g., adding several lines of code in existing
methods or inserting new methods into benign classes), are not handled. While such cases can happen in
very few repackaged Android applications, we can draw support from some existing techniques to detect
the malware. For instance, AsDroid [34] leverages the user interface information to determine whether
the application behaves beyond the user’s expectation and contains malicious code.

Following some previous studies that show loose coupling between the host code and the malicious
portion in thousands of malware [70,78], we deem it popular for most adversaries to inject their payloads
into host programs in such a way that leaves the two parts as independent as possible. We consider it
reasonable as the software, either the UEFI firmware or Android applications, becomes complicated
nowadays. For example, Android application developers tend to obfuscate the applications to protect
them from being easily understood and modified. Take the popular instant messaging application WeChat
v7.0.7 for example. 41,947 out of the 63,977 classes (64.86%) have obfuscated or meaningless names.
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Considering the complication of the applications, it is very difficult, if not impossible, for adversaries
to in-depth understand the internal logic of the host programs. Typically, we believe that the adversaries
would like to quickly inject the payloads into as many targets as possible and thus they intend not to
thoroughly analyze each application and disperse the payloads into different modules while keeping the
functionality of the payloads. Even if the adversaries have the original code of a target application, it
does not make any difference if the adversaries loosely compile the payloads together with the host
program without a comprehensive understanding of the host. Moreover, we do not think it becomes a
feasible task for the majority of adversaries to dive into the complex source code and seed the payloads
in place.

We must admit that extreme cases can exist, in which the adversaries have the Pyrrhic knowledge
of the host program and successfully spread the payloads in different modules. Our work will fail to
detect such cases without the help of heavyweight prior knowledge of the malicious behaviors or the
information of legitimate countermeasures. It is beyond the scope of our work, which aims at detecting
the existence of parasitic components for any individual applications.

Adversaries may fake the interactions to bypass our machine learning based detection method, e.g.,
creating unnecessary field references and invoking meaningless methods. However, given the compli-
cation of the host programs, we believe the adversaries would take great effort to establish the extra
connections between the payloads and the host for an individual application, making it unscalable to
distribute the payloads in massive applications. Furthermore, we can evolve our solution to measure the
quality of the interactions, e.g., the necessity of the interactions. Due to the lack of the cases, we cannot
evaluate the effectiveness of our idea. In addition to the above evolution, we mark it as a potential direc-
tion to fully automating the learning phase, without the manual feature extraction step. We may utilize
the deep learning techniques to automatically extract the features and train an evolutionary classifier to
identify the parasitic malware.

It is also notable that, the proposed approach are based on code clustering, without any prior knowl-
edge like the known behavior signatures, but we still require labeled samples to learn suitable parameters,
e.g., the threshold and the weights. In the future, we will explore some other features that can better de-
scribe the relations among modules such that the approach can throw the parameters away and achieve
completely unsupervised.

Besides, we cannot acquire many UEFI rootkits except the Hacking Team’s samples. This condition
prevents us testing our solution in more different types of rootkits. While we present an acceptable
threshold to determine whether a given sample is infected, we might fail the detection if a rootkit is spe-
cially designed for a series of uniform machines, in which scenario the rootkit modules do not consist
of many conditional checks in contrast to the ntfs module, and thus the rootkit modules are not neces-
sarily to be top ranked. And due to the small size of the dataset, we calculated the threshold with only
three sample pairs. We would like to explore the applicability of the approach and learn a more robust
threshold as done in piggybacked Android application detection when more samples are available.

At last, though we propose a general idea to detect the parasitic malware, based on code clustering
and the maximum distance measurement, we have different implementations for different categories of
targets. The idea can be applied to other types of parasitic malware, e.g., traditional desktop malware,
but we can expect a new implementation to conduct the detection. The implementation should consist
of different preprocessing stage, extract target specific features and propose a probably different dis-
tance calculation method. However, we think the core of our current implementations can be borrowed
to handle the other types of parasitic malware. For example, the features for detecting piggybacked An-
droid applications can be used in other types of applications developed in object-oriented programming
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languages, such as Python, Java and C++. The UEFI related feature extraction can also direct future re-
search to quickly discover the target specific features in applications with similar module communication
patterns.

5. Related work

Though general malware detection approaches can be employed to detecting parasitic malware [11,
36,87]. In this paper, we focus our discussion on two aspects, corresponding to the two detection targets.

