
137

BDA: Practical Dependence Analysis for Binary Executables

by Unbiased Whole-Program Path Sampling and Per-Path

Abstract Interpretation

ZHUO ZHANG, Purdue University, USA

WEI YOU∗, Renmin University of China, China

GUANHONG TAO and GUANNAN WEI, Purdue University, USA

YONGHWI KWON, University of Virginia, USA

XIANGYU ZHANG, Purdue University, USA

Binary program dependence analysis determines dependence between instructions and hence is important for

many applications that have to deal with executables without any symbol information. A key challenge is to

identify if multiple memory read/write instructions access the same memory location. The state-of-the-art

solution is the value set analysis (VSA) that uses abstract interpretation to determine the set of addresses

that are possibly accessed by memory instructions. However, VSA is conservative and hence leads to a large

number of bogus dependences and then substantial false positives in downstream analyses such as malware

behavior analysis. Furthermore, existing public VSA implementations have difficulty scaling to complex

binaries. In this paper, we propose a new binary dependence analysis called BDA enabled by a randomized

abstract interpretation technique. It features a novel whole program path sampling algorithm that is not

biased by path length, and a per-path abstract interpretation avoiding precision loss caused by merging paths

in traditional analyses. It also provides probabilistic guarantees. Our evaluation on SPECINT2000 programs

shows that it can handle complex binaries such as gcc whereas VSA implementations from the-state-of-art

platforms have difficulty producing results for many SPEC binaries. In addition, the dependences reported by

BDA are 75 and 6 times smaller than Alto, a scalable binary dependence analysis tool, and VSA, respectively,

with only 0.19% of true dependences observed during dynamic execution missed (by BDA). Applying BDA to

call graph generation and malware analysis shows that BDA substantially supersedes the commercial tool

IDA in recovering indirect call targets and outperforms a state-of-the-art malware analysis tool Cuckoo by

disclosing 3 times more hidden payloads.

CCS Concepts: · Security and privacy→ Software reverse engineering; · Software and its engineering→

Interpreters; Automated static analysis.

Additional Key Words and Phrases: Path Sampling, Abstract Interpretation, Binary Analysis, Data Dependence

ACM Reference Format:

Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xiangyu Zhang. 2019. BDA:

Practical Dependence Analysis for Binary Executables by Unbiased Whole-Program Path Sampling and Per-

Path Abstract Interpretation. Proc. ACM Program. Lang. 3, OOPSLA, Article 137 (October 2019), 31 pages.

https://doi.org/10.1145/3360563

∗Corresponding author

Authors’ addresses: Zhuo Zhang, Purdue University, USA, zhan3299@purdue.edu; Wei You, Renmin University of China,

China, youwei@ruc.edu.cn; Guanhong Tao; Guannan Wei, Purdue University, USA, {taog,guannanwei}@purdue.edu;

Yonghwi Kwon, University of Virginia, USA, yongkwon@virginia.edu; Xiangyu Zhang, Purdue University, USA, xyzhang@

cs.purdue.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/10-ART137

https://doi.org/10.1145/3360563

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3360563
https://doi.org/10.1145/3360563

137:2 Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xiangyu Zhang

1 INTRODUCTION

Binary analysis is a key technique for many applications such as legacy software maintenance [Gal-
lagher and Lyle 1991; Loyall and Mathisen 1993], reuse [Sñbjùrnsen et al. 2009; Zeng et al. 2013],
hardening [Payer et al. 2015; Wang et al. 2017], debloating [Ferles et al. 2017; Quach et al. 2018],
commercial-off-the-shelf software security testing [Li et al. 2017; Rawat et al. 2017], malware
analysis [Song et al. 2008; Yin et al. 2007], and reverse engineering (e.g., communication protocol
reverse engineering) [Caballero et al. 2007; Lin et al. 2008]. A key binary analysis is program
dependence analysis that determines if there is dependence between two instructions. Binary
program dependence analysis is much more challenging than source level dependence analysis
as symbol information (e.g., types and variables) is lost during compilation and source level data
structures, variables, and arguments are compiled down to registers and memory accesses (through
registers), which are very generic and difficult to analyze. The analysis is further confounded by
indirect control flow (e.g., call instructions with non-constant targets, often induced by virtual
methods in object oriented programs), as call targets are difficult to derive statically without type
information. The critical challenge in binary dependence analysis is memory alias analysis that
determines if memory access instructions may access a same memory location.
Given the importance of binary analysis, there are a number of widely used binary analysis

platforms such as IDA [Hex-Rays 2008], CodeSurfer [GrammaTech 2008], BAP [Brumley et al. 2011],
and ANGR [UCSB 2008]. Some of them leverage dynamic dependence analysis, which is highly
effective when inputs are available. However, inputs or input specifications are largely lacking
in many security applications. While symbolic execution and fuzzing may be used to generate
inputs, they have difficulties scaling to lengthy program paths and execution states for complex
binaries with complicated input constraints. Therefore, most of these platforms additionally adopt
the Value Set Analysis (VSA), a static analysis method, to address the memory alias problem (and
hence the dependence analysis problem). VSA was proposed by Balakrishnan and Reps [2004]. It
computes the set of possible values for the operands of each instruction. Aliases of two memory
accesses can be determined by checking if their value sets share common (address) values. VSA
uses a strided interval to denote a set of values. Each strided interval specifies the lower bound,
the upper bound, and the stride. While being compact, strided intervals feature conservativeness.
In many cases, they may become simple value ranges (i.e., intervals with stride 1). As such, even
though VSA is sound, it has a number of limitations while being used in practice. Specifically, the
possible addresses of many memory accesses often degenerate to the entire memory space such that
substantial bogus dependences are introduced; when the set of possible address values of a memory
write is inflated, the write becomes extremely expensive as it has to update the value set for all the
possible addresses. More discussion can be found in Appendix A. According to our experiment (see
Section 7.2), most publicly available implementations of VSA fail to run on many SPECINT2000
programs [ATA 2018]. In addition, they produce substantial false positives in dependence analysis.
While soundness (i.e., never missing any true positive program dependence) is critical for

certain applications such as semantic preserving binary code transformation, for which VSA aims,
probabilistic guarantees (i.e., the analysis has a very low likelihood of missing any true positive) are
sufficient for many practical applications. For example, a critical and fundamental application of
VSA (and dependence analysis) is to derive indirect control flow transfer targets such that precise
call graphs can be constructed. The sound and conservative VSA inevitably has a large number
of bogus call edges, rendering the resulted call graph not that useful. In contrast, an analysis
that can disclose most true (indirect) call edges and have a low chance of missing some may be
more useful in practice. Malware behavior analysis [Cozzi et al. 2018] aims to understand hidden
payloads of malware samples by reporting the system calls performed by the samples and the

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

BDA: Practical Dependence Analysis for Binary Executables by Unbiased Whole-Program Path Sampling and ... 137:3

corresponding concrete arguments of these system calls (e.g., file delete system call with directory
argument ł/homež). Missing a few dependences (by chance) may not critically impact the generated
behavior report whereas having a large number of bogus dependences would lead to substantial
false positives, significantly enlarging the human inspection efforts. In other applications including
functional component identification (for binary debloating) [Ferles et al. 2017], static analysis
guided vulnerability detection/fuzzing [Li et al. 2017], and protocol reverse engineering [Lin et al.
2008], dependence analysis with probabilistic guarantees may provide the appropriate trade-offs
between effectiveness and practicality.
Therefore in this paper, we propose a binary level program dependence analysis technique

with probabilistic guarantees, enabled by a novel randomized abstract interpretation technique.
Specifically, our technique samples the space of whole program paths in a fashion that the likelihood
of different paths being taken are evenly distributed, not biased by path length. Note that tossing a
fair coin at each conditional statement yields a very biased path distribution such that long paths
can hardly be reached. Abstract interpretation is performed on individual sample path, which is
different from VSA that operates like a data-flow analysis that computes/merges the abstract values
from all possible paths at each step of interpretation. To avoid using value ranges or strided intervals
for external inputs, our abstract interpretation samples input values from pre-defined distribution.
Probabilistic guarantees can be provided depending on the number of samples taken when certain
assumptions are satisfied. A context-sensitive and flow-sensitive posterior dependence analysis is
performed based on the abstract values computed by the large number of sample interpretations.
The analysis is able to reduce the possible false negatives caused by incomplete path sampling. It
also features strong updates such that false positives can be effectively suppressed.
Our contributions are summarized as follows.

• We propose a novel whole program path sampling algorithm for general path exploration. We
also identify the probabilistic guarantees of our sampling algorithm with certain assumptions.
• We devise a per-path abstract interpretation technique that is critical for avoiding bogus
abstract values and dependences, and a posterior analysis to compensate the possible incom-
pleteness in path sampling.
• We address a number of practical challenges such as handling loops, recursions, indirect
jumps, and indirect calls.
• We propose a new binary program dependence analysis enabled by a novel randomized
abstract interpretation technique.
• We develop a prototype BDA and evaluate it on SPECINT2000 binaries. Our evaluation
shows that it scales to complex binaries including gcc, whereas VSA implementations from
popular platforms such as BAP and ANGR fail to produce results for many binaries. When
compared to dynamic dependences observed during running these binaries on standard
inputs, BDA misses only 0.19% dependences on average. The dependences reported by BDA
are 6 times smaller than those by VSA (when it produces results) and 75 times smaller than
Alto (another binary dependence analysis tool that scales). We also evaluate BDA in two
downstream analysis, one is to identify indirect control flow transfer targets and the other is
to study hidden malware behaviors on 12 recent malware samples. In the former analysis,
BDA is equally effective as a state-of-the-art commercial tool IDA in identifying indirect jump
targets and substantially outperforms in identifying indirect call targets (4 found by IDA on
average versus 767 found by BDA on average). In the malware analysis, BDA substantially
outperforms a commercial state-of-the-art malware analysis tool Cuckoo [Cuckoo 2014]
by reporting 3 times more hidden malicious behaviors. The project is publicly available
at [Zhang et al. 2019a].

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

137:4 Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xiangyu Zhang

1 #define MAX_LEN 56

2 #define WORD_CNT 1000

3

4 struct Trie{Word *word; Trie *child [26];};

5 struct Word{char val[MAX_LEN]; Trie *node ;};

6 struct Dict{long cap; Word words[WORD_CNT];};

7 Dict *dict;

8 Trie *trie;

9

10 void init_dict () {

11 long idx = 0; //index of the longest word

12 dict ->cap = WORD_CNT;

13 read_words(dict ->words , &idx);

14 output_word(dict ->words[idx].val);

15 }

16 void read_words(Word* words , long *idx) {

17 int i, j;

18 for (i = 0; i < WORD_CNT; i++) {

19 words[i].node = trie;

20 for (j = 0; j < MAX_LEN; j++) {

21 words[i].val[j] = read_char ();

22 /* Do the following things:

23 1. break_if_line_end(words[i].val[j]);

24 2. update_trie(words[i], j);

25 3. update_longest_idx(idx , j);

26 */

27 }

28 words[i].node ->word = &(words[i]);

29 }

30 }

Fig. 1. Example to explain the limitations of existing techniques.

2 MOTIVATION

At the binary level, program dependences induced by registers can be easily inferred. The challenge
lies in identifying those induced by memory, due to the difficulty of (statically) determining
the locations accessed by memory operations. As such, a key challenge in binary dependence
analysis, and also in binary analysis in general, is to determine the points-to relations for memory
access instructions. In this section, we explain the limitations of existing techniques, present our
observations of program dependences (through memory), and motivate the idea of BDA.

2.1 Limitations of Existing Techniques

We use 197.parser from the SPEC2000INT benchmark [ATA 2018] as an example to illustrate
the limitations of existing techniques. 197.parser is a word processing program that analyzes the
syntactical structure of a given input sentence based on a pre-defined dictionary. Figure 1 presents
the simplified code of its dictionary initialization logic. In particular, it sets the the number of words
in the dictionary to a pre-defined value (line 12), reads words from the dictionary file (line 13), and
then outputs the longest word (line 14). During the process of reading words, 197.parser maintains
a dictionary tree (lines 24) and records the index of the longest word (line 25).

The core of memory alias analysis (and also the downstream dependence analysis) is to statically
determine the possible runtime values (PRV) of the address operand of a memory access instruction,
which could be a register or a memory location. We call such operands variables for easy description.
While the problem is undecidable in general, a large collection of approximation algorithms have
been proposed to provide various trade-offs between efficiency and precision. Among all these
efforts, Alto [Debray et al. 1998] and VSA [Balakrishnan and Reps 2004] are two prominent existing
efforts. The latter has been the standard for more than a decade.

Alto. Alto abstracts the PRV of a variable as an address descriptor ⟨insn,OFFSET ⟩, where insn
is the instruction that computes a base value and OFFSET denotes a set of possible offsets to
the base value. For example, assume in line 13 in function init_dict() (Figure 1), the address
of dict->words is loaded to register rdi by two instructions. The first instruction i loads the
base dict and the second instruction j adds the offset of field words, which is 8. The address
descriptor of rdi after i and j is hence ⟨i, {0x8}⟩. Alto only models PRV computation through
register operations, not through memory reads and writes. For an instruction i that loads a value
from a memory location to a register, Alto resets the PRV of the register to a new address descriptor
⟨i, {0x0}⟩, not being able to inherit the address descriptor stored by the latest memory write to
the location. As such, it has to conservatively consider a memory read with a new descriptor can

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

BDA: Practical Dependence Analysis for Binary Executables by Unbiased Whole-Program Path Sampling and ... 137:5

read from any address, and have dependence with any memory write, causing substantial false
positives. For example in function init_dict(), Alto considers the read of dict->words at line
13 is dependent on the write of dict->cap at line 12.

VSA. VSA computes PRV by abstract interpretation, modeling operations through both registers
and memory. It abstracts the PRV of a variable as a strided interval s [lb,ub], where lb andub specify
the lower bound and upper bound of the interval and s is the stride between values in the interval.
Intuitively, the strided interval represents the set of integers {lb, lb + s, lb + 2s, ...,ub}. Each strided
interval may be associated with a memory region, which could be heap (denoted as Ha where
a is the allocation site), stack (denoted as Sf where f is the corresponding function), or general
for non-heap and non-stack values (denoted as G). There is a special value ⊤, which indicates all
possible values. VSA computes strided intervals following a set of rules. For example, the addition
rule is defined as follows. Let SI1 = s1 [lb1,ub1] and SI2 = s2 [lb2,ub2] be two strided intervals, and
SI3 = SI1 + SI2. Then we have the following equation (1), with дcd() the greatest common divisor.
Observe that the rule is conservative, meaning SI3 is a super-set of the all the possible sums of the
values in SI1 and SI2.

