
AUTHOR C
OPY

Journal of Computer Security 28 (2020) 269–293 269
DOI 10.3233/JCS-191325
IOS Press

Do not jail my app: Detecting the Android
plugin environments by time lag
contradiction

Yifang Wu a,b, Jianjun Huang a,b,∗, Bin Liang a,b and Wenchang Shi a,b

a School of Information, Renmin University of China, Beijing, China
b Key Laboratory of DEKE, Renmin University of China, MOE, China
E-mails: lizhiwuyi@ruc.edu.cn, hjj@ruc.edu.cn, liangb@ruc.edu.cn, wenchang@ruc.edu.cn

Abstract. Many Android apps today face problems such as the large application package (APK) size, frequent updates, and
so on. The Android plugin technology provides a solution for app developers, allowing a running app to dynamically load and
execute a separate APK file without installing it in the system. These dynamically loaded APKs are called plugins. In Android
app markets, many multi-instance apps abuse this technology to load normal social apps as plugins. While satisfying the users’
demand for logging into multiple accounts simultaneously, it brings new security threats to the legitimate apps. Sensitive API
invocations can be hijacked and private data becomes accessible to malicious multi-instance apps. Therefore, identifying the
running environments becomes necessary. In this paper, we propose a novel detection mechanism, named PluginAssassin, to
identify whether an app is running as a plugin. PluginAssassin uses the time ratio of different activity launching procedures
to determine the running environment, conforming to the observed time lag contradiction phenomenon. We also present a
mitigation mechanism for the �T attack specific to our approach. We collect 50 multi-instance apps from two app markets and
implement PluginAssassin in five popular social apps. We assess the effectiveness on three devices and the experimental results
show that PluginAssassin can detect plugin environments effectively.

Keywords: Android, plugin environment, time lag contradiction, time ratio, �T attack

1. Introduction

With the rapid development of the Android platform, people are heavily dependent on mobile appli-
cations (a.k.a., apps), which bring convenience to our daily life, study and work. In the meantime, apps
tend to embody more and more functionalities, enlarging the size of the installation files (e.g., the APK
files in Android). The plugin technology was proposed a few years ago, originally for reducing the size
of installation files and providing an easier way for functionality update.1 Although the dynamic code
loading techniques [16,26,27,47] support dynamic loading of code snippets during an app’s running,
it has some limitations in resource update and components addition. The plugin technology allows an
independent app or APK to be loaded within another app, skipping the typical installation process on
devices. With this technology, modules can be decoupled from a giant app and developed in form of
smaller apps. Each modular app is “installed” or “uninstalled” within the scope of the main app which

*Corresponding author. E-mail: hjj@ruc.edu.cn.
1Google I/O 2018 introduced the Android App Bundle [1] that can do the same job, but the open source plugin framework

VirtualApp [39] was released even two years earlier.

0926-227X/20/$35.00 © 2020 – IOS Press and the authors. All rights reserved

mailto:lizhiwuyi@ruc.edu.cn
mailto:hjj@ruc.edu.cn
mailto:liangb@ruc.edu.cn
mailto:wenchang@ruc.edu.cn
mailto:hjj@ruc.edu.cn

AUTHOR C
OPY

270 Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction

consists of only the basic functionalities according to actual usage scenarios. Take a popular Android
app, Baidu [7], as an example. As an app supporting mobile online search, the main APK file only con-
tains basic functionalities such as searching, news push, user management and so on. Some marginal
functionalities like novel reader, game center, wallet and music are enclosed in individual APK files and
loaded on demand. By this means, the vendors can quickly update the functionalities or fix bugs in those
plugged apps silently, instead of transferring a huge full-featured APK file and asking the users to install
the updates frequently.

While app development benefits from the plugin technology, the abuse of this technology has been
found in apps, which are referred to as multi-instance apps. A multi-instance app runs as a host app
in the system and loads another legitimate app as a plugin by utilizing the plugin technology. This
makes multiple instances of the legitimate app exist in the system at the same time. Users can leverage
multi-instance apps to login to different accounts for the same social app on one device, eliminating
the trouble of login and logout for accounts switching. Such usage scenario becomes popular recently.
As we can see later in Table 5 in Section 4, multi-instance apps are popular and have attracted a large
number of users. More specifically, Parallel Space [24] (#2) is one of the most popular in the Google
Play store, with hundreds of millions installations. It’s worth noting that the cost of developing a multi-
instance app is low. There are two open-source plugin technology frameworks, DroidPlugin [13] and
VirtualApp [39], which provide the basic support of loading arbitrary apps as plugins. The commercial
version of VirtualApp is even compatible with the latest Android 10, i.e., being capable to bypass the
restrictions on non-SDK interfaces starting in Android 9 [28]. Based on the capability of the technology,
developers can implement other functionalities as well. For example, some multi-instance apps offer the
function of mocking device information for plugin apps, such as the location and phone models.

Along with the convenience, being loaded as a plugin threatens the security of the legitimate apps. As
a popular social app, Twitter [37] has already suffered from a variety of phishing attacks [31], which
aim at stealing users’ accounts and credentials. The researchers also found a new kind of malware,
DualTwitter [35], which embeds a plugin technology framework, launching the normal Twitter app as a
plugin. Because the plugin technology grants the ability to hijack all API calls in the plugin app to the
host app, DualTwitter can steal the user’s inputs by hijacking corresponding APIs and extract the login
information. Besides, a multi-instance app can access all the files created by the plugin app, which eases
the host app to acquire the private data that should be isolated by Android’s security policy. To further
illustrate the security threats to legitimate apps, researchers conduct several demo attacks to popular
social apps [45]. Social apps usually store login tokens of user accounts in their private directories. By
loading a social app as a plugin, adversaries can easily dump all the files under its private directory and
then install the same social app on an emulator or another smartphone with all the private files of the
victim app. Without explicitly obtaining the credential information such as the username and password,
adversaries can login as the victim and take control of the account. In addition to the login tokens,
chatting history or email content can also be leaked in a similar attack way. The researchers also point
out that attackers can forge emails by loading the Gmail application to achieve more malicious purposes.

Adversaries may achieve the same purposes by repackaging target apps, but with the development
of various code protection methods like code obfuscation [6,21] and packing techniques [14,46], it be-
comes more and more difficult. Compared with repackaged apps, of which users are concerned about
the authenticity, a multi-instance app requires no change to the plugin apps and indeed attracts the users
to load whatever they want. In other words, adversaries can do something evil more stealthily.

Considering these potential security threats, it is necessary for an app to detect whether it is running
as a plugin. Plugin-Killer [23], to the best of our knowledge, is the only feasible solution for normal

AUTHOR C
OPY

Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction 271

Android apps to detect the plugin environments at present. Unfortunately, as we will elaborate in Sec-
tion 2.3, Plugin-Killer can be bypassed easily because a multi-instance app can take full control of the
plugin app. Hence, a more robust detection method to protect legitimate apps from being loaded as
plugins is deem required.

In this paper, we propose a novel detection mechanism, named PluginAssassin, integrated to normal
Android apps to detect the plugin environments. Our insight is that the plugin technology needs to in-
terpose the Android component launching operation to bypass system restrictions, and this interference
prolongs the time consumption. We focus on only one type of Android components and observe that
launching an activity under two scenarios, in the same process and in a new process, has dispropor-
tionate time overhead when an app is running in plugin environments, resulting in a phenomenon that
we call the “time lag contradiction”. Based on this observation, PluginAssassin collects the elapsed time
and computes the ratio of the activity launching under two scenarios. The ratio is compared with a prede-
fined threshold to judge the type of current environment. Compared with Plugin-Killer, PluginAssassin
involves much fewer APIs that do not directly describe an app’s features, leaving less chance for plugin
environments to bypass. However, we discuss the opportunity for a plugin environment to evade the
detection and present the �T attack. PluginAssassin mitigates the challenge by probing the launching
procedure to ensure the time authenticity and enhance the approach’s reliability.

We evaluate PluginAssassin on five popular social apps and 50 real-world multi-instance apps. Three
different Android smartphones are used in the experiments. We compute the threshold with a few ran-
domly selected samples and apply it to all the other test cases. The results show that, except those cases in
which the multi-instance apps do not support the functionalities required by the guest apps, PluginAssas-
sin successfully identifies all plugin environments without false alarms or false negatives, demonstrating
the effectiveness of our approach.

Our work makes the following major contributions:

• We present PluginAssassin, which detects the running environments based on the time lag contra-
diction of activity launching in different scenarios. PluginAssassin labels the plugin environments
by comparing the computed time ratio with a given threshold.

• We discuss a potential challenge specific to PluginAssassin, i.e., the �T attack, and propose a
mitigation mechanism which probes the existence of an attack along with the activity launching.

• We evaluate PluginAssassin on real-world social apps, multi-instance apps and devices. The results
show that PluginAssassin accurately discovers the plugin environments.

The rest of this paper is structured as follows. Section 2 provides the technical background of the
Android plugin technology, and gives a look at Plugin-Killer. In Section 3, we present our approach in
detail, including a potential threat and its mitigation. Afterwards, Section 4 evaluates our approach and
discusses the results. We discuss some limitations in Section 5 and survey the related work in Section 6.
Finally, we conclude this paper in Section 7.