5.1. UEFI securities

Before UEFI, BIOS had been the only firmware standard for decades and the attacks against BIOS
had never stopped. As demonstrated in [30], most of the attacks were targeting the key components
of the boot process, i.e., Master Boot Record (MBR) [42,44,45,66], Volume Boot Record (VBR) [59,
60,62] and the bootloader [43]. UEFI adopts a complete different design, which no longer contains
MBR, VBR, bootloader or any other BIOS related components. The boot process of UEFI consists
of seven phases, namely, the Security phase (SEC), the Pre-EFI Initialization phase (PEI), the Driver
Execution Environment phase (DXE), the Boot Device Selection phase (BDS), the Transient System
Load phase (TSL), the Run time phase (RT) and last the After life phase (AL). Thus, the attacks as well
as the defenses [12,30,32] on BIOS can not be applied to UEFI. Nevertheless, curious researchers have
designed new attack and defense technologies.

The attacks against the UEFI firmware can be roughly divided into two categories, bootkits and rootk-
its. A bootkit will hook the normal boot process and try to execute malicious code before the oper-
ating system starts up, while a rootkit can be even more troublesome by injecting code directly into
the firmware and persisting in the system stealthily. Allievi [1] managed to replace the original boot-
mgfw.efi file (used to load the Windows system) for executing malicious code at the boot time. This
bootkit could bypass Windows 8 Driver Signature Enforcement and Patchguard security mechanism.
Kaczmarek [39] proposed a similar hook-based bootkit attack, which hooked a series of boot files, such
as the bootmgfw.efi, winload.efi, smss.exe and so on. Wojtczuk and Kallenberg [83,84]
leveraged the UEFI boot script to perform a bootkit attack. The boot script is a data structure interpreted
by the UEFI firmware. It consists of a sequence of instructions, each of which contains a opcode and the
corresponding operands. Wojtczuk and Kallenberg demonstrated that they could run arbitrary code after
inserting a custom instruction, or modifying the existing instructions. The UEFI variables are another
target for attackers to implement bootkits [6,7,40,41]. The UEFI variables store persistent configurations
(e.g., the boot order) of the firmware. The boot process can be interfered by modifying the variables if
they are writable. For example, replacing the boot option with customized loaders can result in unautho-
rized code execution [7]. The System Management Mode (SMM) is a special operating mode with high
privilege and is designed for use only by the system firmware. It can handle maintenance tasks like power
management and system hardware monitoring. Due to the high privilege, it has been a popular target for
firmware bootkits. A lot of work leveraged various flaws of SMM to perform attacks [17,18,20,61,64].
For example, Duflot et al. [18] identified four fundamental design flaws of SMM and leveraged the flaws
to run arbitrary code in SMM. The aforementioned attacks are all about bootkits, rootkit attacks are far
more rare. In 2007, someone with a nickname Icelord first demonstrated the possibility of injecting code
into the firmware and implemented a Proof-of-Concept rootkit targeted certain Award BIOS [53]. Sev-
eral years later, the first BIOS rootkit Mebromi was discovered in the wild [26], which is also specifically
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targeted at the Award BIOS. The Hacking Team’s rootkit is the first practical UEFI rootkit. Recently, the
ESET security community exposed a new UEFI rootkit called Lojax [21], which is believed to be the tro-
janized version of Lojack, a anti-theft benign UEFI module designed by Absolute Software Corporation.
In addition, it is discovered that Lojax leveraged the ntfs module of Hacking Team’s rootkit.

Faced with so many attacks, security researchers have also come up with some defenses. In fact, the
Secure Boot mechanism of the UEFI specification [73] can already resist most of the attacks as long as
it is correctly implemented. Secure Boot verifies that all running softwares are trusted by the Original
Equipment Manufacturer (OEM) during the boot process. When the system is powered up, the firmware
will check the signature of each boot software, from Option Roms, UEFI modules to the operating
system. Only if all the signatures are valid, will the operating system start. However, as demonstrated
by Bulygin et al. [8], many manufacturers have implemented the mechanism with flaws, which gives
the attackers opportunities to conduct bootkit or rootkit attacks. To mitigate the situation, they proposed
11 rules, such as only allowing signed UEFI firmware updates and correctly implementing signature
verification and cryptography functionality, etc. Further, Wilkins and Richardson [82] demonstrated that
the system can be more secure when the Secure Boot mechanism is combined with a TPM chip on
the motherboard, which can securely store confidential information. In 2014, the Intel Security team
released a framework test suite called CHIPSEC [54]. As they demonstrated, CHIPSEC can be used to
analyze the security of computer platforms, such as hardware and firmware.

Despite the defense techniques, we have shown the feasibility of implanting the Hacking Team’s
rootkit to a valid firmware and executing it successfully. In fact, UEFI rootkit is no longer a theoretical
technique with only Proof-of-Concept threats. It can cause serious damages in real world, yet few detec-
tion methods have been proposed. In this paper, we devised a lightweight but effective method to detect
the UEFI rootkits, as well as to fill this research gap.

