
BRIDGEROUTER: Automated Capability Upgrading of Out-Of-Bounds Write
Vulnerabilities to Arbitrary Memory Write Primitives in the Linux Kernel

Dongchen Xie1, Dongnan He1, Wei You1,*, Jianjun Huang1, Bin Liang1, Shuitao Gan2, Wenchang Shi1
1School of Information, Renmin University of China, Beijing, China

Email: {dongchenx, hedongnan, youwei, hjj, liangb, wenchang}@ruc.edu.cn
2Laboratory for Advanced Computing and Intelligence Engineering

Email: ganshuitao@gmail.com

Abstract—Memory corruption vulnerabilities pose a significant
threat to the Linux kernel, with out-of-bounds (OOB) vulnera-
bilities receiving particular attention due to their prevalence.
The existing kernel OOB exploitation techniques either require
strong capabilities from the vulnerabilities, demand that the
vulnerable and victim objects reside in the same memory
allocator cache, or rely on extensive page table manipulation.
These constraints restrict their applicability and lead to low
success rates in completing a full exploitation chain. In this
paper, we propose a practical approach that enables arbitrary
memory writes from kernel OOB vulnerabilities with limited
capabilities. Our method leverages two special kinds of kernel
objects to upgrade the capability from an uncontrolled overwrite
to a controlled overwrite, ultimately achieving arbitrary memory
write. We develop a system to automatically identify and utilize
these two kinds of kernel objects. Evaluations on a crafted
vulnerability and 14 representative real-world vulnerabilities,
along with a comparison against two state-of-the-art works,
demonstrate the broad applicability of our approach.

1. Introduction

The Linux kernel is a fundamental component of modern
computing infrastructure, making its security critically im-
portant. Memory corruption vulnerabilities pose a significant
threat to the Linux kernel. According to CVEdetails [6],
memory corruption vulnerabilities accounted for 77% of
all Linux kernel vulnerabilities from 2014 to 2024. These
vulnerabilities can lead to severe consequences, such as
privilege escalation that grants attackers full control over the
targeted system.

For most Linux kernel vulnerabilities, a proof-of-concept
(PoC) is often available to demonstrate that the vulnerability
can be triggered. However, it is frequently unclear whether a
given vulnerability is actually exploitable, such as whether it
can be used for privilege escalation. Fixing vulnerabilities is
typically a lengthy and tedious process [31]. To streamline
this process, it is crucial to identify the most critical vul-
nerabilities among the vast number and prioritize those that
are exploitable. Automatic exploit generation (AEG) [10],

*Wei You is the corresponding author.

[12], [39], [47], [52] has emerged as a valuable solution. It
can automatically generate exploits, allowing developers to
focus on addressing high-risk vulnerabilities.

Out-of-bounds (OOB) vulnerabilities are particularly
critical in the Linux kernel. Statistics indicate that OOB vul-
nerabilities have consistently ranked among the top three [5].
In response, various approaches [15], [16], [17], [40] have
been developed to automate the exploitation of kernel OOB
vulnerabilities. These methods focus on optimizing memory
layouts and manipulating memory allocations to facilitate
exploitation. However, they either require strong capabilities
from the vulnerabilities, demand that the vulnerable and
victim objects reside in the same memory allocator cache, or
rely on extensive page table manipulation. As a result, these
methods suffer from restricted applicability and generally
exhibit low success rates in achieving an exploitation chain.

In this work, we propose a practical approach to kernel
OOB write exploitation that enables arbitrary memory writes
from vulnerabilities with limited capabilities. The basic idea
of our method is to leverage two special kinds of kernel
objects, which we refer to as bridge and router objects, to
upgrade the capability. Specifically, a bridge object converts
an uncontrolled overwrite capability that writes to an adjacent
location in one memory allocator cache into a controlled
overwrite capability that writes to an adjacent location in
a different memory allocator cache. Meanwhile, a router
object directs the destination and/or the source buffers of a
memory copy operation, resulting in an arbitrary memory
write primitive.