2. Background

In this section, we first demystify the Android plugin technology, presenting a high level overview.
Then without losing generality, we describe how a host app utilizes the plugin technology to launch An-
droid activities. At last, we talk about Plugin-Killer [23], a lightweight defense mechanism that prevents
Android apps from being plugin apps running in a plugin environment. We also show how its defense
solutions can be easily bypassed.

AUTHOR C
OPY

272 Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction

First of all, we clarify some terms that are commonly used in this paper. The plugin environment de-
notes a set of programs and resources which are necessary to execute another independent program (i.e.,
an Android app). A plugin environment can either be merely a framework for secondary development or
a host app that already embodies the framework. The host apps are also called multi-instance apps. The
plugin environment and the host app are interchangeably used in this paper. A plugin app is an Android
app that runs within a host app. It is also used as guest app sometimes. We call launching a component
within the same process an intra-process launching, while in an inter-process scenario, the component
is started in a new process.

2.1. Basis for the plugin technology

Android apps typically contain many components such as Activity, Service, Broadcast Receiver and
Content Provider, and run on top of the Android framework [3]. When an Android app (or an APK
file) is installed on a device, the Android system maintains some records about the app and the regis-
tered components defined in AndroidManifest.xml. Such records are useful when the framework
launches the app or one of its component, for instance, starting a new activity for editing emails in a mail
app. Without installing an app means the corresponding records are missing and the Android framework
is not able to discover the components within the app as they are not registered. The plugin technology
addresses this issue, making it possible to run the apps not installed on the Android system, even if the
Android framework does not know the existence of the guest app.

We examined the two open-source Android plugin frameworks, DroidPlugin [13] and VirtualApp [39],
to figure out how they play tricks on the Android system and successfully execute guest apps. Figure 1
demonstrates the overview of the plugin technology. In general, the host app, which embeds a plugin
framework, is installed on a device as a normal app. The embedded plugin framework provides the ability
to manage the plugin apps and hook necessary API invocations. Besides, the plugin framework contains
a special AndroidManifest.xml, which defines lots of stub components. The stub components are
registered to the system as the host app installation. When launching an app or a component, the plugin
framework hooks the interactions between the guest app and the Android framework, requesting the
system to launch a stub component instead. The system checks succeed as the stub component has been

Fig. 1. Plugin framework overview.

AUTHOR C
OPY

Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction 273

registered, but subsequent operations are interfered by the plugin framework via hooking, replacing the
stub component with the target component.

For example, as shown in Fig. 1, when an activity A in the plugin app is trying to start another activity
B via startActivity(), the invocation falls into the hooking module, which requests the Android
framework to launch a stub activity S. The Android framework performs some checks and then notifies
the plugin process to instantiate and start S. The hooking module hijacks the response, and launches the
original target activity B through the reflection mechanism. The Android framework does not interact
with the plugin app directly, but with the help of the plugin framework, the graphical user interface
associated with A is successfully transited to that for B.

In order to avoid the interference among different guest apps, the host app and each guest app usually
run in different processes. However, since the Android sandbox mechanism prevents users – in most
cases, each app is assigned an unique uid – from accessing resources of other users [4], in order for the
plugin framework to interleave the execution of a guest app, they share the same uid. Hence, the sandbox
mechanism is evaded and this allows the host app to access all resources and information associated with
the guest apps, either public or private. Risks appear as adversaries can leverage this feature to steal the
user’s privacy data, as done in DualTwitter [35], or perform many other unexpected behaviors [45].

2.2. Launching plugin activities

We omit the implementation details of how the plugin environment loads specific classes and resources
from a plugin app [23]. For our paper, we describe the conceptual workflow of launching an activity,
which motivates our solution for detecting the plugin environments.

Figure 2 illustrates the normal flow of launching an activity in Android. When an activity A tries to
launch another activity B, it invokes an API like startActivity() and sends an Intent message
to Activity Manager Service (a.k.a., AMS) via Binder, the Android-specific inter-process
communication mechanism [2]. Once the request arrives, AMS, running in the process system_server,
performs a series of checks, for example, checking whether the target activity B has been registered to
the system. AMS also deals with the management of activity stacks and tasks. Typically, after pausing
the top activity A, AMS sends a LAUNCH_ACTIVITY message to the app process. A callback han-
dleLaunchActivity() responds the message. The app process instantiates the target activity B and
executes the corresponding functions, switching the user interface. It is notable that, if B is declared to

Fig. 2. Launching an activity in Android.

AUTHOR C
OPY

274 Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction

be launched in a new process (with “android:process” property in its declaration), AMS notifies
the system to fork a new process. The app’s Application is then initialized within the new process, and
afterwards, similar activity instantiation and execution are done.

The above workflow fails when the app is indeed a guest app running in a plugin environment as
the app is not installed and the target activity B is not known to the system. AMS checks fail if the
Intent message is directly sent to AMS. The plugin technology introduces “component replacement”
to bypass the AMS checks. As mentioned earlier, the plugin environment defines many stub components
in AndroidManifest.xml and registers them to the system when installing the host app. When
a plugin component is about to be launched, the host app creates a new Intent wrapping a stub
component, which is sent to AMS. Without loss of generality, we depict below how a host app launches
an activity in the plugin app.

In real-world Android apps, most activities are launched in the same process. Figure 3 illustrates
how to launch a plugin activity B within the same process. We aggregate the injected operations into
two grey areas (1 and 2). The hooking module, once receiving a request for launching an activity,
replaces B with a stub one, say Stub01, which is defined in AndroidManifest.xml of the host app,
and wraps a new Intent to AMS. After AMS checks succeed, the hijacked callback provided by the
plugin environment replaces the wrapped Intent with the original one and launches B.

Figure 4 shows the flow of launching a plugin activity C in a new process. The procedure before AMS
responds is nearly the same as that in Fig. 3. But when AMS checks succeed, a new process (pid_3) is
created, within which the guest app’s application needs to be initialized. However, as the system cannot

Fig. 3. Launching an activity in the same process (extra code in grey).

Fig. 4. Launching an activity in a new process (extra code in grey).

AUTHOR C
OPY

Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction 275

see the plugin app, it initializes the host app’s application, which prepares the plugin environment for
the new process. Then the plugin environment initializes the guest application, unwraps the replaced
Intent and uses the original one to start the actual target C. Essentially, three extra phases are injected
to the flow (3 , 4 and 5).

2.3. Plugin-Killer

Luo et al. present Plugin-Killer [23], a lightweight defense mechanism, to prevent Android apps from
being launched as plugin apps. Embedded within normal apps, it can detect the existence of plugin
environments and terminate the enclosing apps if needed. The intuition behind Plugin-Killer is that,
when an app is running as a plugin, there are definitely some differences in the running environment
with the one created by system. Hence, Plugin-Killer collects and compares certain information with
the counterpart under system environment. Any inconsistency indicates that the app is running in plugin
environments. Below we will discuss the methods proposed by Plugin-Killer and show why they are not
resistant to attacks.

By introspecting the code of Plugin-Killer, we find four types of information are collected in detection,
the process name, the component name, the private directory path and the permission information (see
the first column in Table 1).

For the process name, Plugin-Killer obtains all the running processes that share the same uid with it-
self, and checks their names. Generally, a process’s name contains the package name of the correspond-
ing app. However, in plugin environment, the host app process is also running with the same uid, so
Plugin-Killer can detect the existence of the host app that has a different process name. The component
name checking is conducted in a similar way. In plugin environments, the name of a plugin compo-
nent will be the stub component name defined in the host app. For example, a service AntiCheck-
MainService launched by Plugin-Killer will have a name of ServiceStub$StubP01$P00 due
to the “component replacement” introduced by the DroidPlugin framework. Plugin-Killer considers
the running environment as a plugin environment if it finds a wrong name of a component. In ad-
dition, since a plugin app is not installed by the system, it does not have its own private directory
which is generally located in /data/data/{package_name}/. All the file accesses will be redirected to
another directory owned by the host app. For example, DroidPlugin creates a separate directory located
in /data/data/{host_app_package_name}/Plugin/{plugin_app_package_name}/data/ as the private di-
rectory of each plugin app. If the private file path does not start with “/data/data/{package_name}/”,
Plugin-Killer terminates the app’s running. Moreover, in Android, apps need to declare specific permis-
sions to do some sensitive operations, such as sending SMS. To successfully execute arbitrary guest
apps, host apps tend to declare quite a lot of permissions, generally much more than what a plugin app
requires. To detect plugin environments, Plugin-Killer checks if an undeclared permission is granted
at runtime. If so, it indicates that the app is running as a guest because the host app have declared the
unexpected permission.

While the proposed approaches can be effective to some extent, they can be easily bypassed by the
plugin environments. To collect such running environment information, some specific Android APIs are
invoked by Plugin-Killer. Table 1 lists the APIs to obtain the information under the system environment
and the DroidPlugin environment. Suppose the package name of the host app and the plugin app are
com.example.hostapp and com.example.testapp, respectively. As described in Section 2.2, the star-
tActivity() API is hijacked by the plugin environment to launch the plugin’s activity. Similarly,
the APIs in Table 1 can also be hijacked. When Plugin-Killer invokes these APIs, the plugin environ-
ment modifies their return values and replays them with the values under the system environment. Take

AUTHOR C
OPY

276 Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction

Table 1

Information collected by Plugin-Killer with related APIs and values under different running environments

Information type Related API Information value
System environment DroidPlugin environment

Process name ActivityManager.
getRunningAppProcesses()

com.example.testapp com.example.testapp
com.example.hostapp

Component name ActivityManager.
getRunningServices()

com.example.testapp.
AntiCheckMainSerivice

com.morgoo.droidplugin.stub.
ServiceStub$StubP01$P00

Private directory
filepath

PackageManager.
getApplicationInfo()

/data/data/com.
example.testapp/

/data/data/com.
example.hostapp/Plugin/
com.example.testapp/data/

Permission
information

PackageManager.
checkPermission(android.
permission.SEND_SMS, . . .)