5.2. Repackaging detection

In this section, we talk about existing efforts against the repackaging problem, which a broader cat-
egory of what we focus on in this paper. Android application repackaging is a serious and ongoing
security threat to the Android ecosystem. It may directly harm the end-users, violate the developers’
rights and contaminate the Android application markets. Thus, detecting repackaged applications is of
great importance. By now, plenty of repackaging detection methods have been proposed, which can
be broadly divided into three categories, namely, clone detection-based, machine learning-based and
runtime monitoring-based methods.

Clone detection-based method. This kind of detection occupies the largest portion of all the existing
methods. The basic idea is to find similar applications among a large collection. Zhou et al. [93] imple-
mented an application similarity measurement system called DroidMOSS, which extracted instruction
sequences at bytecode level as features. DroidMOSS applied a fuzzy hashing technique on each in-
struction sequence to generate a fingerprint (string) for each application and calculated the edit distance
pairwise to find repackaged applications. Glanz et al. [27] proposed a similar system called CodeMatch.
Instead of extracting raw instructions, they represented each class by its Android API type list. All the
extracted items were organized in alphabetical order. Then, as done in [93], they would fuzzy hash the
entire representation of an application and compare the similarities by calculating the edit distance be-
tween the according hash values. If the similarity exceeds a predefined threshold, the corresponding
applications will be marked as repackaged. In [28], the authors leveraged two kinds of features for com-
parison, the meta information from the META-INF folder and the code information from the .dex file.
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The code was characterized by the n-gram model. The extracted features are then abstracted in a feature
vector for further similarity comparison. Linares-Vásquez et al. [52] also abstracted each application into
a feature vector. The features they selected include API calls, identifiers, user permissions, sensors and
intents. In addition, they leveraged multiple information retrieval techniques such as Latent Semantic In-
dexing (LSI), Singular Value Decomposition (SVD) and Term-Document-Matrix (TDM), to process the
vectors to get more accurate similarity comparison results. Guan et al. [31] proposed a semantic-based
approach called RepDetector to detect repackaging applications. RepDetector first identified core meth-
ods (methods that are from neither Android libraries nor any third-party libraries), and then obtained the
input-output relations of each core method with symbolic execution. The semantic equivalence between
two core methods was measured by their output states. At last, they utilized the Mahalanobis distance to
quantify the similarity between two applications.

Some research groups valued the code control flow information and devised their detection methods
accordingly. Chen et al. [9] constructed the textitControl Flow Graph (CFG) for each method in the
app, and then converted each CFG to a self-defined structure called 3D-CFG. Next, they calculated the
centroids of the 3D-CFGs, and leveraged the centroids to measure the similarity between methods. Ap-
plications that shared enough similar methods would be recognized as clones. Inspired by [9], Marastoni
et al. [58] also leveraged 3D-CFGs and the centroids to find clone applications. To achieve better perfor-
mance, they considered the invoked APIs as another feature and calculated the application similarities
based on the two features. Sun et al. [69] presented a new control-flow representation called component-
based control flow graph (CB-CFG), of which nodes were Android APIs and edges reflected the control
flow precedence relations of these APIs. An application was then represented as a signature which con-
tained a developer identifier and a set of CB-CFGs. They measured the similarity between applications
with self-defined metrics.

Lots of researches have demonstrated a fact that repackaged applications always keep the “look” and
“feel” similar or identical to the original and they try to utilize such similarities to locate repackaged
applications. In [89], the authors addressed that Android applications are user interaction intensive and
event dominated. Such observations inspired them to design a new application birthmark, called feature
view graph. A feature view graph consists of activity classes (nodes) that are associated with potential
UI views and the switch relationships (edges) among the activities. Each node and edge is bond with
certain features. Repackaged applications can then be detected by measuring the similarity between two
feature view graphs using the VF2 subgraph isomorphism algorithm. Zhauniarovich et al. [91] believed
that in order to maintain the “appearance”, repackaged applications should have similar resources as
the original ones. Thus, they measured the similarity of two apps by calculating the proportion of the
number of resource files that exist in both applications to the number of resource files that exist in either
application. Namely, the similarity was measured by the Jaccard similarity coefficient. Lyu et al. [56],
on the other hand, measured the “appearance” similarity using layout files. They implemented a tool
called SUIDroid to extract the layout information from all the layout files in an application and organize
the information into a compact layout tree. Then, they applied the AP-TED (All Path Tree Edit Distance)
algorithm to calculate the similarity between two layout trees. The more similar the two trees are, the
more likely the corresponding two applications are clones. Sun et al. [68] also leveraged the layout files
to compare applications. However, when there were no layout files in an application or the number of
elements in layout files was not enough, they would use perceptual hash values (pHash) of images in
/res/drawable folder to represent an app, and further used the hashes to perform similarity compar-
isons. Similarly, Jiao et al. [37] extracted images from applications and also used the pHash algorithm to
generate features. By calculating the percentage of identical hash values of two applications, they could
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decide whether the applications are clones. Unlike the above work, Chen et al. [10] extracted visual wid-
gets such as Button, ListView, TextView, and the transitions among these widgets, as features. They used
such features to construct a view graph for each application and calculated a centroid for each graph to
perform pairwise comparisons.