We develop a system, named BRIDGEROUTER, to auto-
matically identify and utilize the bridge and router objects
for exploiting kernel OOB vulnerabilities. Starting with the
source code of the target kernel, we employ static analysis
to identify bridge and router objects, and use fuzzing to
generate the system call sequences needed to trigger the
allocation and memory copy operations for the identified
objects. Given a PoC of an OOB vulnerability, we match the
corresponding vulnerable object with the appropriate bridge
and router objects, and explore their potential capabilities
for generating a prototype exploit. Finally, the complete
exploit is assembled by integrating the prototype exploit
with carefully designed memory management and system
call scheduling strategies.

810

2025 IEEE Symposium on Security and Privacy (SP)

© 2025, Dongchen Xie. Under license to IEEE.
DOI 10.1109/SP61157.2025.00132

We evaluated BRIDGEROUTER on Linux kernel v6.6.
Sampling experiments show that identifying bridge and router
objects yields low false positive (FP) and false negative (FN)
rates, with a 16% FP rate for bridge objects, a 38% FP rate
for router objects, and an overall 0% FN rate. In practice,
this performance is highly satisfactory. We believe that, for a
potentially exploitable OOB vulnerability, BRIDGEROUTER
can effectively identify the bridge and router objects needed
to generate a complete exploit. We also demonstrated that
BRIDGEROUTER is applicable to generic memory allocator
caches in the Linux kernel and effective in exploiting 14 rep-
resentative real-world vulnerabilities by chaining appropriate
bridge and router objects to achieve arbitrary memory write
capabilities. Comparison with two state-of-the-art (SOTA)
tools (KOOBE [15] and SLUBStick [40]) further highlights
the advantages of our approach.

Our contributions are summarized as follows.

• A practical exploitation technique is proposed that
upgrades the limited capabilities of a kernel OOB
vulnerability to enable arbitrary memory writes, fa-
cilitating further attacks such as privilege escalation.

• A prototype system is developed to automate the pro-
posed exploitation approach. The experimental data
and source code are available at a GitHub repository
https://github.com/CheUhxg/BridgeRouter.

• A comprehensive evaluation is conducted to assess
the accuracy of identifying bridge and router objects
in the Linux kernel, the applicability across different
memory allocator caches, and the effectiveness in
exploiting real-world kernel vulnerabilities.

2. Background

Kernel Heap Memory Management. The Linux kernel
employs a combination of the Buddy allocator [2] and the
SLAB/SLUB allocator [8] for heap memory management.
The Buddy allocator provides large, contiguous memory
in chunks of page-order size (i.e., 2n×PAGE SIZE) to
the SLAB/SLUB allocator, which organizes the memory
into caches, each holding kernel objects of the same type
(for dedicated caches) or similar sizes (for generic caches).
Within each cache, memory is further divided into slabs,
which are partitioned into multiple individual slots to store
objects. When the objects are deallocated, they are returned
to the corresponding slabs. If an entire slab is emptied, the
SLAB/SLUB allocator releases the associated memory pages
back to the Buddy allocator. This layered approach allows
the Buddy allocator to manage overall memory allocation,
while the SLAB/SLUB allocator efficiently handles small,
fixed-size objects.
Exploitation of Heap OOB Write Vulnerability. The basic
idea of exploiting a heap OOB write vulnerability is to
overwrite a victim object containing critical data or pointer
fields, which is positioned adjacent to a vulnerable object
intended to be accessed. Figure 1 illustrates the typical
exploitation workflow. Given a vulnerability, an adversary

Capability
Summarization vulobj value

size

length

Heap
Feng Shui

Match a
Victim Object vulobj victim obj

offset

Figure 1: The typical exploitation workflow of heap OOB.

first summarizes its capability in terms of how far the write
can reach (offset), how many bytes can be written (length),
and what content can be written (value). The adversary then
carefully selects a victim object that matches the vulnerable
object, and leverages various heap feng shui techniques [17],
[22], [32] to manipulate the memory layout, ensuring a victim
object can be positioned adjacent to the vulnerable object.