PackageManager.
PERMISSION_DENIED

PackageManager.
PERMISSION_GRANTED

the component name as an example. After the plugin environment gets the actual return value of Ac-
tivityManager.getRunningServices(), it extracts the stub component name and finds the
original target component of the plugin app. Then, the plugin environment initializes a new object based
on the target component and returns it to the plugin app. Plugin-Killer cannot distinguish the system
environment and the plugin environment if all the information in Table 1 are replayed in such ways.
In other words, Plugin-Killer is not robust enough to defend the real-world plugin technology. We also
empirically evaluated the attacks with an implementation on top of DroidPlugin and all of the defense
techniques provided by Plugin-Killer are successfully bypassed.

3. Approach: PluginAssassin

In this section, we propose PluginAssassin based on the observation of time lag contradiction between
the intra-process and inter-process activity launching in plugin environments. We will first present the
plugin environment capability assumptions, after which we discuss our observations and why some
thoughts do not work. Then we detail our approach, a potential threat and the corresponding mitigation.
At the end, we summarize how PluginAssassin is generally implemented.

3.1. Threat model

PluginAssassin is designed to detect whether an app is running in a plugin environment. Considering
the nature of attack-defense countermeasures, we cannot expect to solve the problem once and for all.
Therefore, we assume the plugin environment has the following capabilities:

• The host app can hook all the API invocations in a plugin app and modify the actual arguments and
results. In the meantime, the guest app’s utility must be preserved.

• The host app can only run as an ordinary user in Android, i.e., it is installed as a third-party app
instead of a system or privileged app.

The first requirement relaxes the restriction, which invalidates the Plugin-Killer solutions as we dis-
cussed in Section 2.3. Though it gives the plugin environments the best ability to interfere the guest app,
we think the major purpose of a plugin environment is to run Android apps as usual instead of running
into crashes or malfunction. As a consequence, in this paper, we require the plugin environments to

AUTHOR C
OPY

Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction 277

preserve the utilities of guest apps. The second assumption limits the ability of the host app to interpose
other apps and the kernel’s running.

3.2. Road to success

Recall the flow of launching a plugin activity in Fig. 3 and Fig. 4. Apparently, the extra embedded
functionalities, such as component replacement for both scenarios (1 , 3 , 4 and 5) and plugin en-
vironment preparation for inter-process launching (2) cost additional time compared with the normal
flows of launching an activity. The keyword in our observation is “time” – the time is a potential property
to distinguish the system environment and the plugin environment.

At first, we try to get clues from the absolute time an interesting operation consumes. We represent the
time period from invoking startActivity() to entering onCreate() in the target activity as Tsp

and Tnp, respectively for intra-process and inter-process scenarios. We use Ti (1 � i � 5) to denote the
time cost of the ith numbered block in Fig. 3 and Fig. 4. Moreover, TS and TN , separately for the two
types of activity launching, express the sum of the time required by all other events than the embedded
code, such as executing the plugin app’s own code, process scheduling, and so on. We have the following
equations:

Tsp =
∑

1�i�2

Ti + TS, Tnp =
∑

3�i�5

Ti + TN . (1)

We are able to measure Tsp and Tnp via APIs like currentTimeMillis(). However, we do not
have oracles about the precise and tight ranges of TS and TN . Many factors can affect their values, for
example, different hardwares, different Android releases, and even different system states at runtime.
The uncertainty of time measurements makes it impossible to devise a technique utilizing the absolutely
elapsed time of the procedures.

Later, we discovered that APIs like clock_gettime() allow apps to obtain the real CPU time
for current process (e.g., the new process) or even a thread in the current process (e.g., the main thread
launching an activity). Even though scheduling, AMS and any other out-of-process effects are excluded,
the problem still exists as we cannot determine a proper threshold which limits how long a target opera-
tion or procedure can take at most. We know that even the same piece of code can cost different time in
different situations. One threshold does not support the detection in arbitrary devices but app developers
are unable to learn many thresholds for all situations.

While the absolute time doesn’t help, we turn our mind to the relative time. Our research question
emits: “Can we compute such a time ratio of two procedures, satisfying that: (1) at least one procedure
involves the code injected by the host apps in plugin environments, i.e., activity launching, and (2) the
ratios for different situations are well distributed such that a simple threshold can easily separate those
for system environments and plugin environments?”

To answer the question, we conducted some pilot studies and collected amounts of data, which shed
some light on the situation, enlightening us to propose an approach based on the observation of the time
lag contradiction.

3.3. Time lag contradiction

As we discussed previously, the plugin environment introduces extra code for both intra-process and
inter-process activity launching during the guest app’s execution, which prolongs the time consumption.

AUTHOR C
OPY

278 Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction

We observed that the plugin environments do not impose proportional time overhead on the two activity
launching scenarios. Formally, we have:

Tsp(plugin environment)

Tsp(system environment)
�≈ Tnp(plugin environment)

Tnp(system environment)
. (2)

We call it the time lag contradiction, which can be used as an indicator of the environment identification.
Given the fact that an app cannot measure the time for both system environment and plugin environment
in the meantime, we convert the inequation to:

Tnp(system environment)

Tsp(system environment)
�≈ Tnp(plugin environment)

Tsp(plugin environment)
. (3)

Now, either side denotes a time ratio and is measurable during one execution.
For intra-process launching, we use Tsp to denote the CPU time for merely the app’s main thread, from

invoking startActivity() to entering onCreate(), covering both T1 and T2. We are unable to
intercept the procedure, as from the guest app’s point of view, only these two locations are visible
for gathering the timestamps. For inter-process launching, startActivity() is invoked in process
pid_2 while onCreate() is executed in process pid_3, as shown in Fig. 4. To simplify the time data
collection, we record the elapsed CPU time when the app is initialized in the new process, namely, within
the constructor of the app’s Application class, notated as Tnp, merely T4 for the embedded functionalities
included. Only some process initialization and the plugin environment preparation affect the value. By
this means, we exclude the influence of different app implementations, only taking into account the
environmental part that the app developers cannot control. We compute the ratio R as follows:

R = Tnp

Tsp

(4)

which, according to our observations, shows significant difference under plugin environments compared
to that under system environments.

Table 2 shows the experimental results of running a simple demo app in a system environment and
two plugin environments powered by DroidPlugin and VirtualApp separately, three times for each. The
experiments are all conducted on an OPPO A37m smartphone with Android 5.1 running. The observed
results clearly satisfy our anticipation of the time lag contradiction. Tsp in plugin environments exceeds
that in system environment by at most 42%, and the optimization in VirtualApp makes the difference
much smaller. However, Tnp is at least seven times bigger in plugin environments than in system envi-
ronment. Using T � to represent the time in the plugin environments and T � to denote the time in the

Table 2

Time costs of launching an activity in different environments (time unit: ns)

System environment DroidPlugin VirtualApp
Tsp Tnp R Tsp Tnp R Tsp Tnp R

73 970 399 51 412 918 0.695 95 306 310 368 260 387 3.864 74 159 693 431 600 699 5.820
67 412 461 45 844 460 0.680 76 372 079 357 651 841 4.683 71 673 463 421 793 686 5.885
69 121 615 50 122 961 0.725 89 919 231 382 009 538 4.248 71 229 309 424 999 235 5.967

AUTHOR C
OPY

Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction 279

system environment, for all the observed (T �
sp, T �

np) and (T �
sp, T �

np), the following formula always holds:

∃α � 6, β � 0.5,

{
T �

np > T �
np + αT �

np,

T �
sp < T �

sp + βT �
sp

⇒ T �
np

T �
sp

>
T �

np + αT �
np

T �
sp + βT �

sp

>
T �

np

T �
sp

. (5)

Our goal is to choose a desirable threshold Rb that satisfies:

∀(
T �

sp, T �
np

)
,
(
T �

sp, T �
np

)
,

T �
np

T �
sp

> Rb >
T �

np

T �
sp

. (6)

According to Table 2, we can simply set Rb = 1, which perfectly differentiates the system environment
from two plugin environments. We will show in Section 4.3 how to scientifically determine Rb for
real-world Android apps and evaluate its effectiveness in other devices as well as in many other plugin
environments.

3.4. �T attack and mitigation

While the preliminary results show the feasibility of our time lag contradiction approach, it suffers
from a simple attack that can be easily implemented. Due to the hooking capability, the hooking module
provided by plugin environment can modify the return value of time acquisition APIs after a hooked
functionality is done, by subtracting the time consumed by the injected code from the actual value. The
plugin environment developers are able to measure Ti that stands for the increment of the execution time.
We denote the corresponding increments as �Tsp = T1 + T2 and �Tnp = T4. If a plugin environment
collects these values and interferes the APIs, we get in the plugin environment that:

R′ = T ′
np

T ′
sp

= T �
np − �Tnp

T �
sp − �Tsp

≈ T �
np

T �
sp

, (7)

where T ′ denotes the intervened time value, T � represents the actual time not modified in the plugin
environment and T � expresses the corresponding time in the system environment. As a plugin activity
launching consists of the normal launching procedure plus the injected behaviors, it is reasonable to
presume that T � ≈ T � − �T . As a result, the above formula indicates that with a simple interference,
the plugin environments can bypass our detection because the ratio in plugin environments approximates
that in system environments. We call this threat the �T attack. The left part of Fig. 5 conceptually shows
how a �T attack is performed in a plugin environment.