SI3 = дcd (s1, s2) [lb1 + lb2,ub1 + ub2] (1)

The major limitation of VSA is over-approximation. According to equation (1), abstract interpre-
tation may induce bogus PRV at each instruction, due to both the дcd() operation and the simple
approximation of lower and upper bounds. Since there are typically a large number of interpretation
steps in whole-program analysis, the bogus dependences are aggregated and magnified, making end
results not usable. For example, the write of words[i].node->word at line 28 has false dependence
with any following memory read according to VSA. Appendix A will discuss this in details.

2.2 Observations

Different analyses entail different kinds of sensitivity. For example, the simplest type inference could
be path-insensitive, context-insensitive, and even flow-insensitive. As one of the most complex
analyses, dependence analysis is flow-sensitive, context-sensitive, and path-sensitive. However,
a key observation is that a dependence relation, which means dependence through memory in our

context, can be disclosed by many whole-program paths. In other words, even though it is context-
and path-sensitive, the level of sensitivity is limited. Intuitively, given a program with n statements,
the number of dependences is O(n2), whereas the number of paths could be O(2n), assuming all
branching statements have only two branches. Hence, a dependence may be exposed by many
paths. Consider the code snippet example1 in Figure 2, whose control flow graph is shown in
Figure 2a. There are four possible paths, three of which can expose the dependence between lines
12 and 6 regarding variable i. Similarly, three paths can expose the dependence between lines 12
and 7 regarding j. Essentially, a dependence is likely exposed if one of its exhibition paths is taken.
Program dependences are also input sensitive, meaning that a dependence may or may not be
present along a same program path depending on input values. Consider example2 in Figure 2.
Variables i and j denote input and are used as array indices. Note that the code has only one path,
and the dependence between lines 17 and 18 may or may not be exercised depending on the values
of i and j. According to [Yang and Gupta 2002], run time values of program variables likely fall into

a small range. In our example, assuming both variables have a uniform distribution in range [0, c],
the likelihood of the dependence being exercised is 1

c
. If the path is taken n times with randomly

sampled i and j values, the likelihood becomes 1 −
(
1 − 1

c

)n
, which is close to 1 when n is large.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

137:6 Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xiangyu Zhang

1 #define MAX_LEN 56

2 char val[MAX_LEN];

3 int i, j, *p, *q;

4

5 void example1(int arg0 , int arg1) {

6 i = 0;

7 j = 0;

8 if (arg0) { p = &i; q = &j; }

9 else { p = &j; q = &i; }

10 if (arg1) *p = 1;

11 else *q = 1;

12 printf("%d %d\n", i, j);

13 }

14

15 void example2(char arg) {

16 scanf("%d %d\n", &i, &j);

17 val[i] = arg;

18 printf("%d\n", val[j]);

19 }

20

21 void example3(int *arg) {

22 scanf("%d %d\n", &i, &j);

23 val[i] = 0;

24 if (check1(arg)) return;

25 if (check2(arg)) return;

26 if (check3(arg)) return;

27 if (check4(arg)) return;

28 if (check5(arg)) return;

29 printf("%d\n", val[j]);

30 }

i = 0; j = 0;

if(arg0)

p = &i; q = &j; p = &j; q = &i;

if(arg1)

*p = 1; *q = 1;

printf("%d %d \n", i, j);

A

B C

D

E F

G

(a) CFG of example1.

 scanf("%d %d \n", &i, &j);

 val[i] = 0;

 if(check1(arg))

A

if(check2(arg))
B

return;
C

return;
E

return;
G

return;
I

return;
K

if(check3(arg))
D

if(check4(arg))
F

if(check5(arg))
H

printf("%d\n", val[j]);
J

(b) CFG of example3.

Fig. 2. Examples to illustrate our observations and our technique.

2.3 Our Technique

We propose a sampling based abstract interpretation technique for dependence analysis. Specifically,
following a novel algorithm, BDA samples inter-procedural program paths in a way that the
likelihood of different paths being sampled follows a uniform distribution, without being biased
by path length. In other words, BDA is able to sample as many unique paths as possible given a
limited budget. For each sample path, abstract interpretation is performed to compute the possible
values for individual instructions. During abstract interpretation, external inputs (e.g., user inputs)
are randomly sampled from pre-defined distributions; calling contexts are explicitly denoted as
call strings; stack memory is denoted as a stack frame with offset; heap memory is denoted by its
allocation site; abstract values are updated based on instruction semantics; memory reads/writes
are modeled through an abstract store; and path feasibility is partially modeled (details can be
found in Section 5). Note that the abstract interpretation in BDA is not based on strided intervals.
Instead, it is to-some-extent similar to concrete execution, computing a single abstract value at each
instruction instance. The values associated with a static instruction is the union of all the values
derived for individual instances of the instruction. In the mean time, it is still quite different from
concrete execution, which has extreme difficulty ensuring memory safety when path feasibility
is not fully modeled, or concrete external inputs are not available. After aggregating the values
derived from individual samples, BDA performs an additional posterior analysis to mitigate the
possible incomplete path coverage during sampling. The analysis merges values computed along
different branches at each control flow joint point and then cross-checks the address values of
memory access instructions to detect dependences. The value merge allows dependences that
belong to un-sampled paths to be disclosed with high likelihood.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

BDA: Practical Dependence Analysis for Binary Executables by Unbiased Whole-Program Path Sampling and ... 137:7

Binary Pre-processor 1 inc rcx

2 mov [rbp-0x10], rcx

3 lea rbx, [rbp-0x10]

4 mov rax, [rbx]

5

Assembly Code

Weighted iCFG

Input Distribution

Sampler

Path

input value

i 5

j 5

……

Input Valuation

Abstract

Interpreter

instr var value

1 rcx <G, 0>

2 [<S, -16>] <G, 0>

……

Abstract Values

Analyzer

Dependence

5/6 1/6

4/5 1/5

A 6

B 5 C 1

E 1D 4

A

B

D

INST 4 INST 2

Path Sampling Abstract Interpretation Posterior Analysis

inc …

mov …

lea …

mov …

.
.
.

.
.
.

?

Fig. 3. Architecture of BDA.

Note that a naive sampling algorithm that tosses a fair coin at each conditional jump instruction
does not work. Consider example3 in Figure 2 with CFG in Figure 2b. With naive sampling, the
path A→C gets 1

2 chance to be taken, while the path A→B→D→F→H→J has only 1
32 . With the

sampling algorithm in BDA, the six paths in the code have an equal chance to be taken. Assuming
i and j have the range of [0, 99], BDA guarantees that the dependence between lines 23 and 29 is
covered with 99.74% when 60 sample paths are taken. Coming back to our 197.parser example in
Figure 1, BDA is able to disclose all the true positive dependences in the two functions without
generating any false positives.

3 DESIGN

The architecture of BDA is shown in Figure 3. It consists of four components: including pre-
processor, sampler, abstract interpreter and analyzer. The pre-processor disassembles the given
binary to get its assembly code and generates its inter-procedural control flow graph (iCFG) with
call edges and return edges explicitly represented. Each basic block of iCFG is weighted by the
number of possible inter-procedural paths starting from the block. The sampler samples path based
on the weights of blocks and samples external input values based on the pre-defined distributions.
Given a sampled path and input valuation, the abstract interpreter interprets the instructions

along the path and computes the abstract values of operands at each instruction. The abstract
values for individual instructions are passed to the analyzer for posterior memory dependence
analysis. At last, BDA outputs a list of pairs of memory-dependent instructusions as analysis results.
In the next a few sections, we discuss the details of the individual components.

4 PATH SAMPLING

In the sampling step, BDA takes a binary executable and its inter-procedural control flow graph
(iCFG), generates a given number of whole-program path samples. Note that we use an iterative
method to handle iCFG in the presence of indirect calls, which will be discussed in Section 4.3. The
sampling follows a uniform distribution of the space of unique paths. As mentioned in Section 2, a
simple sampling algorithm that tosses a fair coin at each predicate has strong bias towards short
paths.
The basic idea of our sampling algorithm is as follows. For each branching instruction, BDA

computes the number of inter-procedural program paths starting from the branch. Sampling bias
for the instruction is hence computed from the path counts. Intuitively, a branch leading to more
paths has a higher probability to be taken. In order to realize the idea, we address the following two
prominent challenges: (1) how to compute the number of inter-procedural paths (in the presence
of function calls, loops, and even recursion); and (2) how to sample a strongly-biased distribution
as it often occurs that one branch of a conditional statement has a very small number of paths

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

137:8 Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xiangyu Zhang

Algorithm 1 Path Counting

Input: iCFG ▷ loop-free and recursion-free iCFG of the target binary

Output: W : ▷ weight (i.e., path count) for each node, a K-bits integer

1: function PathCounting(iCFG)

2: for iaddr in reverse topological order of iCFG do

3: if iaddr is a return node then ▷ for a return node, initialize its weight to 1

4: W [iaddr] ← 1

5: else if iaddr is a call node then ▷ function invocation intruction

6: callee ← call target of iaddr

7: r et_addr ← the instruction right after iaddr

8: W [iaddr] ←W [r et_addr] ×W [callee] ▷ K-digits multiplication, with complexity O (K logK)

9: else ▷ other instructions

10: W [iaddr] ← 0

11: for succ in successors of iaddr do

12: W [iaddr] ←W [iaddr] +W [succ]

13: end for

14: end if

15: end for

16: returnW

17: end function

(e.g., those exit upon an error condition) while the other branch has a huge number of paths (e.g.,
beyond the maximum integer that can be represented in 64 bits). We also study the probabilistic
guarantee of our sampling algorithm.

4.1 Path Counting

Our path counting algorithm is inspired by the seminal path encoding algorithm in [Ball and Larus
1996a]. In Ball-Larus (BL) path encoding, the number of paths starting from a node is the sum of
the numbers of paths of its children. It transforms a CFG to its acyclic version (e.g., by removing
back-edges) and then computes the path count for each node in a reverse topological order. Figure 4
shows the path count for each node (called node weight from this point on) for the code in Figure 2b.
Each node is annotated with node id and its weight. Observe that the leaf nodes have weight 1. Then
node H is computed to have weight 2, F has weight 3, and so on. The fractions along edges denote
the sampling bias. For example, at node A, the chance to take A→ B is 5

6 whereas A→ C is 1
6 . The

probabilities of taking the 6 different paths are all 1
6 . However, the BL path counting algorithm is

intra-procedural and does not consider loop iterations. Hence, we propose a new whole-program
path counting algorithm. To simplify our discussion, we assume the subject program is loop-free
and recursion-free, but has calls and returns. Moreover, each callee must return to its caller and
there are no indirect calls. In Section 4.3, we will explain how to address these practical issues.
In order to handle inter-procedural path counting, we have to precisely determine the weight

(i.e., the number of paths) of an invocation instruction. The key observation is that the weight of an
invocation to a callee function foo() is the product of the number of inter-procedural paths from
the entry of foo() to the exit of foo(), including paths in the callees of foo(), and the weight of
the instruction right after the invocation instruction in the caller. The former is called the callee
paths and the latter is called the continuation paths.
The procedure is explained in details in Algorithm 1. It takes the inter-procedural CFG of the

binary, and computes the weight for each node, which denotes the number of inter-procedural paths

from the node to the exit of its enclosing function. Since the input iCFG does not have loops or
recursion, we can perform topological sort on the graph. Intuitively, one can consider that we first

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

BDA: Practical Dependence Analysis for Binary Executables by Unbiased Whole-Program Path Sampling and ... 137:9

J 1

H 2

F 3

D 4

B 5

A 6

K 1

I 1

G 1

E 1

C 1

5/6 1/6

4/5

3/4

2/3

1/2

1/5

1/4

1/3

1/2

Fig. 4. Weighted CFG for Fig.2b

void gee(int *a) {

if (input()) *a=0;

else *a=2;

}

void foo(int *a) {

gee(a);

if (input()) *a+=1;

}

int main() {

int a;

if (input()) gee(&a);

else foo(&a);

}

Fig. 5. Code example with functions

D 2

C 1

A 1

B 1

call

ret

main() gee() foo()

O 6 N 4

M 2

I 4

H 4

G 2

F 1E 1

L 1

J 1 K 1

entry

exit

call call

ret

ret

1/3

2/3

1/2 1/2

1/2 1/2

c
a
llb

a
c
k

c
a
llb

a
c
k

c
a
llb

a
c
k

P(O→N→I→H→D→C→A→G→E→K→J)

= P(O→N) ∙ P(D→C) ∙ P(G→E) = 2/3 ∙ 1/2 ∙ 1/2 = 1/6

Fig. 6. Weighted iCFG for Fig.5

sort the call graph and then sort the nodes inside each function. The loop in lines 2-15 traverses
each node in the reverse topological order. If it is a return instruction, its weight is set to 1 (line 4).
If it is a call, the weight is computed as the product of the weight of the return address and the
weight of the entry point of the callee (i.e., the number of inter-procedural paths inside the callee).
Since a method may have a huge number of such paths, which we assume to be bounded by 2K , the
complexity of such product isO(K loд(K)). In practice, we find using K = 600, 000 bits to represent
weights is enough. In lines 10-13, if the node is neither call nor return, its weight is the sum of the
children weights.
Example. Consider the example in Figure 5, which has three functions main(), gee(), foo(), with
both main() and foo() calling gee(). The weighted iCFG is shown in Figure 6. Following reverse
topological order, gee() is processed first. As such,W [A] = 1 andW [D] = 2 as there are two paths
inside gee(). Inside foo(),W [E] = 1 as it is a return;W [G] = W [E] +W [F] = 2, andW [H] =
W [D] ×W [G] = 4. Similarly, in main(),W [N] =W [I] ×W [K] = 4,W [M] =W [D] ×W [L] = 2,
andW [O] =W [N]+W [M] = 6, meaning there are 6 whole-program paths. The bottom of Figure 6
shows the probability of the red path being taken, which is exactly 1

6 , same for the others. □
Note that the computed path counts can be directly used in path sampling, even though the

weight of node only denotes the number of paths from the node to the end of its enclosing function

(denoted as x), not the number of paths from the node to the end of the program (denoted as y). The
reason is that y equals to x times the number of continuation paths of the enclosing function (denoted
as z), multiplying the same z on both branches of a predicate does not change sample bias. Consider
the example in Figure 6, nodes C and B have weight 1 (i.e., x = 1) although there are 2 paths from
either to the end of the program (i.e., y = 2). However, using either scheme yields the sampling
bias at D (i.e., 1 against 1 versus 2 against 2).