A common limitation of clone detection-based methods is that pairwise comparison will introduce
massive computations, especially when the collection is large. To reduce the time cost as well as to
improve the scalability of the detection, many methods tend to work in two-phase. The first phase can
quickly find out the applications that are not clones so as to reduce the number of applications and
the second phase will identify true clones. For example, Crussell et al. [14] presented a detection sys-
tem called DNADroid, which first selected potential application clones based on several application
attributes, e.g., the application name, package, market, owner and descriptions. Then, it constructed
Program Dependency Graph (PDG) for each selected application and leveraged the VF2 algorithm to
compute the similarity between two PDGs. Zhou et al. [92] aimed at detecting piggybacked applications.
In the first stage, they proposed module decoupling technique to partition an application’s code into pri-
mary and non-primary modules. The primary modules contain code that achieves the core functionality
of the application, while the non-primary modules refer to the third-party libraries or piggybacked code.
It is believed that the piggybacked application should contain the same primary modules as the original
one does. Then in the second stage, they extracted various features such as requested permissions, used
Android API calls and involved intent type from the primary modules. These features are then converted
into vectors for similarity comparisons. Wang et al. [77] also presented a two-phase approach called
Wukong. In the first coarse-grained phase, Wukong simply extracted the call frequencies of different
Android APIs to select potential clones, and in the next fine-grained phase, it counted the number of
times each variable occurs in different contexts and leveraged these numbers to identify clones from the
candidates. To achieve better detection scalability, Lyu et al. proposed FUIDroid [55], an enhanced tool
of SUIDroid [56]. FUIDroid first leveraged some natural language processing techniques to compare
applications’ descriptions to select potential cloned applications and then utilized SUIDroid to verify
which potential clones are true.

Maintaining an application repository large enough is non-trivial. Our approach does not require the
original counterparts of piggybacked applications for detection. Instead, it leverages only the information
within the target application.

Machine learning-based method. Recent years, machine learning has been in the spotlight, because
of its excellent performance in many tasks, such as image classification, natural language processing
and speech recognition. Naturally, some researchers explored the possibility of using machine learning
techniques to detect repackaged applications. Shao et al. [65] proposed a two-stage methodology. In the
first coarse-grained stage, they extracted 15 statistical features, e.g., number of activities and number
of intent filters, to represent each application as a 15-dimensional vector, and calculated the Euclidean
distance between two vectors to locate repackaged candidates. In the second stage, they extracted two
types of structural features, which were the activity layouts and the event handlers. They mapped the two
features into vectors and applied either spectral clustering algorithm or nearest neighbor search (NNS)
to find similar apps among the candidates. To avoid comparing applications pairwise, Crussell et al.
[15] proposed a scalable approach called Andarwin. Andarwin first constructed PDGs for methods and
then extracted semantic information from the PDGs. All the semantic information would be abstracted
into feature vectors. At last, they applied the Locality Sensitive Hashing (LSH) algorithm to find nearest
neighbors among all the vectors and the similar applications can be obtained accordingly. In [22], Fan et
al. leveraged the distinguished invocation patterns of sensitive APIs between host code and injected
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code to detect piggybacked applications. In particular, they constructed a sensitive subgraph (SSG)
from an application’s call graph. The SSG could profile the most suspicious behavior of an application.
Then, they extracted five self-defined features from the SSG to characterize the application. At last, they
trained four machine learning classifiers (Random Forest, Decision Tree, k-NN and PART) with the five
features and used the trained models to predict whether an input application is piggybacked. Instead of
training with features of an entire application, Tian et al. [70] partitioned the code into different regions
according to some class-level relations and method-level relations, and further extracted three types of
features (user interaction features, sensitive API features and permission request features) from each
region. Then, they trained classifiers for regions. If an application contained malicious regions, it was
considered repackaged.

Similar to the clone detection based approaches, machine learning based methods require a large
repository for training while our approach does not depend on the applications other than the target
itself.

Runtime monitoring-based method. Both aforementioned methods extract static features for detection.
Some researches have focused on devising detection methods using dynamic (runtime) features. Lin et
al. [51] proposed a detection mechanism called SCSdroid (System Call Sequence droid). As the name
implies, SCSdroid characterized each application with its thread-grained system call sequence during
runtime. For detection, SCSdroid adopted the Bayes Theorem to calculate the possibility of a call se-
quence being malicious and then further decided whether the application is repackaged. Soh et al. [67]
proposed a detection based on the analysis of runtime user interface information. Specifically, given an
application, they extracted the names of activities and executed the non-library classes to collect the
UI information, which was stored in XML format. Then, they generated a birthmark from the XML
file and using the LSH algorithm to find neighbors among a collection of applications. Yue et al. [88]
also leveraged the runtime UI information to characterize applications. They proposed a structure called
layout-group graph (LGG) as dynamic birthmark of an application, which was constructed from the
runtime UI traces and applications who shared similar LGGs are considered repackaged. Wu et al. [85]
extracted features from the HTTP traffic that generated by a running application. They parsed the HTTP
traffic into HTTP flows using a six-tuple (host, method, page, parameter, value, type) and filtered out
the library traffic. Then, they used the HTTP Flow Distance algorithm and Hungarian Method algo-
rithm to calculate similarity between two HTTP flows and repackaged applications were identified if the
similarity score was high.