To mitigate the �T attack, we adopt a probing strategy to verify the authenticity of Tsp and Tnp. If
either is considered fabricated, we say a �T attack happens, which further infers that the app is currently
running as a guest app and should be terminated immediately. Our �T mitigation mechanism assumes
that each �T is only visible to the process that calculates it. Namely, it won’t be transferred to other
processes. Otherwise, the �T attack can be devised elaborately and intricately to be more difficult to
resist.

As shown in Fig. 5, a probe thread, is started before startActivity(), running along with the
testing thread that launches an activity until the elapsed time is collected. The probe thread launches a

AUTHOR C
OPY

280 Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction

Fig. 5. Intra-process �T attack and detection.

series of requests to acquire the CPU time of the testing thread via clock_gettime(). The interval
H between every two adjacent requests is smaller than a typical �T . Generally, we claim that

ti+1 = ti + H, (8)

where ti denotes the ith time request. Once a �T attack occurs, i.e., the plugin environment camouflages
the time value by subtracting �T from the actual time value, the following formula is satisfied given
that H < �T :

∃j, t ′j+1 = tj+1 − �T = tj + H − �T < tj (9)

in which t ′ represents the interfered time and t denotes the actual value. Both tj+1 and tj are observed
by the probe thread. Such a case violates the natural law in a timeline, so upon its occurrence, we can
directly report the existence of a �T attack in intra-process launching and terminate the running app.

However, this time-probing method fails in the inter-process launching scenario, because the system
call clock_gettime() does not support to acquire the CPU time of other processes. A feasible
method to judge the validity of Tnp is to compare Tnp with the execution time collected from the proc file
system. Given a process ID, a specific record file located at “/proc/{pid}/stat” provides two fields, utime
and stime, illustrating the scheduled time of the process in user mode and kernel mode respectively.
The sum of these two values approximates the execution time of the process. It is notable that utime and
stime are measured in jiffies (or clock ticks), so before the comparison, we convert the tick numbers to
general time values that are measured in nanoseconds using the following transforming relationship:

Tproc = Nuser + Nsys

HZ
× 1 000 000 000, (10)

where Tproc stands for estimated CPU time of the process, Nuser and Nsys denote the clock ticks in utime
and stime. Moreover, HZ is a constant value representing the number of ticks per second, which is 100
in Android.

The probe thread behaves differently to an inter-process scenario. It is created in the main process right
after startActivity() and iteratively queries the system for the PID of the new process based on
its process name that is predefined in AndroidManifest.xml. Although this phase involves some

AUTHOR C
OPY

Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction 281

Android APIs that can also be hijacked, in order to preserve the utility of the guest app, the actual PID
is returned generally. Once the PID is obtained, the estimated execution time Tproc of the new process
can be calculated based on the observed utime and stime. At this moment, the new process has not
reached the point of collecting Tnp, leading to a smaller Tproc than Tnp. However, it serves as a reasonable
indicator to verify Tnp as our experiments and inspection of the plugin environment implementations
show that most jobs have been finished before the plugin environment replaces the stub activity process
name with the target activity process name. The replacement lets the probe thread be able to query the
PID with the process name and soon after that, the point of collecting Tnp is reached. Thus, Tproc is
generally slightly smaller than an unmodified Tnp.

Because of the invisibility of �Tnp to the main process, the plugin environment cannot forge Tproc into
a rational value. If a plugin environment implements the �T attack in the new process, a huge increment
(a.k.a. �Tnp) is subtracted from Tnp, based on the observations of Table 2. A satisfiable relationship
T ′

np < Tproc indicates the existence of a �T attack in the inter-process launching.
If neither �T attack is detected, we consider the collected time values, Tsp and Tnp, not counterfeited

and then apply them for plugin environment detection.
So far, we have not found any plugin environment implementing the �T attack. To verify the validity

of both the attack and defense approaches, we conducted two pilot experiments and present the results
in Section 4.1.

3.5. PluginAssassin

We present PluginAssassin to implement the time lag contradiction detection technique, with the �T

mitigation mechanism equipped. According to above discussions, we show the complete flow diagram
in Fig. 6.

Fig. 6. Flow of PluginAssassin.

AUTHOR C
OPY

282 Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction

Conceptually, the intra-process and inter-process procedures can run in parallel. To reduce the impact
of any noise as much as possible, we choose to collect multiple time values and finally compute the ratio
with their averages. We define in the diagram the iterations of collecting time data as N and the ratio
threshold as Rb. And at the beginning, we initialize two empty sets Ssp and Snp for keeping the multiple
records of time values, for intra-process and inter-process scenarios separately.

For intra-process launching (2 ∼ 5), a probe thread is created, followed by the activity launching.
After the activity is started, PluginAssassin calculates T i

sp, the consumed time of the ith collection. If any
�T attach is detected according to our defense mechanism, the app is directly terminated. Otherwise,
PluginAssassin puts T i

sp into Ssp.
For inter-process launching (2′

∼ 5′), we start a probe thread and try to start an activity in a new
process. Within the probe thread, we iteratively query the PID of the new process, which allows Plugi-
nAssassin to obtain the jiffies of the new process and calculate T i

proc. T i
np is collected in the new process

and the probe thread is stopped. If no �T attack is found, T i
np is inserted into Snp.

The above steps are repeated for N rounds and the averages of Ssp and Snp are computed as Tsp and
Tnp respectively. Then PluginAssassin calculates the ratio R and compare it with the given threshold
Rb. A larger R indicates a plugin environment, so the app is terminated. Otherwise, we think the app is
not running as a plugin app and thus the app continues running.

4. Evaluation

We conducted all our experiments on three real smartphones to investigate the effectiveness of Plugi-
nAssassin across devices. The detail configurations of these smartphones are listed in Table 3.

We discuss below first the pilot experiments for the �T attack, followed by the description of the
real-world apps we used to evaluate PluginAssassin. Then we show how to choose a proper threshold
and present the evaluation results.

4.1. �T experiments

As mentioned in Section 3.4, we conducted two preliminary experiments on some demo apps with the
OPPO smartphone to show the power of a �T attack and the effectiveness of the defense mechanism.

In the first experiment, we prepare two plugin environments. Both are powered by DroidPlugin, one
unchanged and the other roughly instrumented with the �T attack technique. The demo app is equipped
with the naive time lag contradiction detection but without the previously mentioned �T defense mech-
anism. From Table 4, we see that without the �T attack implemented in DroidPlugin, the system envi-
ronment and the plugin environment can be easily differentiated with the ratio comparison (0.681 versus
4.205), similar with the results in Section 3.3. But when DroidPlugin is augmented with the �T by-
passing mechanism, the demo app generates a relatively low ratio (0.765), close to that for the system

Table 3

Configurations of smartphones used in the experiments

Model Android version CPU Memory
OPPO A37m 5.1 MT6750 2 GB
HUAWEI CRR-UL00 6.0 Hisilicon Kirin 935 3 GB
HUAWEI Mate 10 8.0 Hisilicon Kirin 970 6 GB

AUTHOR C
OPY

Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction 283

Table 4

Validating �T attack

Environment Values
Tsp

(unit: ns)
Tnp

(unit: ns)
R

System environment 65 802 385 44 787 925 0.681
DroidPlugin (without �T attack) 82 273 470 345 948 923 4.205
DroidPlugin (with �T attack) 70 049 002 53 597 387 0.765

Fig. 7. Preliminary �T attack results.

environment (0.681) but far away from the one for the pure plugin environment (4.205). We are not
confident to distinguish the plugin environment from the system environment in this case.

The second experiment tests whether the �T defense can be effective. We equip the demo app with the
defense technique and run it in the instrumented DroidPlugin. For the intra-process scenario, we simulate
the interval H with an empty 10 000-loop, about 50 microseconds in the experiment. Figure 7 shows the
time values of the testing thread acquired by the probe thread. We see an obvious declining, more than
13 milliseconds, from t1196 to t1197, indicating the existence of a �T attack. For inter-process activity
launching, we dump Tproc and Tnp acquired in the main process and new process separately. In this
experiment, when a �T attack happens in the new process, the fetched utime and stime are 32 and
7, meaning that the collected Tnp should be around and in most cases at least 390 milliseconds. However,
the obtained value in the new process is about 50 milliseconds, resulting in an apparent inconsistency
between Tproc and Tnp.

By far, the effectiveness of the �T attack and the corresponding mitigation approach are well demon-
strated.

4.2. Experimental settings

To evaluate the capability of PluginAssassin to detect plugin environments, we chose five popular
social apps, WeChat [41], Twitter [37], Instagram [18], WhatsApp [43], and LINE [22], to deploy Plug-
inAssassin, and ran them in plugin environments. These social apps have hundreds of millions of down-

AUTHOR C
OPY

284 Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction

Fig. 8. Repacking social apps with PluginAssassin.

loads on Android app stores. However, because of the limitation of simultaneous login to multiple user
accounts in one device, they become the first targets of multi-instance apps.