Exploiting a heap OOB write in the Linux kernel is
challenging due to its unique heap memory management
mechanism. Objects must be of the same type or similar sizes
to be placed in the same cache, allowing them to potentially
be adjacent. In many cases, the adversary cannot find a
suitable victim object that can be placed in the same cache
as the vulnerable object. To overcome this challenge, cross-
cache reuse techniques [33] have been proposed. Specifically,
the adversary frees all slots of a slab page, causing the
SLAB/SLUB allocator to return the page containing the
vulnerable object to the Buddy allocator (i.e., recycling).
This page can then be allocated for other slab caches (i.e.,
reclaiming), enabling the reuse of memory slot across slab
caches with different types, allocation sizes, and properties.

Note that the capabilities of most heap OOB vulner-
abilities are generally limited. A common approach in
real-world exploits is to upgrade the OOB capability to
arbitrary memory write primitives, enabling further attacks
such as privilege escalation [34] and container escape [3].
For example, the exploit [4] for CVE-2022-0185 upgrades
the OOB write vulnerability to arbitrary memory write,
allowing it to overwrite the euid field of the cred structure
associated with the current process to GLOBAL ROOT UID
(i.e., a value of 0), thereby gaining root privilege.
Scope and Assumptions. This work is dedicated to develop-
ing an automatic exploitation technique that upgrades kernel
heap OOB write vulnerabilities to arbitrary memory write
primitives. We assume that the target kernel is protected by
widely-deployed defenses, including kernel address space
layout randomization (KASLR), kernel control flow integrity
(KCFI), kernel page table isolation (KPTI), supervisor
mode execution prevention (SMEP), and supervisor mode
access prevention (SMAP). The automatic capability upgrade

811

https://github.com/CheUhxg/BridgeRouter

1 int diWrite(tid_t tid, struct inode *ip) {
2 dtpage_t *p = JFS_IP(ip)->i_dtroot; // src dentry page
3
4 struct dinode *dp = read_metapage(jfs_ip->ipimap, ...);
5 dtpage_t *xp = &dp->di_dtroot; // dest dentry page
6
7 struct linelock *ilinelock = get_linelock(jfs_ip, ...);
8 struct lv *lv = ilinelock->lv; // log vector
9

10 for (int n = 0; n < ilinelock->index; n++, lv++) {
11 memcpy(&xp->slot[lv->offset], &p->slot[lv->offset],
12 lv->length << L2DTSLOTSIZE); // OOB write
13 }
14 ...
15 }

Figure 2: An OOB vulnerability discovered by syzbot.

technique proposed in this work does not violate these
protections. Further attacks based on arbitrary memory write
primitives may require bypassing these protections using
other techniques [16], [27], [38], [49].

3. Motivation

We use a running example to demonstrate the limitations
of existing techniques and motivate our approach.

3.1. Running Example

Figure 2 shows a simplified excerpt of the vulnerable
code in Linux kernel v6.9.0-rc5 discovered by syzbot [42].
The vulnerable function diWrite, located in the journaled
file system, is responsible for writing a portion of the
in-memory inode (ip) to its corresponding on-disk inode
(dp). In particular, certain directory entry slots are copied
from the source directory entry page (p) to the destination
directory entry page (xp), as specified by the log vector
(lv) stored in the transaction lock (ilinelock). Each log
item records the offset and length of a modification made
to the file system. The offset is controllable through a
specific system call from the user space, while the length
is fixed and the values of the source directory entry page
are uncontrollable. Due to insufficient bounds checking, a
crafted offset may cause an OOB write, potentially allowing
the memory adjacent to the destination directory entry page
to be overwritten with uncontrolled values. At the time of
writing, this vulnerability has not been officially fixed, and
no public exploit is available.