Dynamically collecting the signatures has its own limitation of efficiency and completeness. In addi-
tion, some techniques also demand many other applications for comparison while our approach performs
detection constricted in each single application.

6. Conclusion

In this paper, we propose a code clustering-based malware detection mechanism which requires no
prior knowledge of the target malware. Based on the mechanism, we devise a two-stage detection ap-
proach for two representative kinds of malware, the UEFI rootkits and the piggybacked Android appli-
cations. For both types of malware, the approach first clusters the modules according to the interactive
relations extracted from the code. The outliers are exposed. Then distances between the outliers and the
largest cluster are computed in UEFI rootkit detection. When a given UEFI firmware shows a larger dis-
tance than an empirical threshold, it is reported as infected. The second stage in piggybacked Android
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application detection differs. It leverages the organizational similarities of the modules to aggregate the
outliers into larger clusters. If at last multiple clusters exist, i.e., the maximum outlier distance is non-
zero, piggybacking is reported. We implement the prototypes and evaluate them on existing real-world
malware samples. The results show a good performance of our approach. All infected UEFI firmwares
are detected without false negatives and all benign samples are identified without false warnings. The
approach also achieves a high F1 score (90.66%) for piggybacked Android application detection when
the popular third-party libraries are eliminated, with both the precision rate and recall rate above or near
90%. While the experiments illustrate an acceptable performance, the approach has some deficiencies as
discussed in Section 4 and we leave them in future work to explore more valuable features and advanced
techniques as well as to apply the approach on more types of malware.

Acknowledgments

This work is supported in part by National Natural Science Foundation of China (NSFC) under grants
U1836209 and 61802413, the Fundamental Research Funds for the Central Universities, and the Re-
search Funds of Renmin University of China under grant 19XNLG02. Any opinions, findings, and con-
clusions in this paper are those of the authors only and do not necessarily reflect the views of our
sponsors.

References

[1] A. Allievi, UEFI technology: Say hello to the Windows 8 bootkit, 2012.
[2] K. Allix, T.F. Bissyandé, J. Klein and Y. Le Traon, AndroZoo: Collecting millions of Android apps for the research

community, in: 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR), IEEE, 2016, pp. 468–
471.

[3] K. Arnold, J. Gosling and D. Holmes, The Java Programming Language, Addison Wesley Professional, 2005, pp. 43–62.
[4] Asus, Asus support, https://asus-drivers-download-center.blogspot.com/2018/11/asus-x550c-drivers-for-windows-8-64-

bit.html, accessed 16 March 2019.
[5] M. Backes, S. Bugiel and E. Derr, Reliable third-party library detection in Android and its security applications, in:

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, ACM, 2016, pp. 356–
367.

[6] O. Bazhaniuk, Y. Bulygin, A. Furtak, M. Gorobets, J. Loucaides, A. Matrosov and M. Shkatov, Attacking and de-
fending BIOS in 2015, in: ReCon Conference, 2015, http://www.intelsecurity.com/advanced-threat-research/content/
AttackingAndDefendingBIOS-RECon2015.pdf.

[7] A. Boursalian, Bootbandit: A macOS bootloader attack, 2017.
[8] Y. Bulygin, A. Furtak and O. Bazhaniuk, A tale of one software bypass of Windows 8 Secure Boot, Black Hat USA, 2013.
[9] K. Chen, P. Liu and Y. Zhang, Achieving accuracy and scalability simultaneously in detecting application clones on

Android markets, in: Proceedings of the 36th International Conference on Software Engineering, ACM, 2014, pp. 175–
186.

[10] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou and P. Liu, Finding unknown malice in 10 seconds:
Mass vetting for new threats at the Google-play scale, in: 24th {USENIX} Security Symposium ({USENIX} Security 15),
2015, pp. 659–674.

[11] M. Christodorescu, S. Jha, S.A. Seshia, D. Song and R.E. Bryant, Semantics-aware malware detection, in: 2005 IEEE
Symposium on Security and Privacy, IEEE, 2005, pp. 32–46. doi:10.1109/SP.2005.20.