We repackaged the social apps with PluginAssassin. Figure 8 shows how PluginAssassin is integrated
into social apps. First, for each social app, we obtain its original APK file and unpack it with Apk-
Tool [5], generating smali files for all classes. We declare two additional activities SPActivity
and NPActivity in its AndroidManifest.xml, for intra-process and inter-process launching sep-
arately. In addition, we inject a shared library file (libdetector.so) to implement the timestamp acquisition
and time overhead calculation in native code. Because PluginAssassin requires N iterations to balance
the collected time values (see Section 3.5), we disperse the operations of starting the testing activities
into several existing activities of the social apps. We set the number N of iterations to 5 for all follow-
ing experiments, as we have observed in earlier experiments on the demo app that, five iterations will
not introduce high overhead but are enough to capture the timing characteristics of different types of
activity launches, even after eliminating the outlier data.The app developers can choose an app-specific
N when adopting our approach. During each test for a social app, for the reason that missed cache of
the target activity can result in higher time cost for the first launch than the rest in the demo app ex-
periments, we discard a pair of outliers, typically a maximum value and a minimum value, from Ssp

and Snp, individually, and then average the more balanced remaining values for Tsp and Tnp. In next
section, we will discuss how to determine a practical threshold Rb. In order not to affect the social app’s
normal running, SPActivity and NPActivity are declared with transparent themes, making our
detection operations invisible to users, and call finish() to explicitly terminate their instances after
the time overhead is calculated. After we repack and resign all these files, an APK file equipped with
PluginAssassin is generated.

We collected 29 multi-instance apps from the Google Play store and 21 multi-instance apps from the
YingYongBao store (a third party Android app store in China) by searching with the keywords such as
“multiple accounts”. They provide the plugin environments in our experiments. In general, these apps
scan the installed social apps in system and load the ones upon user’s choice. Some of them support to
load external APK files on device. We also found that a number of the multi-instance apps display adver-
tisements before launching guest apps. We installed these multi-instance apps in the testing smartphones
as unprivileged host apps, which will load the five security-enhanced social apps as plugins to evaluate
PluginAssassin.

AUTHOR C
OPY

Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction 285

4.3. Threshold determination

PluginAssassin collects Tsp and Tnp at runtime, computes the time ratio R and judges whether the
running environment is a plugin environment or not based on the ratio. Thus, a predefined threshold Rb

is required to perform a comparison. We show in Section 3.3 that simply setting Rb = 1 works well
for the demo experiments to distinguish plugin environments from a system environment. In practice,
distinctive hardware and software configurations can result in varying degrees of time cost for the same
operations across devices. Probably the threshold we computed based on merely the experimental data
on OPPO cannot differentiate the running environments on other smartphones. Moreover, the specific
implementations of the plugin environment may also influence the value of R at runtime.

We propose a straightforward calculation for Rb. Our experimental observations show that, given a
number of collected time values (averages for each test), the ratio R� for starting activities in a plugin
environment is always greater than the ratio R� for launching activities within a system environment.
Putting the time values in a two-dimensional coordinate system, X-axis for Tsp and Y -axis for Tnp, the
slope of the line connecting a point and the origin O represents a time ratio R. We pick the point with
the minimum slope R̃� and the one with the maximum slope R̃�, corresponding to point S(T̃ �

sp, T̃ �
np) and

point P(T̃ �
sp, T̃ �

np), respectively. The angular bisector equally divides ∠SOP . Hence, its slope is a good
choice of the threshold. Mathematically, the slope of the angular bisector is computed as:

Rb =
T̃ �

np

√
(T̃ �

sp)2 + (T̃ �
np)2 + T̃ �

np

√
(T̃ �

sp)2 + (T̃ �
np)2

T̃ �
sp

√
(T̃ �

sp)2 + (T̃ �
np)2 + T̃ �

sp

√
(T̃ �

sp)2 + (T̃ �
np)2

. (11)

We randomly selected five multi-instance apps and two social apps (WeChat and Instagram), ran them
on two controlled devices, (i.e., the OPPO A37m and HUAWEI CRR-UL00 smartphones) and computed
Rb based on the obtained time values. Figure 9 shows the distribution of the points, four stars for the
system environments and twenty diamonds for the plugin environments. R̃� = 2.31 when WeChat ran
as a guest app on the OPPO A37m smartphone, and R̃� = 1.21 corresponds to a test of Instagram on
the HUAWEI CRR-UL00 smartphone. With Eq. (11), we get Rb = 1.63 and draw the angular bisector
in dashed and black. Notice that, the visual indistinctness of the equal division is caused due to more
compact Y-axis compared to the X-axis. We use this Rb for all following experiments.

Fig. 9. Sample ratio distribution and threshold determination.

AUTHOR C
OPY

286 Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction

4.4. Detection results and analysis

We conducted experiments for all the social apps and multi-instance apps, on all the three smartphones.
We show the results in Table 5. We use the MD5 values of the multi-instance apps to represent the 50
plugin environments and the abbreviations, WX, IN, TW, WA and LI, to denote the five social apps,
WeChat, Instagram, Twitter, WhatsApp and LINE, respectively. “�” indicates the combination of a
social app, a plugin environment and the smartphone is used in the threshold determination phase and the
detection of plugin environments succeeds. “�” means a successful detection as well, with Rb = 1.63.
“–”, in contrast, corresponds to a failing test.

We unfold the failures as follows:

• The plugin environments #29, #31, #38 and #41 fail to load Twitter as a plugin. Twitter uses an
Android mechanism JobScheduler to schedule various operations under specified conditions.
Android introduced some new features of this mechanism in version 8.0 [20]. However, the four
multi-instance apps did not update themselves to handle new features, leading to the Twitter failures.

• The failures for WhatsApp in 12 plugin environments (#4, #12, #16, #26, #28, #29, #33, #37, #38,
#39, #45 and #48) are raised because of their faulty handling of the content provider component.
Registering an observer for a content provider by invoking registerContentObserver()
needs extra permissions in Android 8.0 [11]. Unfortunately, these multi-instance apps do not pay
attention to the permissions, resulting in a permission denial exception.

• LINE utilizes dex2oat to optimize an external JAR file after startup. However, two multi-instance
apps (#11 and #39) do not handle the file path properly, resulting in additional failures.

According to above discussions, none of the failures is induced by our modifications in the social apps
or remarks the existence of indistinguishable time ratios, i.e., all computed R� are greater than Rb. In
fact, the minimum R� for plugin environments in all tests is 2.05, when Twitter runs in multi-instance
app #9 on HUAWEI CRR-UL00. The maximum R� for the system environments is 1.35, introduced by
LINE running directly on HUAWEI CRR-UL00. They both show sufficient gaps between the threshold
and the real-world time ratios. We suspect the learned threshold 1.63 can be applied to more plugin
environments and devices. So far, the research question presented in Section 3.2 is well answered.

Figure 10 shows all the R values obtained under system environments. As we can see, LINE produces
close time ratios on all three devices, even if the actual time values differ a lot. For example, Tsp and Tnp

collected in LINE on OPPO are 86.4 and 115.5 milliseconds, but on HUAWEI Mate 10 they are 44.9
and 58.9 milliseconds respectively. The other four apps have unstable ratios across devices. Potential
causes are the optimizations in the system and framework by certain smartphone vendors, or those done
by the app developers for specific smartphones. Noises would also affect the results. Nonetheless, they
have little influence on the experiment results.

We also observed that, WhatsApp usually holds relatively small time ratios (typically smaller than 0.6)
while the others may produce bigger ratios. Due to this fact and that we determine the threshold based
on very few tests on only two controlled devices, we suggest the app developers to exercise their apps,
with PluginAssassin augmented, on more available devices and make the decision with an app-specific
threshold, instead of using one applicable for many different situations as done in our experiments. For
example, WhatsApp may set a smaller threshold (e.g., one) and LINE might requires a bigger value.