4.2 Path Sampling and Probability Analysis

Given the pre-computed weights, our path sampling is to toss a biased coin at a predicate. The
predicate bias is locally computed from the weights of the predicate and its children. Since there are
substantial variations in weight values (e.g., 1 versus 21000), we have to design a special procedure
to simulate the biased distribution, which is presented in Algorithm 2. In the subsequent section,
we will show how to achieve uniform distribution for whole-program path sampling using this
algorithm and demonstrate its correctness and effectiveness. To simplify discussion, we only
consider sampling a predicate of two branches, whose weights arew0 andw1 withw0 > w1 without
losing generality. The algorithm is to simulate picking branch 0 with the (approximate) probability
of w0

w0+w1
and branch 1 with w1

w0+w1
. Sampling more branches can be easily extended. Due to the

frequent invocation of the sampling function (for each predicate), we develop an efficient algorithm

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

137:10 Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xiangyu Zhang

with O(1) expected complexity (not worst-time complexity). Observe that what we need is a ratio
between weights, instead of precise weights. Inspired by the floating point representation, we
introduce an approximate representation of weights. Specifically, each weight is transformed to two
64-bit values: siд and exp, analogous to the significant and exponent in floating point representation,
respectively. They satisfy the following, with w̃v an approximation of weight valuewv .

⟨siд, exp⟩ = siд × 2exp = w̃v (2)

To minimize representation error, siд and exp are derived as follows.
{
exp = max (⌊logwv ⌋ , 63) − 63
siд = ⌊wv/2

exp⌋
(3)

Algorithm 2 Branch Selection

Input: w0, w1: ▷ weights with w0 ≥ w1 without losing generality

Output: 0/1: ▷ the branch to choose

Local: w̃i : ⟨siд, exp ⟩ ▷ approximate representation of weight, consisting of significant bit and exponent

1: function SelectBranch(w0, w1) ▷ Random pick one ID based on weight

2: (w̃0, w̃1) ← (approximate(w0), approximate(w1))

3: n ← w̃0 .exp − w̃1 .exp

4: if n ≥ 64 then

5: for i in range(n) do

6: if random(2) = 0 then ▷ random(n) returns k (0 ≤ k < n) with probability 1
n

7: return 0

8: end if

9: end for

10: return (random(w̃0 .siд) < w̃1 .siд) ▷ w̃0 .siд × 2 must be larger than w̃1 .siд

11: else

12: return (random(w̃0 .siд × 2
n
+ w̃1 .siд) < w̃1 .siд)

13: end if

14: end function

Taking 265 − 1 as an example, it is represented as
〈
264−1, 1

〉
, which introduces an error of

(264−1)×21

264−1
=2.7e−20. With the representation, Algorithm 2 describes the sampling procedure. Specif-

ically, if the exponent difference betweenw0 andw1 is smaller than 64, in line 12, BDA randomly
samples a value in [0, w̃0.siд×2

n
+w̃1.siд] and then checks if it is smaller than w̃1.siд. If so, branch 1

is selected; otherwise 0, denoting the probability of
w̃1 .siд

w̃0 .siд×2n+w̃1 .siд
. When the exponent difference

is larger than 64, it first leverages a loop in lines 5-9 that tosses a fair coin n times and selects 0
when any of the n coins is 0. If all n tries yield 1, which has the probability of 1

2n , line 10 further

samples with a probability of
w̃1 .siд

w̃0 .siд
, to approximate the intended probability, asw1 is very small

compared tow0 and hence it is negligible when added tow0.

Theorem 4.1. Using Algorithm 2, the probability p̃ of any whole-program path being sampled

satisfies equation 4, in which n is the total number of whole-program paths and L is the length of the

longest path.

(
263

263 + 1
)2L ·

1

n
≤ p̃ ≤ (

263 + 1

263
)2L ·

1

n
(4)

Due to the space limitations, we omit the proof, which can be found in our supplementary
material [Zhang et al. 2019b].

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

BDA: Practical Dependence Analysis for Binary Executables by Unbiased Whole-Program Path Sampling and ... 137:11

By applying Taylor’s Theorem to inequality (4), we can derive inequality (5). In practice,
the length L of the longest path of any binary executable (without loops or recursion) satisfies
L≪(263 + 1), the approximation is hence very tight around 1

n
. For example, 176.gcc’s longest path

is nearly 40000, such that 1−(8e−15)
n
≤ p̃ ≤

1+(8e−15)
n

.

(1 −
2L

263 + 1
) ·

1

n
≤ p̃ ≤ (1 +

2L

263 + 1
) ·

1

n
(5)

We should note that a simple random number generator would not work because of the limitation
of floating point representation. Considering selecting a branch with possibility 1e−1000 represented
via 1 : 1e+1000, it would be transformed to 2e−308 (the minimal representable positive value in
float64), suggesting over 2e+692 times undesirable amplification of the likelihood. This would lead
to heavily biased sampling. Lumbroso [2013] proposed a heavy-weight algorithm to accurately
sample from strongly-biased distribution, whose average-case time complexity is O(log(p + q))
when sampling from p :q. In contrast, Algorithm 2 samples in O(1) with negligible precision loss,
and hence is more desirable in our context where the sampling function is frequently invoked.

Probabilistic Guarantee for Disclosing Dependence. As mentioned in Section 2, a (memory)
dependence may be disclosed by many paths. Assumem out of total n paths disclose a dependence,
and let k = m

n
. Following our path sampling algorithm, in a path sample, the probability pd of

observing a given dependency d satisfies inequality (6).
(

263

263 + 1

)2L
· k ≤ pd = p̃ ·m ≤

(
263 + 1

263

)2L
· k (6)

For N samples, the probability Pd of disclosing dependency d at least once has a lower bound
mentioned in inequality (7).

Pd = 1 − (1 − pd)
N ≥ 1 −

(
1 −

(
263

263 + 1

)2L
· k

)N
≈ 1 − (1 − k)N (7)

Inequality (7) offers a strong guarantee for finding dependency in practice. Taking 176.gcc as an
example, if L=40000, k=0.0005 and N =10000, we would have Pd ≥ 99.32%, which means that the
chance of missing the dependence is only 0.68%.

4.3 Addressing Practical Challenges

Handling Loops. Our discussion so far assumes loop-free and recursion-free programs. BDA
distinguishes two kinds of loops and handles them differently. The first kind is loops whose
iteration numbers are not external input related. We call it constant loops. The other kind is input
related, called input-dependent loops.

For an input-dependent loop, it is intractable to determine how many times it iterates. A standard
solution is to compute a fix-point, which often entails substantial over-approximation. Hence,
our design is to bound the number of iterations. A naive solution is to give a fixed bound for all
input-dependent loops. However, this could cause non-trivial path explosion in the presence of
nesting loops. Hence, we bound the total number of iterations across all the nesting loops within
a function. Such a design also allows easy computation of weight values. Assume the bound for
each function is t = 3, Figure 7a illustrates the idea. For each function F , BDA clones the function
t times, denotes as F0, . . . , Ft−1. For each back-edge in Fi , we reconnect it to the corresponding
loop head in Fi+1. For example, back-edge a in Figure 7 becomes a1, a2 and a3 connecting different
versions of F . Note that in the transformed graph at most t = 3 back-edges could be taken (e.g., a 3
times and b 0 times; a 2 times and b 1 time; and so on).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

137:12 Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xiangyu Zhang

call

ret

a

b

F

call

ret

F0

a1 a2 a3

b1 b2 b3

ret ret ret

F1 F2 F3

1 1 1 1

1

entry

exit A

callback

call

ret exit B

2

1

1

1

1

1

entry

exit A

callback

call

ret exit B

entry

exit A

callback

call

ret exit B

(a) Handling input dependent loops (b) Handling multi-exits

main() foo()

Fig. 7. Example to show how graph transformation works for loop

For constant loops, which are commonly used in initialization, BDA allows them to iterate as
many times as them are supposed to. As such, the constant loop predicates are not part of the path
samples generated in this phase. We will show in the next section that our abstract interpreter
directly handles such loops without referring to path sample. Recursion is handled in a way similar
to input-dependent loops. Details are elided.

Handling Multi-Exits. So far we assume every function in iCFG returns to its caller. In practice,
many functions may just exit without returning, posing challenges for path counting. Our solution
is to count the paths that must exit without return and those that must return separately. We use
the sample graph on the top of Figure 7b to illustrate the basic idea. In the graph, main() (on the
left) calls foo() (on the right), which may exit without return. The essence of our solution is to
count the two sub-graphs below separately and sum them up. Specifically, the sub-graph in the
middle corresponds to the must-return behavior, whereas the sub-graph on the bottom corresponds
to the exit behavior. The number inside each node denotes its weight. As such, there are 2 + 1 = 3
whole-program paths.

Handling Indirect Calls.We use an iterative method to handle indirect calls. Specifically, after
initial path sampling, BDA abstract-interprets the samples. If new call targets are identified during
abstract interpretation, the iCFG is updated, weights are re-computed, and another round of
sampling is performed. The sampling algorithm terminates when no new indirect-calls are found
within a time budget. For example, 7836 indirect calls are identified for 254.gap (by BDA) within
5.67 hours, as shown Table 7.

Edge Coverage. If we strictly follow the unbiased whole-program path sampling algorithm, some
statements may not be covered. Consider a predicate with two branches, one has weight 1 and the
other has weight 21000. The statement in the short branch may not be covered at all. To address the
problem, BDA collects a set of additional samples (usually much smaller than the path samples) to
cover control flow edges that have not been covered.

Sampling External Inputs. External input values are sampled from pre-defined value ranges in
a uniform fashion. One can consider this input sampling procedure produces an external input
valuation that assigns each instance of an external input read instruction with a random value.

Probabilistic Guarantees in Practice.With the additional machinery to handle practical chal-
lenges, Theorem 4.1 and bound (7) only hold when the following assumption is satisfied: the graph
transformations to handle loops and recursion must not change k , the probability a dependence is

disclosed by a whole-program path. Furthermore, k may be difficult to derive in practice due to
the undecidable nature of the problem. However, our experiment in Section 7 illustrates that the
algorithm is effective in practice and the results are consistent with our theoretical analysis.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

BDA: Practical Dependence Analysis for Binary Executables by Unbiased Whole-Program Path Sampling and ... 137:13

⟨Program⟩ P F S

⟨Statement⟩ S F S1;S2 | r ≔ e | r ≔ R(ra) | W(ra, rv) | r ≔ malloc() | r ≔ input()

| call(a) | ret | goto(a) | if r then goto(a)

⟨Expression⟩ e F r | v | r1 op r2 | r op v

⟨Operator⟩ op F + | - | * | / | ...

⟨Register⟩ r F {sp, r1, r2, ...}

⟨AbstractValue⟩ v F ⟨m, c⟩

⟨MemoryRegion⟩ m F G | Hc
a | Sca

⟨Const⟩ c F {0,1,2,...}

⟨Address⟩ a F {0,1,2,...}

Fig. 8. Language.

5 ABSTRACT INTERPRETATION

We explain the abstract interpretation semantics in this section. Given a predefined sample path,
represented by a sequence of addresses, and an external input valuation that associates each instruc-
tion instance that reads external input with a value sampled from some pre-defined distributions,
the abstract interpreter follows the path to compute abstract values for each instruction instance. It
models both register and memory reads and writes, e.g., supporting writing an abstract value to
an abstract address. If the branch outcome of a loop predicate is not dependent on any external
input (e.g., loop predicate with a constant loop bound), BDA does not resort to the path sample, but
rather follows the branch based on the abstract value of the predicate. It explicitly represents and
updates an abstract call stack, in order to precisely represent stack memory addresses. In addition,
the interpretation of arithmetic operations (e.g., additions and subtractions) is precise, without
causing any precision loss as that in computing strided intervals in VSA.

Abstract interpretation is essential for BDA. In contrast, an alternative design of using concrete
execution to expose dependence is less desirable. Note that in concrete execution, without knowing
input specification, the sampled inputs may not satisfy format constraints, leading to early termi-
nation. Additionally, concrete execution may have stack/heap reuse, leading to substantial false
dependences in the whole-program posterior-analysis, which is necessary and will be explained in
Section 6.

Language. To facilitate discussion, we introduce a low-level language to model binary executables.
The language is designed to illustrate our key ideas, and hence omits many features (of x86). The
implementation of BDA supports these complex features present in real-world binary executables
(even though they may not be modeled by our language). The syntax of the language is shown
in Figure 8. R(ra) and W(ra , rv) model memory read and write operations, respectively, where
register ra holds the address and register rv holds the value to write. Heap allocation functions
(e.g., calloc and mmap) are modeled as malloc. The allocated size is irrelevant in our analysis and
hence elided. External input functions (e.g., fread and scanf) are modeled by input. Other general
function calls and returns are modeled by call and ret. The address of the target function of call is
a. We assume parameter passing across functions is done explicitly through register and memory
read/write instructions. We model the stack pointer register sp to facilitate computing stack related
abstract values. In addition, control flow statements (in high-level languages), such as conditional
and loop statements, are modeled using goto and guarded goto.
Abstract values are represented as ⟨m, c⟩, wherem stands for a memory region and c stands

for the offset relative to the base of the region. The memory space is partitioned to three disjoint
regions: global, stack and heap. The global region, denoted as G, stands for the locations holding
initialized and uninitialized global data, such as the .data, .rodata and .bss segments of an ELF

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

137:14 Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xiangyu Zhang

pc ∈ ProgramCounter F Address

I S ∈ InstructionSize F Address→ Const

IC ∈ InvocationCount F Address→ Const

LP ∈ LoopPredicate F Address→ Bool

MS ∈ MemStore F AbstractValue→ AbstractValue

RS ∈ RegStore F Register→ AbstractValue

MT ∈ MemTaint F AbstractValue→ Bool

RT ∈ RegTaint F Register→ Bool

PA ∈ PATH F [Address]

RV ∈ RandomInputValuation F (Address × Const) → Const

CS ∈ CallStack F [Address × Integer × Address × AbstractValue]

MOS ∈ MemOpSeq F [Address × AbstractValue]

CalcValue(op, v1, v2) F

if v1 .m ≡ G then

v3 ← ⟨v2 .m, v1 .c op v2 .c ⟩; t ← false;

else if v2 .m ≡ G then

v3 ← ⟨v1 .m, v1 .c op v2 .c ⟩; t ← false;

else

v3 ← ⟨G, RV [⟨pc, IC [pc]⟩]⟩; t ← true;

end if

return ⟨v3, t ⟩;

NormalizeVal(v) F

if v .m ≡ S∗∗ then

CS
′
← CS ;

while v .c ⩾ 0 and ¬CS
′
.empty() do

⟨−, −, −, vt ⟩ ← CS
′
.pop();

v .m ← vt .m; v .c ← v .c + vt .c;

end while

end if

return v;

Fig. 9. Definitions.

file. A stack region, denoted as Sca , models a stack frame that holds local variable values for the
c-th invocation instance of the function at address a. A heap region, denoted as H c

a , models a
memory region allocated in the c-th invocation instance of the allocation instruction at program
counter (pc) address a. A non-address constant value can be expressed as having m = G. Note
that in our interpretation, an instruction may be encountered multiple times in a sample path and
we distinguish these different instances. In contrast, VSA does not; instead it merges the abstract
values for all possible instances, which is an important source of inaccuracy.