[12] D. Cooper, W. Polk, A. Regenscheid and M. Souppaya, BIOS protection guidelines, NIST Special Publication, 2011.
[13] I.D. Corporation, Smartphone market share, https://www.idc.com/promo/smartphone-market-share/os, accessed

22 March 2019.
[14] J. Crussell, C. Gibler and H. Chen, Attack of the clones: Detecting cloned applications on Android markets, in: European

Symposium on Research in Computer Security, Springer, 2012, pp. 37–54.
[15] J. Crussell, C. Gibler and H. Chen, AnDarwin: Scalable detection of Android application clones based on semantics, IEEE

Transactions on Mobile Computing 14(10) (2015), 2007–2019. doi:10.1109/TMC.2014.2381212.

https://asus-drivers-download-center.blogspot.com/2018/11/asus-x550c-drivers-for-windows-8-64-bit.html
https://asus-drivers-download-center.blogspot.com/2018/11/asus-x550c-drivers-for-windows-8-64-bit.html
http://www.intelsecurity.com/advanced-threat-research/content/AttackingAndDefendingBIOS-RECon2015.pdf
http://www.intelsecurity.com/advanced-threat-research/content/AttackingAndDefendingBIOS-RECon2015.pdf
https://doi.org/10.1109/SP.2005.20
https://www.idc.com/promo/smartphone-market-share/os
https://doi.org/10.1109/TMC.2014.2381212


AUTHOR  C
OPY

H. Li et al. / Identifying parasitic malware as outliers by code clustering 187

[16] Dell, Dell support, https://www.dell.com/support/home/bg/en/bgbsdt1/product-support/product/latitude-e6320/drivers,
https://www.dell.com/support/home/bg/en/bgbsdt1/product-support/product/precision-t1600/drivers, accessed 16 March
2019.

[17] C. Domas, The memory sinkhole – Unleashing an x86 design flaw allowing universal privilege escalation, Black Hat
USA, 2015.

[18] L. Duflot, O. Levillain, B. Morin and O. Grumelard, System management mode design and security issues, IT Defense,
2010.

[19] C. Eagle, The IDA Pro Book, 2nd edn, No Starch Press, 2011.
[20] S. Embleton, S. Sparks and C.C. Zou, SMM rootkit: A new breed of OS independent malware, Security and Communica-

tion Networks 6(12) (2013), 1590–1605. doi:10.1002/sec.166.
[21] ESET Research, LOJAX: First UEFI rootkit found in the wild, courtesy of the Sednit group, 2018, https://www.

welivesecurity.com/wp-content/uploads/2018/09/ESET-LoJax.pdf.
[22] M. Fan, J. Liu, W. Wang, H. Li, Z. Tian and T. Liu, DAPASA: Detecting Android piggybacked apps through sensitive

subgraph analysis, IEEE Transactions on Information Forensics and Security 12(8) (2017), 1772–1785. doi:10.1109/
TIFS.2017.2687880.

[23] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa and H. Yin, Scalable graph-based bug search for firmware images, in:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, ACM, 2016, pp. 480–
491.

[24] Github, EFI scripts for IDA Pro, https://github.com/snare/ida-efiutils, accessed 16 March 2019.
[25] Github, UEFITool, https://github.com/LongSoft/UEFITool, accessed 16 March 2019.
[26] M. Giuliani, Mebromi: The first BIOS rootkit in the wild, 2011, http://blog.webroot.com/2011/09/13/

mebromi-thefirst-bios-rootkit-in-the-wild/.
[27] L. Glanz, S. Amann, M. Eichberg, M. Reif, B. Hermann, J. Lerch and M. Mezini, CodeMatch: Obfuscation won’t conceal

your repackaged app, in: Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, ACM,
2017, pp. 638–648.

[28] H. Gonzalez, N. Stakhanova and A.A. Ghorbani, Droidkin: Lightweight detection of Android apps similarity, in: Interna-
tional Conference on Security and Privacy in Communication Systems, Springer, 2014, pp. 436–453.

[29] Google Developers, The online Android developers documentation, https://developer.android.com/docs, accessed 14 April
2019.

[30] B. Grill, A. Bacs, C. Platzer and H. Bos, “Nice Boots!” – A large-scale analysis of bootkits and new ways to stop them,
in: International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, Springer, 2015,
pp. 25–45. doi:10.1007/978-3-319-20550-2_2.

[31] Q. Guan, H. Huang, W. Luo and S. Zhu, Semantics-based repackaging detection for mobile apps, in: International Sym-
posium on Engineering Secure Software and Systems, Springer, 2016, pp. 89–105. doi:10.1007/978-3-319-30806-7_6.