3.2. Limitations of Existing Techniques

The most related SOTA research works that enable capa-
bility upgrades for exploiting kernel heap OOB vulnerabilities
are KOOBE [15] and SLUBStick [40].
KOOBE. KOOBE is mainly designed to convert an OOB
write vulnerability to a control flow hijack primitive. It
requires a high-capability vulnerability that allows overwrit-
ing with a controllable value indicating a valid address.
Furthermore, the search space for victim objects is restricted
to the kernel objects that can be allocated in the same cache

as the vulnerable object. As a result, KOOBE is less effective
for OOB vulnerabilities with limited capability, such as the
one in the running example, which only allows overwriting
with uncontrolled values.

SLUBStick. SLUBStick converts a limited heap vulnera-
bility to a page table manipulation, thereby granting the
capability to read and write memory arbitrarily. It exploits
an OOB vulnerability in three steps. First, it pivots the given
vulnerability into a double-free vulnerability, resulting in a
dangling pointer with a memory write primitive (MWP) that
allows the adversary to write a controlled value at a chosen
time. Second, it leverages the cross-cache reuse technique to
recycle a slab page that contains the MWP and then reclaims
the slab page as a page table. Finally, by triggering the MWP,
it overwrites the page table entries to obtain an arbitrary
memory read-and-write primitive.

SLUBStick provides a generic yet heavy approach for
kernel OOB exploitation. While it proposes a side-channel
leakage technique to improve the success rate of cross-cache
reuse, the overall success rate of the full-chain exploitation
remains low (less than 3% according to our evaluation in
§5.3). The primary challenge lies in satisfying the complex
and overlapping time windows between the free and use
stages (i.e., the pivoting step) and between converting the
dangling pointer to an MWP (i.e., before recycling) and when
it is triggered (i.e., after reclaiming). The detailed analysis
of the time window can be found in our repository [1].
Additionally, unintended page table manipulation will be
detected and prevented by the page table check security
defense [7], introduced since Linux kernel v5.17.

3.3. Our Approach

We propose a practical approach for kernel OOB ex-
ploitation, named BRIDGEROUTER, which enables arbitrary
memory writes without the need for vulnerability pivoting,
slab page recycling and reclaiming, or page table manipula-
tion. It reduces the complexity of time windows and complies
with the page table protection mechanism, thus ensuring the
success of complete exploitation.

Our approach involves two core steps: cross-cache over-
write migration and memory copy redirection. In the first
step, an uncontrolled overwrite capability that writes to an
adjacent location within one slab cache is converted to a
controlled overwrite capability that writes to an adjacent
location in a different slab cache. In the second step, the
controlled overwrite capability is then used to redirect the
destination and/or the source of a memory copy operation,
resulting in an arbitrary memory write primitive.

The assumptions regarding the capability of a heap OOB
write vulnerability to be exploitable via our approach as
follows: although the OOB write may be uncontrollable, the
offset (how far the write can reach), value (what content
can be written), and length (how many bytes can be written)
of the OOB write must fall within an appropriate range.
Specifically, the offset must be large enough to overwrite
adjacent objects in the slab cache; the overwritten value

812

... alg_key_len ... alg_key

xfrm_algo_auth(xaa)

...

#next page

... alg_key ... next

xaa_dstbuf

msg_msg(msg)

USER SPACE

4096

&euid

p

vulobj(xp)

alg_key_len*

... ... euid

cred

xaa_srcbuf

#1

#2

#3

oob read

oob write

Figure 3: Exploiting the running example.