Definitions. Figure 9 introduces a number of definitions that are used in the semantic rules. We
use pc to denote the program counter that indicates the address of current instruction, IS to denote
the size of each instruction, IC to represent the current instance of an instruction, and LP to indicate
whether the current instruction is a loop predicate.MS denotes the abstract value store that maps
an abstract memory address value to the abstract value stored at that address, and RS denotes
the register store that maps a register to its abstract value.MT and RT represent the taint stores
for memory and registers, respectively. The taint tag of an abstract value indicates if the value
has been directly/transitively computed from some (randomly sampled) external input. In other
words, there is data flow from some external inputs to the abstract value. A sample path is denoted
by PA, which is a list of addresses ordered by their appearance in the path. A sampled external
input valuation RV assigns a sampled value to each instance of an external input instruction. Both
PA and RV are generated by the previous sampling phase and provided as inputs to the abstract
interpretation process. We use CS to explicitly model call stack. It is a list of four-element tuples,
denoting respectively the invocation site, its instance, the return address, and a copy of the abstract
value of the sp register which is supposed to be updated upon function invocation. The outcome
of abstract interpretation MOS contains the abstract values for each memory access instruction
encountered.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

BDA: Practical Dependence Analysis for Binary Executables by Unbiased Whole-Program Path Sampling and ... 137:15

Table 1. Interpretation rules.

Rule Statement Actions

Read r :=R(ra)
IC [pc]++; v :=NormalizeVal (RS [ra]); RS [r]:=MS [v]; RT [r]:=MT [v]∨RT [ra];
MOS .enqueue (⟨pc, v ⟩); pc := pc+I S [pc];

Write W(ra , rv)
IC [pc]++; v :=NormalizeVal (RS [ra]); MS [v]:=RS [rv]; MT [v]:=RT [rv]∨RT [ra];
MOS .enqueue (⟨pc, v ⟩); pc := pc+I S [pc];

Malloc r :=malloc() IC [pc]++; RS [r]:=
〈
H
IC [pc]
pc , 0x0

〉
; pc := pc+I S [pc];

Input r :=input() IC [pc]++; RS [r]:=RV [⟨pc, IC [pc]⟩]; RT [r]:=true; pc := pc+I S [pc];
Goto goto(a) IC [pc]++; pc := a;

If-Goto if r then goto(a) IC [pc]++; at := (RS [r]. ⟨G, 0⟩ ? a : pc+I S [pc]); pc := ¬RT (r) ∧ LP (pc) ? at : PA.pop();

Call call(a)
IC (pc)++; pc ′ := pc ; pc := PA.pop();

if (pc == a) {CS .push(pc ′, IC[pc ′], pc ′ + I S [pc ′], RS [sp]); RS [sp]:=
〈
S
IC [pc]
pc , 0x0

〉
; };

Ret ret IC [pc]++; ⟨−, −, pc, RS [sp]⟩:=CS .pop();

Expr1 rt :=r1 op r2
IC [pc]++; ⟨RS [rt] , t ⟩:=CalcValue (op, RS [r1] , RS [r2]);
RT [rt]:=RT [r1]∨RT [r2]∨t ; pc := pc+I S [pc];

Expr2 rt :=r op v IC [pc]++; ⟨RS [rt] , t ⟩:=CalcValue (op, RS [r] , v); RT [rt]:=RT [r]∨t ; pc := pc+I S [pc];

Semantics Rules. The semantic rules are presented in Table 1. Upon interpreting an instruction,
the instance count IC is incremented by one. Rule Read describes the semantics of memory read.
It invokes an auxiliary procedure NormalizeVal() to normalize the abstract (address) value in
register ra , denoted as RS[ra]. As shown in Figure 9, if the value is a global or heap value, it is
returned directly. Otherwise, it is checked to identify the enclosing stack frame of the address. Note
that it is common for an instruction to access a stack location beyond the current stack frame (e.g.,
access an argument passed from the caller function). The procedure traverses the stack frames from
the top to the bottom till it finds a frame on which the offset becomes negative. After normalization,
the abstract value stored in the normalized address is copied to the target register r . The taint bit of
r is the union of the taint bits of the normalized address and the address register ra . At the end, the
pc is updated to the next instruction. RuleWrite describes the semantics of memory write. Similar
to memory read, it normalizes the address value and then updates the memory value storeMS and
the memory taint store MT . Rule Malloc creates a new abstract value denoting the allocation
site with 0 offset. Note that BDA does not model memory safety and hence the size of allocation is
irrelevant. Intuitively, one can consider each allocated heap region has infinite size. This can be
achieved during abstract interpretation but not during concrete execution. Rule Input loads the
abstract value of destination register r from the pre-generated external input sample valuation RV ,
which is constructed by drawing value samples from predefined distributions during the preceding
sampling phase. In addition, the taint bit is set true to indicate that the value is related to external
input. Rule Goto sets the program counter to the target address a.

In Rule If-Goto, if the taint bit of r is not set and the current instruction is a loop predicate, that
is, r is not directly/transitively computed from external input, the loop branch outcome is certain
and independent from the sampled value. Hence, pc is set to at , which is either the branch target
a specified by the statement when r is true, or the fall-through address. Otherwise, it is loaded
from the pre-computed path sample PA. Observe that BDA respects path feasibility when loop
predicate outcome is not derived from any external input, e.g.,constant loops (in the initialization
phase). Taint analysis allows us to identify such predicates. In Rule Call, pc is first copied to pc ′,
then it is updated by loading from the sample path PA. BDA may determine to skip a function call
if it is part of a recursion. If the call is not skipped, indicated by pc being equal to the specified
target a, the invocation site pc ′, its instance count, the return address (i.e., the instruction after the
invocation), and the current abstract value of sp are pushed to the call stack CS . Then, the abstract
value of sp is reset, indicating a new stack frame. Rule Ret pops the call stack to acquire the return
address and restores the value of sp. Rules Expr1 and Expr2 update the resulting register rt with
the value calculated by the CalcValue() procedure and record the corresponding taint tags. As

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

137:16 Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xiangyu Zhang

Table 2. Abstract interpretation example (PA=a→e→g→k)

SourceCode Trace BDA Trace
Actions

RS MS CS

2

a. r1 := malloc() [r1] = ⟨H
1
a, 0⟩

b. sp := sp − ⟨G, 4⟩ [sp] = ⟨S1a, -4⟩
c. W(sp, r1) [⟨S1a, -4⟩] = ⟨H

1
a, 0⟩

3 d. call(e) [sp] = ⟨S1e , 0⟩ [⟨S1a, -4⟩]

7
e. r3 := input() [r3] = ⟨G, 502⟩
f. if r3 then goto(p)

8

g. r2 := R(sp) [r2] = ⟨H
1
a, 0⟩

h. sp := sp − ⟨G, 4⟩ [sp] = ⟨S1e , -4⟩
i. W(sp, r2) [⟨S1e , -4⟩] = ⟨H

1
a, 0⟩

j. call(k) [sp] = ⟨S1
k
, 0⟩ [⟨S1a, -4⟩, ⟨S

1
e , -4⟩]

11 k. r4 := R(sp) [r4] = ⟨H
1
a, 0⟩

12

l. r5 := ⟨G, 0⟩ [r5] = ⟨G, 0⟩
m. r6 := r5 ≥ ⟨G, 2⟩ [r6] = ⟨G, 0⟩
n. if r6 then goto(x)

1 . int main() {

2 . char *s = malloc(2);

3 . foo(s);

4 . }

5 .

6 . void foo(char *s) {

7 . if(input()) return;

8 . gee(s);

9 . }

10.

11. void gee(char *s) {

12. for(int i=0; i<2; i++)

13. s[i] = input();

14. }

...

shown in Figure 9, CalcValue() computes the result of operation op on operands v1 and v2. If one
of the operands belongs to the global region, then the resulting memory region is inherited from
the other operand and the resulting offset is derived by performing the operation on the offset fields
of the two operands. Otherwise (e.g., both operands denote values in some heap region, which may
occur as path feasibility may not be respected by BDA), we use a random value as the result, since
we could not obtain a precise result for operations on two non-global abstract values. In this case,
the result taint tag is set to true.

Example. Consider the example in Table 2. The source code, the source level trace, the trace in
our language, and the interpretation actions are shown in the columns from left to right. Observe
that instructions a − c correspond to the invocation at line 2 that writes the returned value from
malloc() to stack. In d (i.e., invocation to foo() in line 3), the current sp value ⟨S1

a , -4⟩ is pushed
to CS ; sp is updated to denote the stack frame of foo(); and the target instruction e is loaded from
the sample path PA (in the caption of Table 2). In f (i.e., the conditional in line 7), since r3 is from
external input, the target д is loaded from PA. In д (i.e., passing s in line 8), when sp (i.e., the address
of local variables) is read, its value ⟨S1

e , 0⟩ is first normalized to ⟨S1
a , -4⟩, which is used to access

MS to acquire the value of ⟨H 1
a , 0⟩. In n (i.e, the loop predicate in line 12), r6 is not input related,

the interpreter evaluates the predicate and takes the true branch. □

6 POSTERIOR ANALYSIS

After the abstract interpretation of all sampled paths, the posterior analysis is performed to complete
dependence analysis, via aggregating the abstract values collected from individual path samples in
a flow-sensitive, context-sensitive, and path-insensitive fashion. Specifically, it computes abstract
states for each program point, which is an instruction annotated with a calling context. The abstract
states represent the set of live abstract addresses at the given program point and their definition
instructions (an intuitive correspondence at the source level is that the set of live variables at a
program point and the statements that define them). Dependences are detected between a read
instruction and all the definitions to the address being read. It is context-sensitive as it considers
instructions under different contexts as different program points. It is path-insensitive as it merges
the abstract values collected along different branches at control flow joint point (e.g., the instruction
where the two branches of a conditional statement meet). This allows addressing incompleteness in
path sampling. However, our analysis is much more accurate than a flow-sensitive and path-insensitive

data-flow analysis as it does not compute any new abstract values (e.g., by transfer functions in standard

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

BDA: Practical Dependence Analysis for Binary Executables by Unbiased Whole-Program Path Sampling and ... 137:17

1 char bar(char *p) {

2 *p = 0;

3 if (input()) {

4 *p = 1;

5 foo(*p);

6 }

7 if (input()) return *p;

8 else return ~(*p);

9 }

Fig. 10. Posterior analysis example

1 typedef struct node {int val; struct node *next} node_t;

2 node_t list_a [10000] , list_b [10000];

3 int foo() { // list_a and list_b are independent

4 for (int i = 0, j = 1; i < 10000; i++, j++){

5 list_a[i].next = &(list_a[j % 10000]);

6 list_b[i].next = &(list_b[j % 10000]) ;}

7 list_a[input()].next ->val = 0;

8 return list_b[input()].next ->val;

9 }

Fig. 11. Taint tracking example (simplified from 181.mcf)

data flow analysis), but rather just aggregates the collected abstract values. This avoids the substantial
precision loss caused by the conservativeness of transfer functions. Intuitively, abstract values
collected in individual sample paths are propagated through all paths (by the merge operation)
to disclose any missing dependences due to incomplete path sampling. To further mitigate the
precision loss caused by the merge operation, our analysis also features strong updates [Lhoták
and Chung 2011] and strong kills that preclude bogus abstract states.

Detailed Design. The details of the analysis are shown in Algorithm 3. It takes as input the set of
memory operation sequences (MOSes), each sequence generated by interpreting a path sample,
and the inter-procedural control flow graph (iCFG) that maps an instruction to its successor(s), and
produces the instruction pairs with (memory) dependence relations (DIP). The process consists
of two stages. In the first stage (lines 2-7), a per-sample analysis (refer Algorithm 1 in [Zhang
et al. 2019b] for details) is performed on each memory operation sequence to derive three pieces of
information: the set of abstract addresses accessed by each instruction I2M , the set of definitions (i.e.,
writes) each instruction depends on DEP , and the set of definitions killed by each write instruction
KILL. These results are merged to their global correspondences (lines 4-6). In the second stage (lines
8-32), a work list (WL) is used to traverse iCFG to compute abstract states PS for each program
point. Lines 11-19 determine the successors of the current program point and maintain the calling
context cs . If iaddr is a memory write (lines 21-22), the set of live addresses and their definitions
M2I are updated by the procedureHandleMemoryWrite() (Algorithm 4). Specifically, Algorithm 4
checks if iaddr defines the same abstract address in all sample paths (line 4 in Algorithm 4). If so,
strong update is performed by resetting the definition ofmaddr to iaddr ; otherwise, iaddr is added
to the definition set ofmaddr (line 7). If iaddr always kills the same definition in all samples (line
8), the definition is removed from the result set (line 9). Return to Algorithm 3. In lines 23-24, if
iaddr is a memory read, dependences are derived from M2I , the abstract state at iaddr , through
the procedure HandleMemoryRead() (refer Algorithm 2 in [Zhang et al. 2019b] for details) Lines
26-31 proceed to the succeeding program points. Particularly, a control flow successor is added to
the work-list if its abstract state has undertaken any change (lines 27-29). Our analysis terminates
when a fixed point is reached. At the end, we want to mention that full context-sensitivity is very
expensive. Hence BDA supports configurable call depth. In our experiment, we use depth 2.