[32] L. Haukli, Exposing bootkits with BIOS emulation, Black Hat USA, 2014.
[33] S. Heron, Parasitic malware: The resurgence of an old threat, Network Security 2008(3) (2008), 15–18. doi:10.1016/

S1353-4858(08)70032-1.
[34] J. Huang, X. Zhang, L. Tan, P. Wang and B. Liang, AsDroid: Detecting stealthy behaviors in Android applications by

user interface and program behavior contradiction, in: Proceedings of the 36th International Conference on Software
Engineering, ACM, 2014, pp. 1036–1046.

[35] Intel Corporation, EDK II Module Writer’s Guide, Version 0.7, 2010, pp. 50–58, https://github.com/tianocore/tianocore.
github.io/wiki/EDK-II-User-Documentation.

[36] X. Jiang, X. Wang and D. Xu, Stealthy malware detection through VMM-based out-of-the-box semantic view reconstruc-
tion, in: Proceedings of the 14th ACM Conference on Computer and Communications Security, ACM, 2007, pp. 128–138.

[37] S. Jiao, Y. Cheng, L. Ying, P. Su and D. Feng, A rapid and scalable method for Android application repackaging detection,
in: Information Security Practice and Experience, Springer, 2015, pp. 349–364. doi:10.1007/978-3-319-17533-1_24.

[38] J.-H. Jung, J.Y. Kim, H.-C. Lee and J.H. Yi, Repackaging attack on Android banking applications and its countermeasures,
Wireless Personal Communications 73(4) (2013), 1421–1437. doi:10.1007/s11277-013-1258-x.

[39] S. Kaczmarek, UEFI and Dreamboot, in: Hack in the Box Security Conference, Kuala Lumpur, Malasia, 2013.
[40] C. Kallenberg, S. Cornwell, X. Kovah and J. Butterworth, Setup for failure: Defeating Secure Boot, in: The Symposium

on Security for Asia Network (SyScan), 2014.
[41] C. Kallenberg, X. Kovah, J. Butterworth and S. Cornwell, Extreme privilege escalation on Windows 8/UEFI systems,

Black Hat USA, 2014.
[42] P. Kleissner, Stoned bootkit, Black Hat USA, 2009.
[43] Krebs on Security, Carberp code leak stokes copycat fears, https://krebsonsecurity.com/tag/carberp-source-code-leak/,

accessed 19 March 2019.
[44] N. Kumar and V. Kumar, Vbootkit: Compromising Windows Vista security, Black Hat Europe, 2007.

https://www.dell.com/support/home/bg/en/bgbsdt1/product-support/product/latitude-e6320/drivers
https://www.dell.com/support/home/bg/en/bgbsdt1/product-support/product/precision-t1600/drivers
https://doi.org/10.1002/sec.166
https://www.welivesecurity.com/wp-content/uploads/2018/09/ESET-LoJax.pdf
https://www.welivesecurity.com/wp-content/uploads/2018/09/ESET-LoJax.pdf
https://doi.org/10.1109/TIFS.2017.2687880
https://doi.org/10.1109/TIFS.2017.2687880
https://github.com/snare/ida-efiutils
https://github.com/LongSoft/UEFITool
http://blog.webroot.com/2011/09/13/mebromi-thefirst-bios-rootkit-in-the-wild/
http://blog.webroot.com/2011/09/13/mebromi-thefirst-bios-rootkit-in-the-wild/
https://developer.android.com/docs
https://doi.org/10.1007/978-3-319-20550-2_2
https://doi.org/10.1007/978-3-319-30806-7_6
https://doi.org/10.1016/S1353-4858(08)70032-1
https://doi.org/10.1016/S1353-4858(08)70032-1
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II-User-Documentation
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II-User-Documentation
https://doi.org/10.1007/978-3-319-17533-1_24
https://doi.org/10.1007/s11277-013-1258-x
https://krebsonsecurity.com/tag/carberp-source-code-leak/


AUTHOR  C
OPY

188 H. Li et al. / Identifying parasitic malware as outliers by code clustering

[45] N. Kumar and V. Kumar, VBootKit 2.0 – Attacking Windows 7 via Boot Sectors, in: Proceedings of the Hack in the Box
Conference (HITBSecConf), 2009.

[46] L. Li, T.F. Bissyande and J. Klein, Rebooting research on detecting repackaged Android apps: Literature review and
benchmark, IEEE Transactions on Software Engineering (2019). doi:10.1109/TSE.2019.2901679.

[47] L. Li, T.F. Bissyandé, J. Klein and Y. Le Traon, An investigation into the use of common libraries in Android apps, in:
2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), Vol. 1, IEEE,
2016, pp. 403–414.

[48] L. Li, D. Li, T.F.D.A. Bissyande, D. Lo, J. Klein and Y. Le Traon, Ungrafting malicious code from piggybacked Android
apps, Technical report, SnT, 2016.

[49] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue and W. Huo, LibD: Scalable and precise third-party library
detection in Android markets, in: 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), IEEE,
2017, pp. 335–346. doi:10.1109/ICSE.2017.38.