Considering the plugin technology has been applied to implement malicious purposes by real-word
malwares, such as DualTwitter, we uploaded these 50 multi-instance apps to VirusTotal [40] to check
whether they are malicious. Results show that 44 out of 50 are marked as malware or potential malware

AUTHOR C
OPY

Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction 287

Table 5

Detection results for 50 multi-instance apps

ID Plugin environment # downloads OPPO A37m HUAWEI CRR-UL00 HUAWEI Mate 10

WX IN TW WA LI WX IN TW WA LI WX IN TW WA LI

1 603698049a810683f7e00030f8f86e10 1M+ � � � � � � � � � � � � � � �
2 18dde4f77aa71b18d61fe604adbb9786 100M+ � � � � � � � � � � � � � � �
3 54bc9bb35425069053ddffebe97d2a97 1M+ � � � � � � � � � � � � � � �
4 42b60ecab5abc4d8d2e73e044faa3182 1M+ � � � � � � � � � � � � � � �
5 3f0901ce1206118c71e2ab9bd888e65e 10K+ � � � � � � � � � � � � � � �
6 7ed21d4ad1938ed62e4f488066398503 50K+ � � � � � � � � � � � � � � �
7 15117792ef50d87c00b0746a5c710265 10K+ � � � � � � � � � � � � � � �
8 3e9d12add39047a09368a8900a97de0d 10K+ � � � � � � � � � � � � � � �
9 5a25da8207d70fbff32071a7b00171be 5M+ � � � � � � � � � � � � � � �

10 933c1758e368c85780d6d0a4f6eec374 100K+ � � � � � � � � � � � � � � �
11 8ba71aa17877a8130e60820b6d65f8fb 5M+ � � � � � � � � � � � � � � –

12 f430c5635094bbe36f2be5ff737d7658 500K+ � � � � � � � � � � � � � – �
13 c5bbdca983e33341d85b747a9d98b539 500K+ � � � � � � � � � � � � � � �
14 739477533a8ec019793b58efd6fd0b3d 1M+ � � � � � � � � � � � � � � �
15 a5dbf899b83622bcce24656555e80b38 10M+ � � � � � � � � � � � � � � �
16 9fc8f214ddcd2a6ea3c3aed201e2ece7 100K+ � � � � � � � � � � � � � – �
17 f6767aef0f6ab7db3f9aa4810c92d525 100K+ � � � � � � � � � � � � � � �
18 13be2b122cf40ba8cc154f05a539fdab 5M+ � � � � � � � � � � � � � � �
19 f7d8a25ef6356729387196cfdee90fea 1M+ � � � � � � � � � � � � � � �
20 f256fb4571b9fae036976f08e002198a 500K+ � � � � � � � � � � � � � � �
21 e4d4a4b7ae621440ef5a16bbea43089d 1K+ � � � � � � � � � � � � � � �
22 2502dda623aa0b279de256c4c1c0e6a9 1M+ � � � � � � � � � � � � � � �
23 e1873e9cb94c8e51f02d9d2e64d9b4ca 100K+ � � � � � � � � � � � � � � �
24 5435db809a2b7fe50c1be6e113963ddd 100K+ � � � � � � � � � � � � � � �
25 cd5e6584fc7c6490d03458bca2c80edb 10K+ � � � � � � � � � � � � � � �
26 b7deeda1f067bbfd3ab469ca3f316852 50K+ � � � � � � � � � � � � � – �
27 d29034a25712b7eb593d0f32c8c447bb 10K+ � � � � � � � � � � � � � � �
28 0694e76ebb283ea97a6c7376b8dd281f 1K+ � � � � � � � � � � � � � – �
29 479373f0caaad9afd9d91f40dd7b8dd5 50K+ � � � � � � � � � � � � – – �
30 5d5c5a33c8db79976142bd4c05c0c17a 45M+ � � � � � � � � � � � � � � �
31 b4cf55b18f78476d5dc0131d1f8775ea 44M+ � � � � � � � � � � � � – � �
32 b45395529db076b98b8e046a3ed13565 1M+ � � � � � � � � � � � � � � �
33 550d885e4543ac3c46055f99ad1a6746 150K+ � � � � � � � � � � � � � – �
34 5ef57251e3c51120fc6d3fc2fe8cfd4d 960K+ � � � � � � � � � � � � � � �
35 0cda386900b7e7c6457340745b5defee 12M+ � � � � � � � � � � � � � � �
36 52e3b419156fea3946365fd367ebe92c 760K+ � � � � � � � � � � � � � � �
37 9f0cbe7fd099b78aab2a48d3b3246e41 110K+ � � � � � � � � � � � � � – �
38 7a5eefd4e32e4bf204757039c8771ed1 8M+ � � � � � � � � � � � � – – �
39 05beaf1e679b76b719b8ef3e0fdfec91 570K+ � � � � � � � � � � � � � – –

40 5a43c5efdbdb1cd34f6a05cddeded131 2M+ � � � � � � � � � � � � � � �
41 c0b9a33b04704a5201783a75ec0cd00e 410K+ � � � � � � � � � � � � – � �
42 e513fee2700cadb8cac3c1a43960b52a 3M+ � � � � � � � � � � � � � � �
43 a4c0011db865289438886e9cb468f47d 4M+ � � � � � � � � � � � � � � �
44 c350a1e56e3cfea6d9bf557813568381 200K+ � � � � � � � � � � � � � � �
45 46260dbf9b058b0314ec2db77b9a16cd 170K+ � � � � � � � � � � � � � – �
46 3090e182fcb669a9325c7d2c344e78b8 26K+ � � � � � � � � � � � � � � �
47 13c052d371f1d74d873025b4bf3491c0 64K+ � � � � � � � � � � � � � � �
48 501495c5d4cf3c031570ccc1f6313f23 770K+ � � � � � � � � � � � � � – �
49 b8a985e859930de624d4f4c6a81728d0 21K+ � � � � � � � � � � � � � � �
50 9dd70637b8714264234089d676479b30 11K+ � � � � � � � � � � � � � � �

AUTHOR C
OPY

288 Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction

Fig. 10. Time ratios under system environments.

by the antivirus engines hosted by VirusTotal. According to the analysis reports, we found 10 multi-
instance apps intend to execute the “su” shell command to check whether the device is rooted. Besides,
15 multi-instance apps are reported to use the Android packing technique. Antivirus engines label these
samples as potential malware because they may hide malicious payloads and dynamically load them
during running to evade analysis.

As we mentioned earlier, multi-instance apps with malicious behaviors may threaten the security of
legitimate apps. Fortunately, PluginAssassin has a satisfactory performance on identifying the plugin
environments by the time lag contradiction detection approach. From the experimental results, we can
faithfully claim that PluginAssassin achieves zero false positive rate. For all cases where both the plugin
environments and the guest apps do not crash, PluginAssassin doesn’t leave any multi-instance app
unreported, namely, zero false negatives.

4.5. Runtime overhead

Since PluginAssassin injects code for extra activity launching, it inevitably introduces some runtime
overhead and we will briefly discuss its upper bound in this section. According to our discussion in
Section 2 and Section 3, it makes sense for us to simulate the runtime overhead with the observed Tsp

and Tnp in the system environment. For a single pair of an intra-process launching and an inter-process
launching, the overhead O is bounded as:

O � 2 × Tsp + Tnp. (12)

An app containing N pairs has the overall overhead bounded by
∑

1�i�N Oi . In our experiments, N = 5.
We show all the estimated upper bounds of the overhead in Table 6. From the results, we can see that
except the three cases on HUAWEI CRR-UL00, all other tests have the overall overhead lower than two
seconds, while on HUAWEI Mate 10, a more powerful device, the overhead for four apps is even lower
than one second. Though the running environments and test noise may affect the results, an individual
pair of intra- and inter-process launching introduces the overhead of no more than 0.7 seconds on aver-
age. In our experiments, we disperse the operations into different activities along the app’s running, so
we believe the low overhead will not influence the user experience.

AUTHOR C
OPY

Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction 289

Table 6

Estimated upper bounds of runtime overhead (unit: seconds)

Model WeChat Instagram Twitter WhatsApp LINE
OPPO A37m 1.84 1.44 1.28 1.72 1.44
HUAWEI CRR-UL00 3.49 1.47 2.06 2.02 1.56
HUAWEI Mate 10 1.24 0.95 0.68 0.94 0.74

5. Limitations and discussion

The proposed mitigation mechanism for �T attacks may lose its power on single-core devices, as the
probe thread may not have a chance to probe the one that might suffer from a �T attack before being
terminated or the process scheduling balances the �T changes in the obtained time values. Nevertheless,
the approach is still possible to detect �T attacks successfully in a long-run situation while the probabil-
ity is lowered on single-core smartphones. We also argue that in nowadays, most, if not all, smartphones
are powered with multiple CPU cores, well supporting the defense technique.

Besides the �T attack, PluginAssassin also suffers from other carefully devised attacks when the
detection principle is public to adversaries. For example, adversaries may develop a plugin environment
targeting at a specific app, in which case they have the knowledge of the detection-relevant activities and
the operations of measuring the time cost. The app-specific plugin environment can hijack the targeted
API calls, forge the timestamps to some extent and thereby bypass the detection. Though in this paper
we mainly focus on propose an approach to detecting those general-purposed plugin environments, we
deem it not too difficult to integrate some engineering effort to mitigate the app-specific attacks. For
instance, app developers can obfuscate the activities and randomize the measurements in different ones
along each app update. Besides, app developers are encouraged to collect the time cost of those activities
necessary in the app’s lifecycle and use the timestamps in other code than only the plugin environment
detection. In such cases, forging the timestamps may cause unexpected behaviors and thus be recognized
by the app. In addition, verifying the collected values with many other environments from the app users
may also screen out the fake ones.

Even though app developers can choose an app-specific threshold, some unforeseen plugin environ-
ments may still have a chance not to be identified, or in some cases, a system environment can be
mistakenly marked. An adaptive threshold determination algorithm may help in the former situation,
using the feedbacks from many other daily use smartphones. For the latter case, the developers can ei-
ther choose to skip the detection in certain extreme conditions or decide a higher threshold to prune any
potential false positives while letting off some plugin environments.

PluginAssassin inevitably increases the overall performance overhead. Nevertheless, as we discussed
in Section 4.5, the overhead for most cases is not higher than two seconds in our experiments. App
developers can even further reduce the overhead by measuring the time cost of launching those activities
necessary in the app’s lifecycle, instead of injecting unnecessary but detection-oriented ones as done
in our experiments. Moreover, the powerful hardware in nowadays smartphones lessens the potential
side-effect, as Table 6 shows, and we believe the approach will not affect the user experience.