Example. Consider the example in Figure 10. For simplicity, we use source code to explain our
ideas. Assume BDA collects 2 path samples: 2→ 3→ 4→ 5→ 6→ 8 and path 2→ 3→ 7. As
such, abstract interpretation exposes dependences from line 7 to 4, from line 5 to 4, and from line 8
to 2, but missing that from line 8 to 4 due to incomplete path coverage. By merging the abstract
values from the two branches of the predicate in line 3, the posterior analysis discloses the missing
dependence. Additionally, as function bar() might be invoked several times, pointer p at line 4
might have multiple abstract values. As such, at line 4 traditional analysis like VSA cannot kill the

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

137:18 Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xiangyu Zhang

Algorithm 3 Posterior Dependence Analysis

Input: MOSes : {MemOpSeq} ▷ set of memory operation sequences

iCFG : Node × Edge ▷ inter-procedural control flow graph

Output: DIP : {Address × Address} ▷ set of dependent instruction pairs

Local: GI2M : Address→ {AbstractValue} ▷ map an instruction to abstract addresses accessed by it

GDEP : Address→ {Address} ▷ map an instruction to its depending instructions

GKILL: Address→ {Address} ▷ map an instruction to reaching definitions killed by it

M2I : AbstractValue→ {Address} ▷ map an abstract address to its definitions

WL: [CallString × Address] ▷ work list of program points with calling context

PS : (CallString × Address) → (AbstractValue→ {Address}) ▷ abstract state

1: function PosteriorDependenceAnalysis(MOSes , iCFG)

2: for MOS in MOSes do

3: ⟨I2M, DEP, KILL⟩ ← PerSampleAnalysis (MOS)

4: GI2M ← map_merge (GI2M, I2M)

5: GDEP ← map_merge (GDEP, DEP)

6: GKILL ← map_merge (GKILL, KILL)

7: end for

8: WL.enqueue (⟨nil, entry (iCFG)⟩)

9: while ¬WL.empty () do

10: ⟨cs, iaddr ⟩ ←WL.dequeue ()

11: if is_call (iaddr) then ▷ update calling context upon a call instruction

12: cs .push (iaddr)

13: succs ← call_target (iCFG, iaddr)

14: else

15: if is_ret (iaddr) then

16: iaddr ← cs .pop ()

17: end if

18: succs ← get_succ (iCFG, iaddr) ▷ get the following instruction

19: end if

20: M2I ← PS [⟨cs, iaddr ⟩] ▷ the set of reaching definitions at iaddr

21: if is_memory_write (iaddr) then

22: M2I ← HandleMemoryWrite (iaddr, M2I, GI2M, GKILL)

23: else if is_memory_read (iaddr) then

24: DIP ← HandleMemoryRead (iaddr, DIP, M2I, GI2M, GDEP)

25: end if

26: for succ in succs do

27: if ¬map_contains (PS [⟨cs, succ ⟩] , M2I) then

28: PS [⟨cs, succ ⟩] ← map_merge (PS [⟨cs, succ ⟩] , M2I)

29: WL.enqueue (⟨cs, succ ⟩) ▷ additional analysis round is needed when changes detected

30: end if

31: end for

32: end while

33: return DIP

34: end function

definition from line 2, whereas BDA can, by its strong kill. This prevents the bogus dependence
from line 5 to 2. □

7 EVALUATION

BDA is implemented in Rust, leveraging Radare2 [Pancake 2018] that provides basic disassembling
functionalities. For input distribution, we used a fixed normal distribution N(µ=0, σ 2

=327682),
without assuming prior knowledge 1. To assess BDA’s effectiveness and efficiency, we compare it

1We have tried different parameters. The impact is not significant.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

BDA: Practical Dependence Analysis for Binary Executables by Unbiased Whole-Program Path Sampling and ... 137:19

Algorithm 4 Handle Memory Write

Input: iaddr : Address ▷ the current instruction

M2I : AbstractValue→ {Address} ▷ map an abstract address to its definitions

GI2M : Address→ {AbstractValue} ▷ map an instruction to the abstract addresses accessed by it

GKILL: Address→ {Address} ▷ map an instruction to reaching definitions killed by it

Output: M2I
′
: AbstractValue→ {Address} ▷ a new map between abstract address to definitions

1: function HandleMemoryWrite(iaddr , M2I , GI2M , GKILL)

2: M2I
′
← M2I

3: formaddr in GI2M [iaddr] do

4: if capacity (GI2M [iaddr]) ≡ 1 then ▷ strong update

5: M2I
′
[maddr] ← {iaddr }

6: else

7: M2I
′
[maddr] ← M2I

′
[maddr] ∪ {iaddr }

8: if capacity (GKILL [iaddr]) ≡ 1 then ▷ strong kill

9: M2I
′
[maddr] ← M2I

′
[maddr] \GKILL [iaddr]

10: end if

11: end if

12: end for

13: return M2I
′

14: end function

with Alto and VSA (from state-of-the-art binary analysis platforms) on SPECINT2000, a standard
benchmark widely used by binary analysis techniques including the aforementioned two. We also
apply BDA in two downstream analyses, one is to identify indirect control flow transfer targets, a
critical challenge in constructing call graphs, and the other is to identify hidden malicious behaviors
of a set of 12 recent malware samples provided by VirtualTotal [VirusTotal 2018]. In the former
experiment, we compare BDA with IDA, an industry standard platform. In the latter, we compare
with Cuckoo [Cuckoo 2014], a state-of-the-art malware analysis platform. All experiments were
conducted on a server equipped with 32-cores CPU (Intel® XeonTM E5-2690 @ 2.90GHz) and 128G
main memory. The SPEC binaries were generated by LLVM with the default compilation option.
We strip all the symbol information before using them. Basic information of the SPECINT2000
binaries and the malware samples can be found in our supplementary material [Zhang et al. 2019b].

7.1 Coverage

Code coverage. In this experiment, we study the code coverage of our unbiased whole-program
path sampling algorithm and compare it with a naive algorithm that tosses a fair coin at each
predicate. Specifically, we collect 10,000 path samples for each algorithm and report the code
coverage. The detailed results are presented in Appendix B. Overall, our algorithm can achieve
almost 100% coverage for all programs. On average, it covers 554% more instructions, 529% more
basic blocks, and 258% more functions than the naive algorithm. For programs with complex path
structures, our algorithm has much better coverage. Take 197.parser as an example. It contains lots
of error-handling code that detours from the main processing logic at the beginning of the program.
The naive algorithm tends to get stuck in these error handling paths. In contrast, our sampling
algorithm appropriately prioritizes the main processing logic that contains many more deep paths.

Path coverage. Next, we study the path coverage. Since there are usually an extremely large
number of whole-program paths (even not considering loops and recursion), it is not that useful to
report whole-program path coverage. Hence, we report intra-procedure path coverage, in which
the paths we consider are the BL paths defined in [Ball and Larus 1996b]. Specifically, these are
intra-procedural paths starting at function entry or some loop heads and ending at function exit

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

137:20 Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xiangyu Zhang

R
a
ti
o

 o
f

F
u
n
c
ti
o

n
s

0

0.2

0.4

0.6

0.8

1

0.9-1.0

0.8-0.9

0.7-0.8

0.6-0.7

0.5-0.6

0.4-0.5

0.3-0.4

0.2-0.3

0.1-0.2

0.0-0.1

16
4.
gz
ip

17
5.
vp
r

17
6.
gc
c

18
1.
m
cf

18
6.
cr
af
ty

19
7.
pa
rs
er

25
2.
eo
n

25
3.
pe
rlb
m
k

25
4.
ga
p

25
5.
vo
rte
x

25
6.
bz
ip
2

30
0.
tw
ol
f

Av
er
ag
e

Fig. 12. Path coverage.

M
is

s
 R

a
te

 (
%

)

0

0.6

1.2

1.8

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

164.gzip 175.vpr 176.gcc 181.mcf 186.crafty 197.parser
252.eon 253.perlbmk 254.gap 255.vortex 256.bzip2 300.twolf

Fig. 13. Effect of sampling.

or a back-edge. The results are shown in Figure 12, which shows the percentage of functions for
which BDA has achieved various levels of coverage. As we can see, 93% of the functions have a
full or close-to-full path coverage. Those functions whose path coverage is less than 50% have an
extremely large number of unique paths (e.g., function get_method() in 164.gzip has 4514809836
BL paths). As we will show in the next experiment, according to the observation discussed in
Section 2 that a dependence tends to be covered by many paths. Incomplete path coverage does not
cause prominent problems for us. In addition, the posterior analysis substantially mitigates the
issue as well.

7.2 Program Dependence

In this experiment, we perform dependence analysis on SPECINT2000 programs. We also compare
with Alto and VSA. For Alto, we port its original implementation [Muth et al. 1998] on DEC Alpha
to x86. There are three popular binary analysis platforms that support VSA, including CodeSurfer
[GrammaTech 2008], ANGR [UCSB 2008], and BAP [Brumley et al. 2011]. Among them, CodeSufer is
not publicly available and ANGR’s VSA does not handle complex binaries as SPECINT2000 programs
(after confirming with the authors). We hence choose BAP’s VSA for comparison (called BAP-VSA).
Note that it is intractable to acquire the ground truth of program dependencies, even with source
code (due to various reasons such as aliasing and loops). Therefore, we use two methods to evaluate
the quality of detected dependencies. First, we run the programs with the inputs provided by SPEC
and use the observed dependencies as reference. Any dependence detected by reference executions
but not by the analysis tools is called a missing dependence (or a false negative). Any dependence
detected by the tools but not observed during reference executions is called an extra dependence.
Note that the provided inputs achieve 81% code coverage for the SPECINT2000 benchmarks. In
addition, we implemented a static type checker to validate if the source and the destination of a
(detected) dependence have the same type. The checker is implemented as an LLVM pass, which
propagates symbol information to individual instructions, registers and memory locations. As such,
we can obtain the type of each binary operation and its operands. Note that such information
is much richer than the debugging information generated during compilation. Any dependence
whose source and destination have different types is considered a mis-typed dependence, which is
most likely to be a bogus dependence. For fair comparison, we set a fixed timeout of 12 hours for
each program.

Result Summary. Table 3 shows the result summary. Column 2 denotes the number of depen-
dencies observed in the reference execution, columns 3-6 and 7-10 report the number of reported
dependencies, the missing ones, the extra ones and the mis-typed ones for Alto and BDA, respec-
tively. Column 11 shows the reduction of the reported dependencies by BDA from Alto (e.g., the
reduction of 181.mcf from Alto is (588076-3347)/3347=17470%). N/A in the table means that the tool
times out and hence its analysis result is not available. Note that BAP-VSA only handles 181.mcf,
we list the result separately on the bottom. We have doubled the execution time for other programs
but the analysis still cannot terminate. Further inspection shows that when the value set of an

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

BDA: Practical Dependence Analysis for Binary Executables by Unbiased Whole-Program Path Sampling and ... 137:21

Table 3. Memory Dependence.

Program # Refer

Alto BDA

Reduce
Found # Miss # Extra # MisTyped # Found # Miss # Extra # MisTyped

164.gzip 3,580 2,229,749
0

(0.00%)
2,226,169

302,100

(13.55%)
29,370

8

(0.22%)
25,798

3,502

(11.92%)
7492%

175.vpr 13,042 36,840,012
0

(0.00%)
36,826,970

26,692,177

(72.45%)
559,460

10

(0.08%)
546,428

346,217

(61.88%)
6485%

181.mcf 2,050 588,076
0

(0.00%)
586,026

324,621

(55.20%)
3,347

0

(0.00%)
1,297

433

(12.94%)
17470%

186.crafty 30,777 44,139,556
0

(0.00%)
44,108,779

4,926,267

(11.16%)
1,077,346

45

(0.15%)
1,046,614

78,785

(7.31%)
3997%

197.parser 15,196 32,905,403
0

(0.00%)
32,890,207

29,355,388

(89.21%)
659,867

2

(0.01%)
644,673

535,291

(81.12%)
4887%

252.eon 4,401 994,655
0

(0.00%)
990,264

974,925

(98.02%)
28,855

0

(0.00%)
24,454

22,538

(78.11%)
3347%

253.perlbmk 57,507 102,068,477
0

(0.00%)
100,349,485

94,603,019

(92.69%)
5,389,973

130

(0.23%)
5,363,373

4,461,094

(82.77%)
1794%

254.gap 7,935 10,611,636
0

(0.00%)
10,603,701

9,981,368

(94.06%)
205,200

41

(0.52%)
197,306

152,470

(74.30%)
5071%

255.vortex 29,971 265,981,817
0

(0.00%)
265,951,846

238,479,881

(89.66%)
2,159,444

98

(0.33%)
2,129,473

1,385,953

(64.10%)
12217%

256.bzip2 4,306 2,466,876
0

(0.00%)
2,462,570

708,163

(28.71%)
13,917

10

(0.23%)
9,621

1,509

(10.84%)
17626%

300.twolf 16,710 44,735,257
0

(0.00%)
44,718,440

33,741,198

(75.42%)
2,285,090

56

(0.34%)
2,268,436

1,678,383

(73.45%)
1858%

Avg. 16,861 49,414,683
0

(0.00%)
49,246,769

40,008,101

(65.47%)
1,128,352

36

(0.19%)
1,114,316

787,834

(50.80%)
7477%

176.gcc∗ 435,692 N/A N/A N/A N/A 692M
498

(0.11%)
692M 79.43% N/A

BAP-VSA2

on 181.mcf
Found: 23,068 # Miss:

0
(0.00%)

Extra: 21,018 # MisTyped:
12,533
(54.33%)

Reduce: 589%

address operand is substantially inflated, which happens a lot in practice, each write through the
address operand incurs very expensive updates for a very large number of abstract locations.
Observe that although Alto does not have any missing dependence, the number of reported

dependence is very large (due to its conservativeness) and 65.47% of which are mis-typed. Such
substantial bogus dependences hinder its use in practice. In comparison, the dependences reported
by BDA are 75 times smaller, at the prices of a negligible missing rate (0.19%). Note that although
in some cases the mis-typed rate of BDA is only slightly lower than that of Alto (e.g., 197.parser),
the absolute number of mis-typed dependences is much smaller. We argue the results by our tool
are more useful in practice. We should note that the analysis of 176.gcc is very expensive due to
its complexity. As such, Alto could not finish in time. Compared to VSA, BDA reports 589% fewer
dependences with a much smaller number of mistyped dependences (433 versus 12533).
We also study the reasons of missing dependences and mis-typed dependences. We find that

missing dependences are mainly due to loop paths difficult to cover statically. Consider the code
snippet from 164.gzip in Figure 14a, BDA misses the dependence from line 6 to line 4 regarding
the suffix of dst copied from msg. The reason is that BDA only iterates loop (lines 5-6) for a small
number of times, which allows it to detect the dependence from line 6 to line 3 regarding the prefix
of dst, but not the suffix. Mis-type dependences are mainly due to the fact that BDA does not model
path feasibility when predicates are dependent on external inputs. As such, bogus dependences
are introduced along infeasible paths. We want to point out that the same limitation applies to all
analyses that do not fully model path feasibility (e.g., data-flow analysis). Consider the code snippet
in Figure 14b from 164.gzip. Along some infeasible paths, pointers err_cnt and err_msg are not
allocated and hence have the NULL value, which leads to bogus dependence from line 6 to line 3.