[50] P. Lin, Hacking Team uses UEFI BIOS rootkit to keep RCS 9 agent in target systems, Trend Micro, 2015,
https://blog.trendmicro.com/trendlabs-security-intelligence/hacking-team-uses-uefi-bios-rootkit-to-keep-rcs-9-agent-in-
target-systems/.

[51] Y.-D. Lin, Y.-C. Lai, C.-H. Chen and H.-C. Tsai, Identifying Android malicious repackaged applications by thread-grained
system call sequences, Computers & Security 39 (2013), 340–350. doi:10.1016/j.cose.2013.08.010.

[52] M. Linares-Vásquez, A. Holtzhauer and D. Poshyvanyk, On automatically detecting similar Android apps, in: 2016 IEEE
24th International Conference on Program Comprehension (ICPC), IEEE, 2016, pp. 1–10.

[53] I. Lord, BIOS rootkit: Welcome home, my Lord!, 2007, https://blog.csdn.net/icelord/article/details/1604884.
[54] J. Loucaides and Y. Bulygin, Platform security assessment with CHIPSEC, in: CanSecWest Applied Security Conference

(CanSecWest 2014), 2014.
[55] F. Lyu, Y. Lin and J. Yang, An efficient and packing-resilient two-phase Android cloned application detection approach,

Mobile Information Systems 2017 (2017), 6958698. doi:10.1155/2017/6958698.
[56] F. Lyu, Y. Lin, J. Yang and J. Zhou, Suidroid: An efficient hardening-resilient approach to Android app clone detection,

in: 2016 IEEE Trustcom/BigDataSE/ISPA, IEEE, 2016, pp. 511–518. doi:10.1109/TrustCom.2016.0104.
[57] Z. Ma, H. Wang, Y. Guo and X. Chen, LibRadar: Fast and accurate detection of third-party libraries in Android apps, in:

Proceedings of the 38th International Conference on Software Engineering Companion, ACM, 2016, pp. 653–656.
[58] N. Marastoni, A. Continella, D. Quarta, S. Zanero and M.D. Preda, GroupDroid: Automatically grouping mobile malware

by extracting code similarities, in: Proceedings of the 7th Software Security, Protection, and Reverse Engineering/Software
Security and Protection Workshop, ACM, 2017, p. 1.

[59] A. Matrosov, Olmasco bootkit: Next circle of TDL4 evolution (or not?), ESET, 2012.
[60] A. Matrosov, Rovnix bootkit framework updated, 2012.
[61] J. Rauchberger, R. Luh and S. Schrittwieser, Longkit – A universal framework for BIOS/UEFI rootkits in system man-

agement mode, in: ICISSP, 2017, pp. 346–353.
[62] E. Rodionov, Win32/Gapz: New bootkit technique, 2012.
[63] M. Rothman, V. Zimmer and T. Lewis, Harnessing the UEFI Shell: Moving the Platform Beyond DOS, Walter de Gruyter

GmbH & Co KG, 2017. doi:10.1515/9781501505751.
[64] J. Schiffman and D. Kaplan, The SMM rootkit revisited: Fun with USB, in: 2014 Ninth International Conference on

Availability, Reliability and Security, IEEE, 2014, pp. 279–286. doi:10.1109/ARES.2014.44.
[65] Y. Shao, X. Luo, C. Qian, P. Zhu and L. Zhang, Towards a scalable resource-driven approach for detecting repack-

aged Android applications, in: Proceedings of the 30th Annual Computer Security Applications Conference, ACM, 2014,
pp. 56–65.

[66] D. Soeder and R. Permeh, eEye BootRoot, Black Hat USA, 2005.
[67] C. Soh, H.B.K. Tan, Y.L. Arnatovich and L. Wang, Detecting clones in Android applications through analyzing user

interfaces, in: Proceedings of the 2015 IEEE 23rd International Conference on Program Comprehension, IEEE Press,
2015, pp. 163–173. doi:10.1109/ICPC.2015.25.

[68] M. Sun, M. Li and J. Lui, DroidEagle: Seamless detection of visually similar Android apps, in: Proceedings of the 8th
ACM Conference on Security & Privacy in Wireless and Mobile Networks, ACM, 2015, p. 9.

[69] X. Sun, Y. Zhongyang, Z. Xin, B. Mao and L. Xie, Detecting code reuse in Android applications using component-based
control flow graph, in: IFIP International Information Security Conference, Springer, 2014, pp. 142–155.

[70] K. Tian, D.D. Yao, B.G. Ryder, G. Tan and G. Peng, Detection of repackaged Android malware with code-heterogeneity
features, IEEE Transactions on Dependable and Secure Computing 17(1) (2017), 64–77. doi:10.1109/TDSC.2017.
2745575.

[71] TianoCore, EDK II project, 2019, https://github.com/tianocore/edk2.
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