App developers need to trade off between the security and the overhead when adopting PluginAssas-
sin in their apps. As mentioned above, developers can reduce the overhead by not injecting additional
activities. However, we must be careful that collecting the time cost of existing activities may result
in serious privacy leak before PluginAssassin completes the detection. The developers can ease such a
situation by performing the detection soon after the app is started. Because the detection finishes before
the user interacts with the app, no sensitive data can be leaked to the malicious plugin environments.

AUTHOR C
OPY

290 Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction

6. Related work

To the best of our knowledge, Plugin-Killer [23] is the only existing solution for detecting plugin
environments. As we discussed in Section 2.3, it employs some more straightforward thoughts by com-
paring certain information concerning the app itself and the plugin environment with the counterpart
under normal system environments. The effectiveness heavily relies on whether the plugin environments
hijack the corresponding APIs used by Plugin-Killer. PluginAssassin, in contrast, fully acknowledges
the capabilities of adversaries and leverages the time consumed by operations, which are more unpre-
dictable, to perform the detection. Considerations and mitigations of specific countermeasures also make
PluginAssassin more robust.

Although the security threats from plugin environments have not been taken seriously by most app
developers, the running environment is a primary consideration for security-sensitive applications, es-
pecially for malware to conceal itself and evade analysis. Dynamic analysis systems [9,15,32,42,44]
observe the app behaviors, obtain more useful information at runtime and deduct the nature of the app
samples. However, an intelligent malware may redact its behaviors to evade such detection if it rec-
ognizes itself under analysis, making the analysis systems fail to catch any suspicious behaviors. For
example, several tools [29,34,36] are deployed in virtualized environments, such as the QEMU emula-
tors, but such virtualized environments can be differentiated from real devices by various anti-analysis
techniques. Timothy et al. [38] showed the differences in several aspects between emulators and real de-
vices. For instance, the Android APIs obtaining system artifacts, such as the system build property or the
phone data, return specific values under virtualized environments. The network configuration is also an
indicator to distinguish emulators and real devices. Besides, the CPU and graphical performance can ef-
ficiently identify malware sandboxes. Petsas et al. [25] summarized the anti-analysis heuristics into three
categories, static, dynamic, and hypervisor-related. Static heuristics utilize the aforementioned features
of emulators. Dynamic solutions observe the sensor outputs as emulators generate same values for the
sensors at same time intervals. Hypervisor-related heuristics characterize the QEMU scheduling and ex-
ecutions and conduct detections based on the results. While most anti-analysis methods are discovered
from vast malicious apps, Jing et al. [19] proposed a framework, Morpheus, to automatically generate
heuristic rules from observable artifacts for apps. More than 10 000 rules generated by Morpheus can
be used to detect emulators. Some analysis systems do not depend on emulator environments, but they
can also be recognized from normal usage scenarios. Dial et al. [12] pointed out the high frequency
of user events, such as touchscreen tapping or swiping, gives the app an insight into dynamic testing
tools (e.g., the Monkey). Moreover, an app can create a special UI widget, which is invisible to users
but valid to analysis tools. If the trap widget is triggered, it presumably indicates that the app is under
an analysis environment. Some malware try to root the devices and of course a number of methods have
been proposed to detect whether an app is running in a rooted environment. Sun et al. [33] evaluated
several rooting detection methods by introspecting hundreds of applications, such as checking installed
packages, related files, system properties or outputs of specific shell commands, pointing out that, all the
inspected methods are ineffective and can be evaded successfully.

Unlike the analysis tools, plugin environments are designed to run guest apps on real devices and do
their best to preserve the guest app’s utilities. Even if some plugin environments slightly interferes the
graphical user interfaces (e.g., presenting an advertisement), in general, they do not prevent the guest
apps running. The behavior characteristics, either benign or malicious, of guest apps are out of their
concerns. While some anti-analysis techniques are similar to what Plugin-Killer uses, most of them
do not work to detect the existence of plugin environments. PluginAssassin turns out to be a heuristic

AUTHOR C
OPY

Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction 291

approach built upon our observation of the time lag contradiction, attributing the detection to observable
and comparable time ratios.

Other researchers have also adopted timing-based methods to enforce untampered code executions or
detect virtualized systems. Pioneer [30] computes the time cost of the checksum computation in an ex-
ternal trusted entity and verifies the cost of the same execution in an untrusted platform to detect whether
the execution has been manipulated by an adversary. While PluginAssassin can benefit from such ideas
to treat all platforms from the app users as potentially trusted and mutually verify the time cost, our
approach in this paper computes the time ratio locally and provides good detection and runtime per-
formance. Brengel et al. [8] utilized the execution time of instructions to identify hardware-virtualized
systems. They proposed a similar thought of the relative time, which calculates a ratio of the time cost
of the cpuid instruction to that of another instruction, such as nop, add, or lea, and compares it
with a predefined threshold. Virtualized environment is detected if the ratio exceeds the threshold. Their
method focuses on a very low level, computing the time of CPU instructions, as the virtualized systems
may intervene the execution of single instruction. Plugin environments hijack higher level API invoca-
tions instead, but we can still get inspired from their idea. Instead of using the x86-special instructions
(e.g., rdstc used in their approach) or existing functions like clock_gettime() in our approach,
we may start a thread executing a counter written in assembly to time the activity launching in our fu-
ture work, in case that the functions are hijacked by the plugin environments. Ho et al. [17] devised a
method for browsers to detect virtual machines by comparing the time ratio of a target operation (e.g.,
I/O, thread and graphics operations) to a baseline operation (DOM node writing and memory allocation)
with a given threshold. Though similar to PluginAssassin, their solution didn’t consider the authenticity
of the acquired time value from JavaScript APIs like getTime(). A powerful but malicious virtual
machine can deceive the upper level system and launches similar �T attacks. Chen et al. [10] proposed
a remote detection method to determine if a host is running in a virtual machine. They calculated an in-
dicator value based on the timestamps and frequency of TCP packets, and compared it with a theoretical
value. Huge inconsistency between these two values indicates a remote virtualized environment. Fake
TCP timestamps can erase the characteristic of clock skew behavior in VMs. Determining the theoretical
value can be tedious as plugin environments are much easier to develop, which leads to many more host
apps than VMs. Furthermore, if Android apps communicate with remote services that detect whether
the apps are running in plugin environments, much additional cellular network traffic may be consumed,
causing extra phone charges to users. The above techniques inspired us to present PluginAssassin, ad-
dressing issues specific to Android apps and distinguishing the running environments while maintaining
good performance.

7. Conclusion

The popularity of multi-instance apps brings new security threats to legitimate apps, which makes
legitimate apps run as plugins and allows the host apps to do evil in a stealthier way. While existing
detection method is not robust enough to resist attacks, we present PluginAssassin through a deep un-
derstanding and observation of the Android plugin technology. PluginAssassin works on top of the time
lag contradiction phenomenon of launching Android activities in different scenarios. Elapsed time is
collected and a corresponding ratio is calculated. PluginAssassin compares the ratio with a predefined
one to judge whether the app is running in a plugin environment. We also discuss a potential �T attack
which can be easily adopted by adversaries to bypass our detection. A mitigation with probing phases is

AUTHOR C
OPY

292 Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction

then introduced as an enhancement. We deploy PluginAssassin in five popular social apps and evaluate
its efficiency on 50 real-world multi-instance apps on three smartphones. Experimental results show that,
without affecting an app’s normal execution, PluginAssassin distinguishes all the plugin environments
accurately.

Acknowledgments

This work is supported in part by National Natural Science Foundation of China (NSFC) under grants
U1836209 and 61802413, the Fundamental Research Funds for the Central Universities, and the Re-
search Funds of Renmin University of China under grant 19XNLG02. Any opinions, findings, and con-
clusions in this paper are those of the authors only and do not necessarily reflect the views of our
sponsors.

References

[1] Android App Bundle, https://developer.android.com/platform/technology/app-bundle.
[2] Android Binder, https://www.nds.ruhr-uni-bochum.de/media/attachments/files/2011/10/main.pdf.
[3] Android Platform Architecture, https://developer.android.com/guide/platform.
[4] Android Sandbox, https://source.android.com/security/app-sandbox.
[5] ApkTool: A tool for reverse engineering Android apk files, https://ibotpeaches.github.io/Apktool.
[6] A. Bacci, A. Bartoli, F. Martinelli, E. Medvet and F. Mercaldo, Detection of obfuscation techniques in Android applica-

tions, in: Proceedings of the 13th International Conference on Availability, Reliability and Security, ACM, 2018, p. 57.
[7] Baidu, http://mo.baidu.com.
[8] M. Brengel, M. Backes and C. Rossow, Detecting hardware-assisted virtualization, in: International Conference on De-

tection of Intrusions and Malware, and Vulnerability Assessment, Springer, 2016, pp. 207–227. doi:10.1007/978-3-319-
40667-1_11.

[9] I. Burguera, U. Zurutuza and S. Nadjm-Tehrani, Crowdroid: Behavior-based malware detection system for Android, in:
Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, ACM, 2011, pp. 15–
26.