2BAP-VSA took 10.9 hours and 8.3GB memory for 181.mcf. It timed out for the rest (exceeding 12 hours).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

137:22 Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xiangyu Zhang

Table 4. Effect of posterior analysis and taint tracking.

Program
original BDA3 w/o analysis w/o taint-tracking

All(K) Miss MisTyped All(K) Miss MisTyped All(K) Miss MisTyped

164.gzip 29 0.22% 11.92% 24 4.53% 2.28% 31 0.37% 23.49%

175.vpr 559 0.08% 61.88% 79 5.44% 43.86% 583 0.11% 67.13%

176.gcc 692(M) 0.11% 79.43% 14(M) 7.26% 35.52% 723(M) 0.10% 84.86%

181.mcf 3 0.00% 12.94% 2 1.17% 10.22% 4 0.10% 28.17%

186.crafty 1,077 0.15% 7.31% 124 1.88% 1.13% 1,114 0.14% 13.42%

197.parser 659 0.01% 81.12% 98 8.94% 62.96% 670 0.01% 84.34%

252.eon 28 0.00% 78.11% 10 1.52% 58.58% 28 0.00% 79.95%

253.perlbmk 5,389 0.23% 82.77% 636 5.35% 67.98% 5,524 0.25% 89.36%

254.gap 205 0.52% 74.30% 70 2.08% 36.73% 217 0.49% 81.17%

255.vortex 2,159 0.33% 64.10% 356 4.73% 58.36% 2,227 0.33% 67.30%

256.bzip2 13 0.23% 10.84% 10 2.90% 6.19% 15 0.46% 23.53%

300.twolf 2,252 0.34% 73.45% 294 6.21% 67.01% 2,375 0.35% 79.21%

Avg. 58,697 0.18% 53.18% 1,308 4.57% 37.56% 61,324 0.22% 60.16%

Table 5. Runtime overhead.

Program
Time3 (h) Memory

Total PP AI PA (GB)

164.gzip 1.59 0.15 1.13 0.31 3.8

175.vpr 6.80 0.54 2.75 3.51 21.4

176.gcc 10.06 1.63 7.54 0.89 103.3

181.mcf 0.83 0.06 0.71 0.06 1.6

186.crafty 7.39 0.36 2.47 4.56 15.6

197.parser 5.62 0.29 2.17 3.16 12.5

252.eon 5.98 0.84 3.51 1.63 5.7

253.perlbmk 11.35 0.68 4.24 6.43 73.5

254.gap 5.67 0.21 2.61 2.85 4.0

255.vortex 11.75 0.63 4.13 6.99 58.1

256.bzip2 2.32 0.18 1.27 0.87 4.2

301.twolf 11.68 0.57 3.99 7.12 47.9

Avg. 6.75 0.51 3.03 3.21 29.3

Necessity of Posterior Analysis and Taint Tracking. We study the necessity of posterior
analysis and taint tracking. Table 4 shows the effect of the posterior analysis by comparing the
number of missing dependences when using the posterior analysis and when simply aggregating
the dependences collected in individual samples (0.18% versus 4.57%). We also report the total
dependences. Observe that the posterior analysis produces much more dependences in total. Due
to the lack of ground-truth, it is difficult to infer how many are true dependences. However, the
comparison of mis-typed dependences (53.18% versus 37.56%) demonstrates the posterior analysis
substantially reduces the false negative rate while only incurring a relatively modest growth of
false positives (compared to the explosion incurred in Alto and VSA). Table 4 shows the effects
of taint tracking as well. Observe that the comparisons of missing and mis-typed dependences
(0.18% versus 0.22% and 53.18% versus 60.16%, respectively) indicate the necessity of taint tracking.
The root cause of additional bogus dependences is that without taint tracking, constant loops are
not properly interpreted (i.e., only the first a few unrolled iterations are interpreted). Consider
a simplified code snippet from 181.mcf in Figure 11. The for-loop at line 4 is a constant loop, in
which two independent node lists list_a and list_b are initialized. Without taint tracking, BDA
cannot recognize it as a constant loop and hence only interprets the first a few iterations. As a
result, the next field of the remaining list_a and list_b entries are not initialized and all have a
null value. Consequently, BDA considers there is a dependence between lines 7 and 8, which is
false. Since 181.mcf has many such lists and many constant initialization loops, bogus dependences
are introduced between a large number of accesses through uninitialized pointers.

Effect of Sampling We also study the effects of having different number of samples. Figure 13
shows the effect of sampling. Observe that the missing rate decreases as the number of samples
increases. When the number of samples reaches 10k, the missing rate is reduced to less than 0.5%
for all programs and 0 for some (e.g., mcf, eon and parser). Note that the experimental results are
consistent with our probabilistic analysis in Section 4.2.

Analysis Overhead. Table 5 presents the time and memory consumption of BDA in analyzing
each SPEC2000 program. On average, BDA takes 6.75 hours to analyze a program, with 7%, 45% and
48% spending on the pre-processing, abstract interpretation and posterior analysis, respectively.
The sampling stage takes relatively small amount of time even with the cost of dealing with large
weight values. The time consumption for abstract interpretation is the sum of individual samples.
The memory consumption of BDA ranges from 1.6GB to 103.3GB (29.3GB on average), depending
on the complexity of the target programs. As a comparison, Alto has similar memory consumption

3PP for pre-processing, AI for abstract interpretation and PA for posterior analysis.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

BDA: Practical Dependence Analysis for Binary Executables by Unbiased Whole-Program Path Sampling and ... 137:23

1 char* encode_msg(char *msg , int n) {

2 char *dst = malloc ((n + PREFIX_LEN);

3 strcpy(dst , PREFIX_STR);

4 strcat(dst , msg);

5 for (int i = 1; i < n + PREFIX_LEN; i++)

6 dst[i] = dst[i] ^ dst[i-1];

7 return dst;

8 }

(a) missing dependence

1 void error(char* err_msg , int *err_cnt) {

2 if (! err_cnt)

3 *err_cnt += 1; // Written type: int

4 // Potentially write to address NULL

5 if (! err_msg)

6 puts(err_msg); // Read type: char

7 // Potentially read from address NULL

8 }

(b) mis-typed dependence

Fig. 14. Code snippet on missing and mistyped dependence.

as BDA (21.9GB vs. 22.6GB) and is 27.7% slower (8.3h vs. 6.5h) on SPECINT2000 excluding 176.gcc.
We argue that since dependence graph generation is a one-time effort, the entailed overhead is
reasonable.

7.3 Applications

We evaluate BDA in two downstream analysis, one is to identify indirect control flow transfer
targets (conducted on the SPEC programs), the other is to disclose hidden malware behaviors
(conducted on 12 recent malware samples).

Inferring Indirect Control Transfer Targets. With program dependences, we can infer the
potential targets of an indirect jump/call instruction by backward slicing from its target register.
Table 7 in Appendix C shows the results. For comparison, we also present the analysis result of
IDA and the indirect targets observed when running with inputs provided in SPEC. Observe that
BDA performs as good as IDA in inferring indirect jump targets and substantially outperforms IDA
in inferring indirect call targets (4 found by IDA on average versus 767 found by BDA). We should
note that indirect jump targets are easier to infer than indirect call targets, as indirect jumps are
always intra-procedural and have fixed patterns when they are generated by mainstream compilers.
IDA leverages such patterns whereas we leverage dependences. None of the observed call targets is
missed by BDA. In addition, the set of indirect call targets reported by BDA is comparable to those
reported in [Peng et al. 2014], a very expensive concrete execution engine that forcefully executes
along a large number of paths. The results demonstrate the practical use of BDA.

Exposing Malware Behaviors. Program dependence can be used to study malware behaviors.
In the literature of malware analysis [Cozzi et al. 2018], the behavior of a malware sample is
largely defined by the system calls performed by the sample, together with parameter values.
With dependencies, we can perform (static) constant propagation through dependence edges to
identify the parameter values of critical library functions. We also compare BDA with Cuckoo, a
state-of-the-art malware analysis tool. Cuckoo reports behavior on the system call level, while BDA
reports on the library call level. To be comparable, we map library calls to system calls. Table 8 in
Appendix C shows the results. Observe that BDA reports 3 times more hidden malicious behaviors.

Case study. We take the malware sample a664df72a34b863fc0a6e04c96866d4c as a case to study how
our dependence analysis can help detect hidden malicious behaviors. It is a bot malware that waits
for commands from a remote server. Figure 15a shows the simplified code of its initialization logic.
In particular, it tries to connect to a remote server every 5 seconds until success (line 2), then
executes the binary files stored in some pre-defined directories (e.g., /dev/netslink) to setup the
running environment (lines 9-14). The behavior of running the binary files will not be triggered by
the sandbox execution in Cuckoo, since the remote server is down. Hence, Cuckoo fails to detect
such behavior. In contrast, we perform static constant propagation through dependences to extract
critical library calls with concrete parameters. Figure 15b presents the static slice of system() call

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

137:24 Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xiangyu Zhang

1 int main() {

2 while (! cnc_server_connected ()) sleep (5);

3 initialization ();

4

5 }

6 void initialization () {

7 char *dirs [10], cmd [256];

8 memcpy(dirs , rodata_41176 , 0x50);

9 for (int i = 0; i < 10; i++) {

10 sprintf(cmd , "cd %s && "

11 "for a in `ls -a %s`; do >$a; done;",

12 rodata_4112A0[i], rodata_4112A0[i]);

13 system(cmd);

14 }

15 }

(a) simplified code

a lea rdi , [rbp + local_60]

b mov esi , rodata_411760 ; list of bin dirs:

"/dev/netslink/", "/var/", ... , "/usr/"

c mov edx , 0x50

d call memcpy

e ...

f lea rdi , [rbp + local_1F0]

g lea rsi , rodata_4112A0 ; format string:

"cd %s && for a in ‘ls -a %s‘; do >$a; done;"

h mov rdx , [rbp + rax * 8 + local_60]

i mov rcx , rdx

j call sprintf

k ...

l lea rdi , [rbp + local_1F0]

m call system

(b) slicing with the dependence information

Fig. 15. Malware case study.

(line 13), whose parameter depends on the invocation of the sprintf library function, which fills
the format string buffer indicated by rbp + local_1F0. It further depends on the format string
stored in the global memory rodata_4112A0, which has the value "cd %s && for a in ‘ls -a

%s‘; do >$a; done;". Hence, we detect the behavior of running the binary files under pre-defined
directories without executing the malware.

8 FUTURE WORK

Widening and Using Concrete Values. BDA currently does not use widening, which approx-
imates abstract values to reduce search space. The reason is that in the binary analysis context,
widening may cause substantial precision loss, as indicated by the results of classic VSA. However,
limited and selective widening may be feasible with our sampling technique. For instance, we will
explore per-path widening in our future work, which may potentially provide a good trade-off
between cost and precision. In addition, per-path interpretation opens the door of using concrete
values instead of abstract values. In fact, some of BDA’s abstract values closely resemble concrete
values (e.g., a stack address is a function entry with concrete offset). We will explore leveraging
concrete values to preclude taint tracking that approximates runtime property related to loops.

Other Applications of Path Sampling. Our path sampling algorithm is general. We plan to use
it in symbolic execution and fuzzing, whose path exploration strategy is mainly edge or statement
coverage driven. We will also develop randomized techniques based on path sampling for other
analysis with limited path sensitivity such as type inference and shape analysis.

9 RELATED WORK

Binary Analysis. Our work is related to binary analysis, including static [Lee et al. 2011; Sutter
et al. 2000; Theiling 2000] and dynamic analysis [Kolbitsch et al. 2010; Lin et al. 2010; Slowinska
et al. 2011]. Alto [Debray et al. 1998] and VSA [Balakrishnan and Reps 2004] aim to provide a
sound solution to identifying aliases among memory accesses. Compared to these two, BDA is
sampling based and per-sample abstract interpretation based, and hence features better precision
(with probabilistic guarantee under assumption) and scalability, as shown by our results. Force-
execution [Peng et al. 2014] concretely executes a binary along different paths, by force-setting
branch outcomes. It features an expensive execution engine that recovers from exceptions caused by
violations of path feasibility. Due to its cost, force-execution has difficulty covering long paths. To
address the above limitation, You et al. [2020] propose a light-weight force-execution technique with

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

BDA: Practical Dependence Analysis for Binary Executables by Unbiased Whole-Program Path Sampling and ... 137:25

probabilistic memory pre-planning. However, their context-insensitive path exploration strategy
only focuses on predicates, leading to accuracy loss in dependence analysis. Recently, machine
learning is extensively used in binary analysis, e.g., identifying function boundary [Shin et al. 2015],
pinpointing function type signature [Chua et al. 2017], and detecting similar binary code [Ding
et al. 2019; Xu et al. 2017]. In particular, Guo et al. [2019] use LSTM to distinguish the different
types of memory regions in VSA analysis. However, it does not change the core of VSA.