should also be sufficiently large to trigger an overflow when
copying a bridge object. However, the length must not be
excessively large to avoid the risk of corrupting critical fields
in adjacent objects, which could result in a system crash.
Cross-Cache Overwrite Migration. It is achieved by placing
a special kind of kernel object, which contains a length
field, adjacent to the vulnerable object. This kind of object
participates in a memory copy operation, where the source
buffer is controllable, the destination buffer resides in the
kernel heap, and the number of bytes to copy is determined
by the length field of the object. We refer to this kind of
object as a bridge object. When an OOB write is triggered on
the vulnerable object, the length field of the adjacent bridge
object is overwritten. This, in turn, causes the destination
buffer associated with the bridge object to be overwritten
with controlled values during the memory copy operation.
Memory Copy Redirection. It is achieved by placing a
special kind of kernel object, which contains pointer fields,
adjacent to the destination buffer associated with a bridge
object. This kind of object participates in a memory copy
operation (distinct from the one in cross-cache overwrite
migration), where its pointer fields point to the destination
buffer and/or the source buffer. We refer to this kind of object
as a router object. When a controlled overwrite occurs on
the destination buffer associated with the bridge object, the
pointer fields of the adjacent router object, which point to
the destination buffer and/or the source buffer of the memory
copy operation, will be overwritten with controlled values.
This leads to arbitrary memory writes when the memory
copy operation occurs.
Exploiting Running Example. To exploit the vulnerability in
the running example, we use an xfrm algo auth object
as the bridge object and a msg msg object as the router
object, and arrange the memory layout as shown in Figure 3.
In particular, the bridge object (xaa) is positioned adjacent
to the vulnerable object (xp), and the router object (msg) is
positioned adjacent to the destination buffer associated with
the bridge object (xaa dstbuf).

When the vulnerability is triggered (#1 in Figure 3),
xaa � alg key len is overwritten with an uncontrolled
value, which then affects the number of bytes copied in
a memcpy operation. Although the overwritten value is
uncontrolled, it originates from directory entry slots, making

it likely to fall within a range suitable for an out-of-bounds
length. The source buffer resides in the bridge object, and
its overflow content can be controlled by pre-sprayed values.
The destination buffer resides in a different slab cache from
the one containing the vulnerable object and the bridge
object. Consequently, the memcpy operation will perform
an out-of-bounds copy (#2 in Figure 3), causing the next
field of msg, which is adjacent to the destination buffer, to
be overwritten with a controlled value. The router object
msg is involved in a copy from user operation (#3 in
Figure 3). The source buffer resides in the user space, and
is fully controllable by the adversary. The destination buffer
is pointed to by msg � next, which, as discussed earlier,
can be overwritten with a controlled value. As a result, an
arbitrary memory write is achieved, allowing a controlled
value to be written to a controlled destination.
Technical Challenges. To perform the exploitation described
above, an adversary should overcome several technical
challenges. First, the adversary needs to identify the potential
bridge objects and the router objects within the kernel.
Given the complexity of kernel code and the wide range
of kernel versions, manually auditing the code to pinpoint
these kernel objects is an extremely labor-intensive task.
Second, the adversary needs to trigger the allocation and
memory copy operations associated with these identified
objects through specific system call sequences. The vast
search space makes blindly and exhaustively testing various
system call combinations impractical and inefficient. Third,
the adversary needs to chain the vulnerable object with
the appropriate bridge and router objects, and explore their
potential capabilities. Simply chaining these objects and
triggering the corresponding allocation and memory copy
operations is insufficient, as numerous noises may prevent
full exploration of their potential capabilities. Finally, the
adversary needs to synthesize attack components to generate
a complete exploit. This requires simultaneously consider-
ing various factors, including memory layout manipulation,
memory content spraying, and time window arrangement.

4. Design

Figure 4 outlines the workflow of BRIDGEROUTER,
which is divided into four procedures. Starting with the
source code of the target kernel, we first leverage static
analysis to identify bridge and router objects (§4.1); then
we perform a two-stage constraint-guided fuzzing process
to generate the system call sequences required to trigger the
allocation and memory copy operations for the identified ob-
jects (§4.2). Given a PoC of an OOB vulnerability, we match
the corresponding vulnerable object with appropriate bridge
and router objects, and explore their potential capabilities for
generating a prototype exploit through a phased capability-
guided fuzzing in a simulated environment. (§4.3). Finally,
the complete exploit is assembled by integrating the prototype
exploit with carefully designed memory management and
system call scheduling strategies (§4.4).