[10] X. Chen, J. Andersen, Z.M. Mao, M. Bailey and J. Nazario, Towards an understanding of anti-virtualization and anti-
debugging behavior in modern malware, in: 2008 IEEE International Conference on Dependable Systems and Networks
with FTCS and DCC (DSN), IEEE, 2008, pp. 177–186. doi:10.1109/DSN.2008.4630086.

[11] Content change notifications in Android Oreo, https://developer.android.com/about/versions/oreo/android-8.0-changes#
ccn.

[12] W. Diao, X. Liu, Z. Li and K. Zhang, Evading Android runtime analysis through detecting programmed interactions, in:
Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks, ACM, 2016, pp. 159–
164. doi:10.1145/2939918.2939926.

[13] DroidPlugin framework, https://github.com/Qihoo360/DroidPlugin.
[14] Y. Duan, M. Zhang, A.V. Bhaskar, H. Yin, X. Pan, T. Li, X. Wang and X. Wang, Things you may not know about Android

(un) packers: A systematic study based on whole-system emulation, in: 25th Annual Network and Distributed System
Security Symposium, NDSS, 2018, pp. 18–21.

[15] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L.P. Cox, J. Jung, P. McDaniel and A.N. Sheth, TaintDroid:
An information-flow tracking system for realtime privacy monitoring on smartphones, ACM Transactions on Computer
Systems 32(2) (2014), 5. doi:10.1145/2619091.

[16] L. Falsina, Y. Fratantonio, S. Zanero, C. Kruegel, G. Vigna and F. Maggi, Grab’n run: Secure and practical dynamic code
loading for Android applications, in: Proceedings of the 31st Annual Computer Security Applications Conference, ACM,
2015, pp. 201–210.

[17] G. Ho, D. Boneh, L. Ballard and N. Provos, Tick tock: Building browser red pills from timing side channels, in: 8th
USENIX Workshop on Offensive Technologies (WOOT 14), 2014.

[18] Instagram, https://www.instagram.com.
[19] Y. Jing, Z. Zhao, G.-J. Ahn and H. Hu, Morpheus: Automatically generating heuristics to detect Android emulators, in:

Proceedings of the 30th Annual Computer Security Applications Conference, ACM, 2014, pp. 216–225.

https://developer.android.com/platform/technology/app-bundle
https://www.nds.ruhr-uni-bochum.de/media/attachments/files/2011/10/main.pdf
https://developer.android.com/guide/platform
https://source.android.com/security/app-sandbox
https://ibotpeaches.github.io/Apktool
http://mo.baidu.com
https://doi.org/10.1007/978-3-319-40667-1_11
https://doi.org/10.1007/978-3-319-40667-1_11
https://doi.org/10.1109/DSN.2008.4630086
https://developer.android.com/about/versions/oreo/android-8.0-changes#ccn
https://developer.android.com/about/versions/oreo/android-8.0-changes#ccn
https://doi.org/10.1145/2939918.2939926
https://github.com/Qihoo360/DroidPlugin
https://doi.org/10.1145/2619091
https://www.instagram.com

AUTHOR C
OPY

Y. Wu et al. / Do not jail my app: Detecting the Android plugin environments by time lag contradiction 293

[20] JobScheduler improvements in Android Oreo, https://developer.android.com/about/versions/oreo/android-8.0#
jobscheduler.

[21] A. Kovacheva, Efficient code obfuscation for Android, in: International Conference on Advances in Information Technol-
ogy, Springer, 2013, pp. 104–119. doi:10.1007/978-3-319-03783-7_10.

[22] LINE, https://line.me/en.
[23] T. Luo, C. Zheng, Z. Xu and X. Ouyang, Anti-plugin: Don’t let your app play as an Android plugin, in: Proceedings of

Blackhat Asia, 2017.
[24] Parallel Space, https://play.google.com/store/apps/details?id=com.lbe.parallel.intl.
[25] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis and S. Ioannidis, Rage against the virtual machine: Hindering

dynamic analysis of Android malware, in: Proceedings of the Seventh European Workshop on System Security, ACM,
2014, p. 5.

[26] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel and G. Vigna, Execute this! Analyzing unsafe and malicious dynamic
code loading in Android applications, in: NDSS ’14, 2014, pp. 23–26.

[27] Z. Qu, S. Alam, Y. Chen, X. Zhou, W. Hong and R. Riley, DyDroid: Measuring dynamic code loading and its security
implications in Android applications, in: 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), IEEE, 2017, pp. 415–426. doi:10.1109/DSN.2017.14.

[28] Restrictions on non-SDK interfaces, https://developer.android.com/distribute/best-practices/develop/restrictions-non-sdk-
interfaces.

[29] SandDroid, http://sanddroid.xjtu.edu.cn.
[30] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn and P. Khosla, Pioneer: Verifying code integrity and enforcing

untampered code execution on legacy systems, in: Proceedings of the Twentieth ACM Symposium on Operating Systems
Principles, SOSP ’05, ACM, 2005, pp. 1–16. ISBN 1-59593-079-5. doi:10.1145/1095810.1095812.

[31] H. Shahriar, T. Klintic and V. Clincy, Mobile phishing attacks and mitigation techniques, Journal of Information Security
6(3) (2015), 206–212. doi:10.4236/jis.2015.63021.

[32] M. Sun, T. Wei and J. Lui, Taintart: A practical multi-level information-flow tracking system for Android runtime, in:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, ACM, 2016, pp. 331–
342.

[33] S.-T. Sun, A. Cuadros and K. Beznosov, Android rooting: Methods, detection, and evasion, in: Proceedings of the 5th
Annual ACM CCS Workshop on Security and Privacy in Smartphones and Mobile Devices, ACM, 2015, pp. 3–14.

[34] K. Tam, S.J. Khan, A. Fattori and L. Cavallaro, CopperDroid: Automatic reconstruction of Android malware behaviors,
in: NDSS, 2015.

[35] Threat Intelligence Team, Malware posing as dual instance app steals users’ Twitter credentials, https://blog.avast.com/
malware-posing-as-dual-instance-app-steals-users-twitter-credentials.

[36] TraceDroid, http://tracedroid.few.vu.nl.
[37] Twitter, https://twitter.com.
[38] T. Vidas and N. Christin, Evading Android runtime analysis via sandbox detection, in: Proceedings of the 9th ACM

Symposium on Information, Computer and Communications Security, ACM, 2014, pp. 447–458.
[39] VirtualApp framework, https://github.com/asLody/VirtualApp.
[40] VirusTotal, https://www.virustotal.com.
[41] WeChat, https://weixin.qq.com.
[42] L. Weichselbaum, M. Neugschwandtner, M. Lindorfer, Y. Fratantonio, V. van der Veen and C. Platzer, Andrubis: Android

malware under the magnifying glass, Technical Report TR-ISECLAB-0414-001, Vienna University of Technology, 2014.
[43] WhatsApp, https://www.whatsapp.com.
[44] L.K. Yan and H. Yin, DroidScope: Seamlessly reconstructing the OS and Dalvik semantic views for dynamic Android

malware analysis, in: Presented as Part of the 21st USENIX Security Symposium (USENIX Security 12), 2012, pp. 569–
584.

[45] L. Zhang, Z. Yang, Y. He, M. Li, S. Yang, M. Yang, Y. Zhang and Z. Qian, App in the middle: Demystify application
virtualization in Android and its security threats, Proceedings of the ACM on Measurement and Analysis of Computing
Systems 3(1) (2019), 17.

[46] Y. Zhang, X. Luo and H. Yin, DexHunter: Toward extracting hidden code from packed Android applications, in: European
Symposium on Research in Computer Security, Springer, 2015, pp. 293–311.

[47] Y. Zhauniarovich, M. Ahmad, O. Gadyatskaya, B. Crispo and F. Massacci, StaDynA: Addressing the problem of dynamic
code updates in the security analysis of Android applications, in: Proceedings of the 5th ACM Conference on Data and
Application Security and Privacy, ACM, 2015, pp. 37–48.

https://developer.android.com/about/versions/oreo/android-8.0#jobscheduler
https://developer.android.com/about/versions/oreo/android-8.0#jobscheduler
https://doi.org/10.1007/978-3-319-03783-7_10
https://line.me/en
https://play.google.com/store/apps/details?id=com.lbe.parallel.intl
https://doi.org/10.1109/DSN.2017.14
https://developer.android.com/distribute/best-practices/develop/restrictions-non-sdk-interfaces
https://developer.android.com/distribute/best-practices/develop/restrictions-non-sdk-interfaces
http://sanddroid.xjtu.edu.cn
https://doi.org/10.1145/1095810.1095812
https://doi.org/10.4236/jis.2015.63021
https://blog.avast.com/malware-posing-as-dual-instance-app-steals-users-twitter-credentials
https://blog.avast.com/malware-posing-as-dual-instance-app-steals-users-twitter-credentials
http://tracedroid.few.vu.nl
https://twitter.com
https://github.com/asLody/VirtualApp
https://www.virustotal.com
https://weixin.qq.com
https://www.whatsapp.com

	Introduction
	Background
	Basis for the plugin technology
	Launching plugin activities
	Plugin-Killer

	Approach: PluginAssassin
	Threat model
	Road to success
	Time lag contradiction
	DeltaT attack and mitigation
	PluginAssassin

	Evaluation
	DeltaT experiments
	Experimental settings
	Threshold determination
	Detection results and analysis
	Runtime overhead

	Limitations and discussion
	Related work
	Conclusion
	Acknowledgments
	References