Random Interpretation. BDA is also related to random interpretation, a well-known probabilistic
program analysis technique used in precise inter-procedural analysis [Gulwani and Necula 2005],
global value numbering [Gulwani and Necula 2004] and discovering affine equalities [Gulwani and
Necula 2003]. It features a randomized abstract interpretation that executes both branches of a
conditional predicate on each run and performs a randomized affine combination at join points.
However, such an affine combination is limited for numerical operations and hard to scale to binary
program dependence analysis. Compared with these works, our per-path interpretation is more
like concrete execution with higher accuracy and scalability.

Other Program Analysis. Our technique is related to program dependence analysis [Bell et al.
2015; Bergeretti and Carré 1985; Clause et al. 2007; Ferrante et al. 1987; Myers 1999; Newsome and
Song 2005; Olmos and Visser 2005; Palepu et al. 2013; Sabelfeld and Myers 2003; Zhu et al. 2015].
These techniques require source code. In addition, our technique only focuses on data dependence
whereas many existing works also consider control dependence. BDA is also related to points-to
analysis [Deutsch 1994; Emami et al. 1994; Hirzel et al. 2007; Kahlon 2008; Liang and Harrold
1999; Steensgaard 1996; Thiessen and Lhoták 2017; Xu and Rountev 2008; Zheng and Rugina 2008]
that addresses a similar problem. The difference lies in that our analysis does not require symbol
information and hence is more difficult. Some techniques aim to reduce the runtime complexity of
path-sensitive analyses [Das et al. 2002; Dillig et al. 2008]. In contrast, our technique is sampling
based. We believe BDA is complementary to existing work.

Probabilistic ProgramAnalysis. Probabilistic techniques have been increasingly used in program
analysis in recent years. Probabilistic symbolic execution [Borges et al. 2015; Geldenhuys et al. 2012]
quantifies how likely it is to reach certain program points. Probabilistic model checking [Donaldson
et al. 2009; Filieri et al. 2011; Kwiatkowska et al. 2011] encodes the probability of making a transition
between states and entails computation of the likelihood that a target system satisfies a given
property. Probabilistic disassembling [Miller et al. 2019] computes a probability for each address in
the code space, which indicates the likelihood of the address representing a true positive instruction.
Probabilistic type inference uses probabilistic graph models to infer data type [Xu et al. 2016]. There
are also works on using MCMC type of sampling to derive analysis information such as memory
access pattern for race detection [Cai et al. 2016] and leak detection [Hauswirth and Chilimbi 2004],
and runtime events for program understanding [Toronto et al. 2015; Zhong and Chang 2008]. Most
of them are concrete execution based. In comparison, BDA features a novel unbiased path sampling
algorithm and leverages abstract interpretation.

10 CONCLUSION

We propose a practical program dependence analysis for binary executables. It features a novel
unbiased whole-program path sampling algorithm and per-path abstract interpretation. Under
certain assumptions, our technique has probabilistic guarantee in disclosing a dependence relation.
Our experiments show that our technique has substantially improved the state-of-the-art, such as
value set analysis. It also improves performance of downstream applications in indirect call target
identification and malware behavior analysis.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

137:26 Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xiangyu Zhang

A DETAILS OF VSA

Table 6 illustrates how VSA works on the read_words() function. Specifically, the strided interval
for register r12 at instruction b is 0x0 [0x8,0x8], denoting a constant 8, and the strided interval for
register r14 at instruction d is 0x40 [0x0, 0xfa00]. Intuitively, r12 corresponds to the dict->words
variable passed from the init_dict function, and 0x8 is the offset of the words field in the Dict
structure. The strided interval of r14 represents all the possible loop count i values at the binary
level. Note that the stride is 40, which is the size of Word. These two strided intervals are propagated
to instruction g, where we have the strided interval for r12+r14 (corresponding to &(words[i])

at the source level) as 0x40 [0x8,0xfa08] according to the addition rule.
The computation of strided intervals is conservative, which may lead to substantial bogus values

in PRV. For example, consider the strided interval for r12+r14+r15 at instruction m. The strided
interval for r12+r14 is 0x40 [0x8,0xfa08] as mentioned earlier. The strided interval for r15, which
corresponds to the counter j of the inner loop, is 0x1 [0x0,0x38]. According to the addition rule,
the resulted strided interval is 0x1 [0x8,0xfa40]. As we can see that the resulted strided interval
is an over-approximation, covering all possible addresses in the memory region of dict->words,
while only the addresses corresponding to dict->words[i].vals[j] should be included. As such,
when instruction m writes a value read from input, which is denoted as ⊤ due to the lack of input
pre-condition, VSA essentially updates the abstract value for all addresses in dict->words to ⊤.
Specifically, words[i]->node holds a⊤ value such that when the later instruction rwrites a value to
words[i].node->word, which writes to a field of the memory region denoted by words[i].node,
VSA conservatively writes the value to the entire address space. As a result, any following memory
read would have (bogus) dependence with r. Moreover, since VSA needs to update the strided
interval for all possible addresses, which could be 264 for the 64-bit system, the analysis becomes
extremely time-consuming. According to our experience, such phenomenon happens quite often in
practice, substantially hindering the applicability of VSA. In Section 7.2, our evaluation shows that
the state-of-the-art public VSA implementations fail on many SPEC2000 programs.

Table 6. How VSA works on the read_words function.

SourceCode AsmCode Variable VSA

a. sub rsp, 0x30 rsp ;Stack Pointer Sf : 0x0 [-0x30,-0x30]
void read_words(Word* words, long *idx) {

b. mov r12, rdi r12 ;words Hα : 0x0 [0x8,0x8]
c. xor r14, r14

d. cmp r14, 0xfa00
r14 ;i*sizeof(Word) G : 0x40 [0x0,0xfa00]

for (int i = 0; i < WORDS_CNT; i++) {

e. jge u. N/A N/A

f. mov r13, [0x601110] r13 ;trie Hβ : 0x0 [0x0,0x0]
g. lea rbx, [r12+r14] r12+r14 ;&(words[i]) Hα : 0x40 [0x8,0xfa08]

words[i].node = trie;

h. mov [rbx+0x38], r13
rbx+0x38

;&(words[i].node)
Hα : 0x40 [0x40,0xfa40]

i. xor r15, r15

j. cmp r15, 0x38
r15 ;j G : 0x1 [0x0,0x38]

for (int j = 0; j < MAX_LEN; j++) {

k. jge p. N/A N/A

l. call read_char N/A N/A

m. mov [r12+r14+r15], rax

r12+r14+r15

;&(words[i].val[j])
Hα : 0x1 [0x8,0xfa40]words[i].val[j] = read_char();

rax ;read_char() ⊤
n. inc r15 r15 ;j G : 0x1 [0x0,0x38]

} // Inner Loop
o. jmp j. N/A N/A

p. mov rax, [r12+r14+0x38]

r12+r14+0x38

;&(words[i].node)
Hα : 0x40 [0x40,0xfa40]

rax ;words[i].node ⊤
q. lea rbx, [r12+r14] rbx ;&(words[i]) Hα : 0x40 [0x8,0xfa08]

words[i].node->word = &(words[i]);

r. mov [rax], rbx
rax

;words[i].node->word
⊤

s. add r14, 0x40 r14 ;i*sizeof(Word) G : 0x40 [0x0,0xfa00]
} // Outer Loop

t. jmp d. N/A N/A

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

BDA: Practical Dependence Analysis for Binary Executables by Unbiased Whole-Program Path Sampling and ... 137:27

B COVERAGE

Figures 16a, 16b and 16c present the code coverage of our algorithm (in dark gray bars) and the
naive algorithm (in the light gray bars) at the instruction level, basic block level and the function
level, respectively.

164.gzip

175.vpr

176.gcc

181.mcf

186.crafty

197.parser

252.eon

253.perlbmk

254.gap

255.vortex

256.bzip2

300.twolf

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
Naive
BDA

0% 25% 50% 75% 100%

(a) Instruction coverage (b) Block coverage (c) Function coverage

Fig. 16. Code coverage.

C RESULTS OF DOWNSTREAM ANALYSIS

Table 7 presents the result of inferring indirect control transfer targets. Table 8 presents the result
of malware behavior detection.

Table 7. Inferring indirect jump/call targets.

Program
Indirect Jump Edges # Indirect Call Edges

IDA Dynamic BDA IDA Dynamic BDA

164.gzip 0 0 0 0 3 3

175.vpr 49 0 49 0 1 1

176.gcc 3,628 324 3,628 25 214 853

181.mcf 0 0 0 0 1 1

186.crafty 159 38 159 0 1 1

197.parser 0 0 0 0 1 1

252.eon 17 0 17 0 183 215

253.perlbmk 1,454 229 1,454 24 243 261

254.gap 63 5 63 2 1,438 7,836

255.vortex 247 56 247 0 24 27

256.bzip2 0 0 0 0 1 1

301.twolf 17 0 17 0 1 1

Avg. 470 54 470 4 176 767

Table 8. Malware behavior analysis.

Malware
Library Calls

Cuckoo BDA

1a0b96488c4be390ce2072735ffb0e49 50 164

3fb857173602653861b4d0547a49b395 20 112

49c178976c50cf77db3f6234efce5eeb 23 48

5e890cb3f6cba8168d078fdede090996 28 138

6dc1f557eac7093ee9e5807385dbcb05 20 75

72afccb455faa4bc1e5f16ee67c6f915 6 81

74124dae8fdbb903bece57d5be31246b 36 203

912bca5947944fdcd09e9620d7aa8c4a 20 68

a664df72a34b863fc0a6e04c96866d4c 23 99

c38d08b904d5e1c7c798e840f1d8f1ee 34 151

c63cef04d931d8171d0c40b7521855e9 20 81

dc4db38f6d3c1e751dcf06bea072ba9c 20 77

Avg. 25 108

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their constructive comments. Also,
the authors would like to express their thanks for Le Yu and Yapeng Ye for proofreading and Yu Shi
for her help in illustration. Purdue authors were supported in part by DARPA FA8650-15-C-7562,
NSF 1748764, 1901242 and 1910300, ONR N000141410468 and N000141712947, and Sandia National
Lab under award 1701331. UVA authors were supported in part by NSF 1850392. Any opinions,
findings, and conclusions in this paper are those of the authors only and do not necessarily reflect
the views of the sponsors.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

137:28 Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xiangyu Zhang

REFERENCES

ATA. 2018. SPEC2000. http://www.spec2000.com/.

Gogul Balakrishnan and Thomas Reps. 2004. Analyzing memory accesses in x86 executables. In International conference on

compiler construction. Springer, 5ś23.

Thomas Ball and James R Larus. 1996a. Efficient path profiling. In Proceedings of the 29th annual ACM/IEEE international

symposium on Microarchitecture. IEEE Computer Society, 46ś57.

Thomas Ball and James R. Larus. 1996b. Efficient Path Profiling. In Proceedings of the 29th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO 29, Paris, France, December 2-4, 1996. 46ś57.

Jonathan Bell, Gail E. Kaiser, Eric Melski, and Mohan Dattatreya. 2015. Efficient dependency detection for safe Java test

acceleration. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo,

Italy, August 30 - September 4, 2015. 770ś781.

Jean-Francois Bergeretti and Bernard Carré. 1985. Information-Flow and Data-Flow Analysis of while-Programs. ACM

Trans. Program. Lang. Syst. 7, 1 (1985), 37ś61.

Mateus Borges, Antonio Filieri, Marcelo d’Amorim, and Corina S. Pasareanu. 2015. Iterative distribution-aware sampling

for probabilistic symbolic execution. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,

ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015. 866ś877.

David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. 2011. BAP: A Binary Analysis Platform. In

Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings.

463ś469.

Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Xiaodong Song. 2007. Polyglot: automatic extraction of protocol message

format using dynamic binary analysis. In Proceedings of the 2007 ACM Conference on Computer and Communications

Security, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007. 317ś329.

Yan Cai, Jian Zhang, Lingwei Cao, and Jian Liu. 2016. A deployable sampling strategy for data race detection. In Proceedings

of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA,

November 13-18, 2016. 810ś821.

Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and Zhenkai Liang. 2017. Neural Nets Can Learn Function Type Signatures

From Binaries. In 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017.

99ś116.

James A. Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: a generic dynamic taint analysis framework. In Proceedings

of the ACM/SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2007, London, UK, July 9-12, 2007.

196ś206.

Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti. 2018. Understanding Linux Malware. In 2018

IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco, California, USA. 161ś175.

Cuckoo. 2014. Cuckoo Sandbox. https://cuckoosandbox.org/.

Manuvir Das, Sorin Lerner, and Mark Seigle. 2002. ESP: Path-Sensitive Program Verification in Polynomial Time. In

Proceedings of the 2002 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), Berlin,

Germany, June 17-19, 2002. 57ś68.

Saumya K. Debray, Robert Muth, and Matthew Weippert. 1998. Alias Analysis of Executable Code. In POPL ’98, Proceedings

of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Diego, CA, USA, January

19-21, 1998. 12ś24.

Alain Deutsch. 1994. Interprocedural May-Alias Analysis for Pointers: Beyond k-limiting. In Proceedings of the ACM

SIGPLAN’94 Conference on Programming Language Design and Implementation (PLDI), Orlando, Florida, USA, June 20-24,

1994. 230ś241.

Isil Dillig, Thomas Dillig, and Alex Aiken. 2008. Sound, complete and scalable path-sensitive analysis. In Proceedings of the

ACM SIGPLAN 2008 Conference on Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008.

270ś280.

Steven H. H. Ding, Benjamin C. M. Fung, and Philippe Charland. 2019. Asm2Vec: Boosting Static Representation Robustness

for Binary Clone Search against Code Obfuscation and Compiler Optimization. In 40th IEEE Symposium on Security and

Privacy, S&P 2019.

Alastair F. Donaldson, Alice Miller, and David Parker. 2009. Language-Level Symmetry Reduction for Probabilistic Model

Checking. In QEST 2009, Sixth International Conference on the Quantitative Evaluation of Systems, Budapest, Hungary,

13-16 September 2009. 289ś298.

Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. 1994. Context-Sensitive Interprocedural Points-to Analysis in the

Presence of Function Pointers. In Proceedings of the ACM SIGPLAN’94 Conference on Programming Language Design and

Implementation (PLDI), Orlando, Florida, USA, June 20-24, 1994. 242ś256.