Our approach combines static and dynamic analysis. This
is because the proposed automated capability upgrading

813

PoC
Kernel

IR

Object Filtering

Bridge Objects Router Objects

Memory Copy Path Exploration

Allocation Path Exploration

Objects Identification

Constraint Extraction

Bridge
Constraint

Router
Constraint

① Identifying Bridge and Router Objects ②Triggering Allocation and Memory Copy

Monitor Anchors Setup

a) For Allocation Sites

b) For memory Copy Sites
2-Stage Fuzzing

 Testcase Corpuses

③ Chaining and Exploring Capabilities

Simulation Anchors Setup

 Capability-guided Fuzzing
Upgrading and Chaining

Spray Construction
Syscall Schedule

Spray Syscall

Prototype
Exp

Complete
Exp

④ Synthesizing Exploitation

Figure 4: The overall workflow of BRIDGEROUTER.

technique requires not only identifying bridge and router
objects but also determining the system call sequences that
trigger the allocation and memory copy operations for these
identified objects. While static analysis can help identify
potential bridge and router candidates, it falls short in
determining the triggering system call sequences due to
the complexity and dynamic nature of system calls (e.g.,
inter-component indirect calls and stateful behaviors). These
factors make it challenging for static analysis to accurately
trace and link system calls to memory operations of the
identified objects without runtime execution context.

4.1. Identifying Bridge and Router Objects

Identifying bridge and router objects requires exploring
the allocation and memory copy paths of kernel objects.
Additionally, we also need to extract the constraints along the
memory copy paths. The list of kernel functions responsible
for allocation and memory copy is shown in Appendix B.
Definitions. To facilitate discussion, we define some maps in
Figure 5. Alloc2SyscallSet and Copy2SyscallSet
map each allocation site and memory copy site to their
respective sets of triggering system calls. Type2AllocSet
maps each object type to its corresponding set of allo-
cation sites. Copy2SrcObjType, Copy2DstObjType,
Copy2SizeObjType map each copy allocation to the
object type containing the fields that specify the source buffer,
destination buffer and copy size, respectively. Copy2Src-
AllocSet and Copy2DstAllocSet map each memory
copy site to the set of allocation sites for the corresponding
source and destination buffers. Bridge2CopySet and
Router2CopySet map the bridge and router objects to
their respective sets of memory copy sites. Bridge2Cst-
Set and Router2CstSet map the bridge and router

Alloc2SyscallSet ::= AllocSite → {SystemCall}
Copy2SyscallSet ::= CopySite → {SystemCall}

Type2AllocSet ::= ObjType → {AllocSite}
Copy2SrcObjType ::= CopySite → ObjType
Copy2DstObjType ::= CopySite → ObjType
Copy2SizeObjType ::= CopySite → ObjType
Copy2SrcAllocSet ::= CopySite → {AllocSite}
Copy2DstAllocSet ::= CopySite → {AllocSite}

Bridge2CopySet ::= ObjType → {CopySite}
Router2CopySet ::= ObjType → {CopySite}
Bridge2CstSet ::= ObjType → {Constraint}
Router2CstSet ::= ObjType → {Constraint}

Figure 5: Definitions of some maps.

objects to their respective sets of constraints along their
memory copy paths.

Allocation Path Exploration. Figure 6a illustrates the
exploration of allocation paths. It begins with a backward
inter-procedural control-flow analysis for each allocation
site. If a path is identified that connects an allocation site
alloc with a system call sysacall without requiring the
root privilege, the relationship between alloc and syscall is
recorded in Alloc2SyscallSet. Subsequently, a forward
inter-procedural data-flow analysis is performed to determine
the object type associated with each allocation site. Specifi-
cally, we track the use points of the return value from each
allocation site, focusing on those instructions relevant to type
casting, pointer dereferencing and argument passing. The
operands of these instructions can be used to infer the object
type. The relationship between each object type type and its
corresponding set of allocation sites {alloc} is recorded in
Type2AllocSet.

Memory Copy Path Exploration. Figure 6b illustrates the
exploration of memory copy paths. Similar to allocation
path exploration, we only consider those memory copy sites
that are reachable from a system call without requiring
root privilege. The relationship between each memory copy
site copy to its corresponding set of triggering system calls
{syscall} is recorded in Copy2SyscallSet.