Kostas Ferles, Valentin Wüstholz, Maria Christakis, and Isil Dillig. 2017. Failure-directed program trimming. In Proceedings

of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8,

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

http://www.spec2000.com/
https://cuckoosandbox.org/

BDA: Practical Dependence Analysis for Binary Executables by Unbiased Whole-Program Path Sampling and ... 137:29

2017. 174ś185.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The Program Dependence Graph and Its Use in Optimization.

ACM Trans. Program. Lang. Syst. 9, 3 (1987), 319ś349.

Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. 2011. Run-time efficient probabilistic model checking. In Proceedings

of the 33rd International Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011.

341ś350.

Keith Brian Gallagher and James R. Lyle. 1991. Using Program Slicing in Software Maintenance. IEEE Trans. Software Eng.

17, 8 (1991), 751ś761.

Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. 2012. Probabilistic symbolic execution. In International Symposium

on Software Testing and Analysis, ISSTA 2012, Minneapolis, MN, USA, July 15-20, 2012. 166ś176.

GrammaTech. 2008. CodeSurfer. https://www.grammatech.com/products/codesurfer.

Sumit Gulwani and George C. Necula. 2003. Discovering affine equalities using random interpretation. In Conference Record

of POPL 2003: The 30th SIGPLAN-SIGACT Symposium on Principles of Programming Languages, New Orleans, Louisisana,

USA, January 15-17, 2003. 74ś84.

Sumit Gulwani and George C. Necula. 2004. Global value numbering using random interpretation. In Proceedings of the 31st

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2004, Venice, Italy, January 14-16, 2004.

342ś352.

Sumit Gulwani and George C. Necula. 2005. Precise interprocedural analysis using random interpretation. In Proceedings of

the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2005, Long Beach, California,

USA, January 12-14, 2005. 324ś337.

Wenbo Guo, Dongliang Mu, Min Du, Xinyu Xing, and Dawn Song. 2019. DEEPVSA: Facilitating Value-set Analysis with

Deep Learning for Postmortem Program Analysis. In 28th USENIX Security Symposium, USENIX Security 2019.

Matthias Hauswirth and Trishul M. Chilimbi. 2004. Low-overhead memory leak detection using adaptive statistical profiling.

In Proceedings of the 11th International Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS 2004, Boston, MA, USA, October 7-13, 2004. 156ś164.

Hex-Rays. 2008. IDA. https://www.hex-rays.com/products/ida.

Martin Hirzel, Daniel von, Dincklage, Amer Diwan, and Michael Hind. 2007. Fast online pointer analysis. ACM Trans.

Program. Lang. Syst. 29, 2 (2007), 11.

Vineet Kahlon. 2008. Bootstrapping: a technique for scalable flow and context-sensitive pointer alias analysis. In Proceedings

of the ACM SIGPLAN 2008 Conference on Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13,

2008. 249ś259.

Clemens Kolbitsch, Thorsten Holz, Christopher Kruegel, and Engin Kirda. 2010. Inspector Gadget: Automated Extraction of

Proprietary Gadgets from Malware Binaries. In 31st IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May 2010,

Berleley/Oakland, California, USA. 29ś44.

Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Verification of Probabilistic Real-Time Systems.

In Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings.

585ś591.

JongHyup Lee, Thanassis Avgerinos, and David Brumley. 2011. TIE: Principled Reverse Engineering of Types in Binary

Programs. In Proceedings of the Network and Distributed System Security Symposium, NDSS 2011, San Diego, California,

USA, 6th February - 9th February 2011.

Ondrej Lhoták and Kwok-Chiang Andrew Chung. 2011. Points-to analysis with efficient strong updates. In Proceedings

of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA,

January 26-28, 2011. 3ś16.

Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu, and Alwen Tiu. 2017. Steelix: program-state

based binary fuzzing. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017,

Paderborn, Germany, September 4-8, 2017. 627ś637.

Donglin Liang andMary JeanHarrold. 1999. Efficient Points-to Analysis forWhole-ProgramAnalysis. In Software Engineering

- ESEC/FSE’99, 7th European Software Engineering Conference, Held Jointly with the 7th ACM SIGSOFT Symposium on the

Foundations of Software Engineering, Toulouse, France, September 1999, Proceedings. 199ś215.

Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, and Xiangyu Zhang. 2008. Automatic Protocol Format Reverse Engineering

through Context-Aware Monitored Execution. In Proceedings of the Network and Distributed System Security Symposium,

NDSS 2008, San Diego, California, USA, 10th February - 13th February 2008.

Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. 2010. Automatic Reverse Engineering of Data Structures from Binary

Execution. In Proceedings of the Network and Distributed System Security Symposium, NDSS 2010, San Diego, California,

USA, 28th February - 3rd March 2010.

Joseph P. Loyall and Susan A. Mathisen. 1993. Using Dependence Analysis to Support the Software Maintenance Process. In

Proceedings of the Conference on Software Maintenance, ICSM 1993, Montréal, Quebec, Canada, September 1993. 282ś291.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

https://www.grammatech.com/products/codesurfer
https://www.hex-rays.com/products/ida

137:30 Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xiangyu Zhang

Jérémie Lumbroso. 2013. Optimal discrete uniform generation from coin flips, and applications. arXiv preprint arXiv:1304.1916

(2013).

Kenneth Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang, Xiangyu Zhang, and Zhiqiang Lin. 2019. Probabilistic Disassembly. In

Proceedings of the 41st ACM/IEEE International Conference on Software Engineering (ICSE 2019).

Robert Muth, Saumya Debray, Scott Watterson, Koen De Bosschere, and Vakgroep Elektronica En Informatiesystemen. 1998.

alto: A link-time optimizer for the DEC Alpha. (1998).

Andrew C. Myers. 1999. JFlow: Practical Mostly-Static Information Flow Control. In POPL ’99, Proceedings of the 26th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Antonio, TX, USA, January 20-22, 1999.

228ś241.

James Newsome and Dawn Xiaodong Song. 2005. Dynamic Taint Analysis for Automatic Detection, Analysis, and

SignatureGeneration of Exploits on Commodity Software. In Proceedings of the Network and Distributed System Security

Symposium, NDSS 2005, San Diego, California, USA.

Karina Olmos and Eelco Visser. 2005. Composing Source-to-Source Data-Flow Transformations with Rewriting Strategies

and Dependent Dynamic Rewrite Rules. In Compiler Construction, 14th International Conference, CC 2005, Held as Part of

the Joint European Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings.

204ś220.

Vijay Krishna Palepu, Guoqing (Harry) Xu, and James A. Jones. 2013. Improving efficiency of dynamic analysis with

dynamic dependence summaries. In 2013 28th IEEE/ACM International Conference on Automated Software Engineering,

ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013. 59ś69.

Pancake. 2018. Radare2. https://rada.re/r/.

Mathias Payer, Antonio Barresi, and Thomas R. Gross. 2015. Fine-Grained Control-Flow Integrity Through Binary Hardening.

In Detection of Intrusions and Malware, and Vulnerability Assessment - 12th International Conference, DIMVA 2015, Milan,

Italy, July 9-10, 2015, Proceedings. 144ś164.

Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhiqiang Lin, and Zhendong Su. 2014. X-Force: Force-Executing Binary

Programs for Security Applications. In Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA, August

20-22, 2014. 829ś844.

Anh Quach, Aravind Prakash, and Lok-Kwong Yan. 2018. Debloating Software through Piece-Wise Compilation and Loading.

In 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018. 869ś886.

Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and Herbert Bos. 2017. VUzzer: Application-

aware Evolutionary Fuzzing. In 24th Annual Network and Distributed System Security Symposium, NDSS 2017, San Diego,

California, USA, February 26 - March 1, 2017.

Andrei Sabelfeld and Andrew C. Myers. 2003. Language-based information-flow security. IEEE Journal on Selected Areas in

Communications 21, 1 (2003), 5ś19.

Andreas Sñbjùrnsen, Jeremiah Willcock, Thomas Panas, Daniel J. Quinlan, and Zhendong Su. 2009. Detecting code clones

in binary executables. In Proceedings of the Eighteenth International Symposium on Software Testing and Analysis, ISSTA

2009, Chicago, IL, USA, July 19-23, 2009. 117ś128.

Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Recognizing Functions in Binaries with Neural Networks. In

24th USENIX Security Symposium, USENIX Security 15, Washington, D.C., USA, August 12-14, 2015. 611ś626.

Asia Slowinska, Traian Stancescu, and Herbert Bos. 2011. Howard: A Dynamic Excavator for Reverse Engineering Data

Structures. In Proceedings of the Network and Distributed System Security Symposium, NDSS 2011, San Diego, California,

USA, 6th February - 9th February 2011.

Dawn Xiaodong Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung Kang, Zhenkai Liang, James

Newsome, Pongsin Poosankam, and Prateek Saxena. 2008. BitBlaze: A New Approach to Computer Security via Binary

Analysis. In Information Systems Security, 4th International Conference, ICISS 2008, Hyderabad, India, December 16-20, 2008.

Proceedings. 1ś25.

Bjarne Steensgaard. 1996. Points-to Analysis in Almost Linear Time. In Conference Record of POPL’96: The 23rd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Papers Presented at the Symposium, St. Petersburg

Beach, Florida, USA, January 21-24, 1996. 32ś41.

Bjorn De Sutter, Bruno De Bus, Koenraad De Bosschere, P. Keyngnaert, and Bart Demoen. 2000. On the Static Analysis of

Indirect Control Transfers in Binaries. In Proceedings of the International Conference on Parallel and Distributed Processing

Techniques and Applications, PDPTA 2000, June 24-29, 2000, Las Vegas, Nevada, USA.

Henrik Theiling. 2000. Extracting safe and precise control flow from binaries. In 7th International Workshop on Real-Time

Computing and Applications Symposium (RTCSA 2000), 12-14 December 2000, Cheju Island, South Korea. 23ś30.

Rei Thiessen and Ondrej Lhoták. 2017. Context transformations for pointer analysis. In Proceedings of the 38th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017. 263ś277.

Neil Toronto, Jay McCarthy, and David Van Horn. 2015. Running Probabilistic Programs Backwards. In Programming

Languages and Systems - 24th European Symposium on Programming, ESOP 2015, Held as Part of the European Joint

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

https://rada.re/r/

BDA: Practical Dependence Analysis for Binary Executables by Unbiased Whole-Program Path Sampling and ... 137:31

Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. 53ś79.

UCSB. 2008. ANGR. https://angr.io/.

VirusTotal. 2018. VirusTotal. https://www.virustotal.com/.

Shuai Wang, Wenhao Wang, Qinkun Bao, Pei Wang, XiaoFeng Wang, and Dinghao Wu. 2017. Binary Code Retrofitting and

Hardening Using SGX. In Proceedings of the 2017 Workshop on Forming an Ecosystem Around Software Transformation,

FEAST@CCS 2017, Dallas, TX, USA, November 3, 2017. 43ś49.

Guoqing (Harry) Xu and Atanas Rountev. 2008. Merging equivalent contexts for scalable heap-cloning-based context-

sensitive points-to analysis. In Proceedings of the ACM/SIGSOFT International Symposium on Software Testing and Analysis,

ISSTA 2008, Seattle, WA, USA, July 20-24, 2008. 225ś236.

Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017. Neural Network-based Graph Embedding for

Cross-Platform Binary Code Similarity Detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. 363ś376.

Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. 2016. Python probabilistic type inference with natural

language support. In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering,

FSE 2016, Seattle, WA, USA, November 13-18, 2016. 607ś618.

Jun Yang and Rajiv Gupta. 2002. Frequent value locality and its applications. ACM Transactions on Embedded Computing

Systems (TECS) 1, 1 (2002), 79ś105.

Heng Yin, Dawn Xiaodong Song, Manuel Egele, Christopher Kruegel, and Engin Kirda. 2007. Panorama: capturing system-

wide information flow for malware detection and analysis. In Proceedings of the 2007 ACM Conference on Computer and

Communications Security, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007. 116ś127.

Wei You, Zhuo Zhang, Yonghwi Kwon, Yousra Aafer, Fei Peng, Yu Shi, Carson Harmon, and Xiangyu Zhang. 2020. PMP:

Cost-effective Forced Execution with Probabilistic Memory Pre-planning. In 2020 IEEE Symposium on Security and Privacy,

SP 2020, Proceedings, 18-20 May 2020, San Francisco, California, USA. IEEE Computer Society.

Junyuan Zeng, Yangchun Fu, Kenneth A. Miller, Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. 2013. Obfuscation

resilient binary code reuse through trace-oriented programming. In 2013 ACM SIGSAC Conference on Computer and

Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013. 487ś498.

Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xiangyu Zhang. 2019a. BDA. https://github.com/

bda-tool/bda.

Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xiangyu Zhang. 2019b. BDA Supplementary

Material. https://github.com/bda-tool/bda/blob/master/Supplementary_Material.pdf.

Xin Zheng and Radu Rugina. 2008. Demand-driven alias analysis for C. In Proceedings of the 35th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008.

197ś208.

Yutao Zhong andWentao Chang. 2008. Sampling-based program locality approximation. In Proceedings of the 7th International

Symposium on Memory Management, ISMM 2008, Tucson, AZ, USA, June 7-8, 2008. 91ś100.

Erzhou Zhu, Feng Liu, Zuo Wang, Alei Liang, Yiwen Zhang, Xuejian Li, and Xuejun Li. 2015. Dytaint: The implementation

of a novel lightweight 3-state dynamic taint analysis framework for x86 binary programs. Computers & Security 52

(2015), 51ś69.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 137. Publication date: October 2019.

https://angr.io/
https://www.virustotal.com/
https://github.com/bda-tool/bda
https://github.com/bda-tool/bda
https://github.com/bda-tool/bda/blob/master/Supplementary_Material.pdf

	Abstract
	1 Introduction
	2 Motivation
	2.1 Limitations of Existing Techniques
	2.2 Observations
	2.3 Our Technique

	3 Design
	4 Path Sampling
	4.1 Path Counting
	4.2 Path Sampling and Probability Analysis
	4.3 Addressing Practical Challenges

	5 Abstract Interpretation
	6 Posterior Analysis
	7 Evaluation
	7.1 Coverage
	7.2 Program Dependence
	7.3 Applications

	8 future work
	9 Related Work
	10 Conclusion
	A Details of VSA
	B Coverage
	C Results of Downstream Analysis
	Acknowledgments
	References