For each memory copy site copy under consideration,
we perform a backward inter-procedural data-flow analysis
on its dst, src, and size arguments. If size originates from
a field of a heap object obj (e.g., obj�len) and the type of
obj is type, we record the relationship between copy and
type in Copy2SizeObjType. Similarly, if src (or dst)
originates from a field of a heap object obj (e.g., obj�ptr),
we record the relationship between the memory copy site and
the type of the containing object in Copy2SrcObjType
(or Copy2DstObjType).

We also need to locate the allocation sites of src
and dst for each memory copy site copy. For a memory
copy function that transfers data from the user space (e.g.,
copy from user), we mark the allocation set of src as
USER SPACE. If src (or dst) originates from a field of a
heap object and the type of the field is type, the allocation
sites of src (or dst) are given by Type2AllocSet[type].
Alternatively, if src (or dst) originates from a return value
of an allocation function call, that function call site is

814

TABLE 1: Examples of the bridge and router objects.

Category Struct Caches Offset (len/ptr) Source Buffer Destination Buffer Constraints
Bridge xfrm algo auth ≥ kmalloc-96 [64, 68) ≥ kmalloc-96 ≥ kmalloc-1k NULL
Router msg msg kmalloc-4k [32, 40) USER SPACE N/A [24,32)≤4048

root privilege

Syscall M

X

obj = alloc(size)

alloc site

Syscall N

(a) allocation path

Syscall Y

copy(dst, src, obj->len)

alloc_src
alloc_dst

Syscall X

alloc_obj

copy site

Syscall Z

copy(obj->ptr, src, size)

(b) copy path

Figure 6: Exploration of allocation paths and memory copy paths.

marked as the allocation site of src (or dst). The relationship
between the memory copy site and the allocation sites
of src (or dst) is recorded in Copy2SrcAllocSet (or
Copy2DstAllocSet).

Bridge Objects Identification. A bridge object must satisfy
the following requirements: 1 it contains a length field that
controls the number of bytes to copy in a memory copy
operation; 2 the destination buffer of the memory copy is
allocated in the kernel heap; and 3 the source buffer of the
memory copy is allocated in the kernel heap or originates
from the user space.

Given a memory copy site copy, let allocsrc be Copy2-
SrcAllocSet[copy] and allocdst be Copy2DstAlloc-
Set[copy], let typesizeobj be Copy2SizeObjType[copy]
and allocsizeobj be Type2AllocSet[typesizeobj], If 1
allocsizeobj ̸=∅, 2 allocdst ̸=∅, 3 allocsrc ̸=∅ or allocsrc
=USER SPACE, then a kernel object of type typesizeobj
is considered as a bridge object. In this case, we
record the relationship between typesizeobj and copy in
Bridge2CopySet.

Router Objects Identification. A router object must satisfy
the following requirements: 1 it contains a pointer field that
points to the destination buffer of a memory copy operation;
2a it contains a pointer field that points to the source buffer
of the memory copy operation or 2b the source buffer of
the memory copy originates from the user space.

Given a memory copy site copy, let allocsrc be Copy2-
SrcAllocSet[copy], allocdst be Copy2DstAllocSet
[copy]; also let typesrcobj be Copy2SrcObjType[copy],
typedstobj be Copy2DstObjType[copy], and allocdstobj
be Type2AllocSet[typedstobj]. If 1 allocdstobj ̸=∅ and
allocdst ̸=∅, 2a typesrcobj=typedstobj and allocsrc ̸=∅, or
2b allocsrc=USER SPACE, then a kernel object of type
typedstobj is considered as a router object. In this case,
we record the relationship between typedstobj and copy in
Router2CopySet.

Constraint Extraction. Given a bridge or router object, we
trace all paths to its memory copy sites, with particular

attention to the pointer dereferences and the branching
conditions in which the manipulated fields of the object are
enclosed or has data dependency with the variable involved.
The adversary needs to ensure that the pointer references
a legitimate memory area and the branch conditions are
satisfied. A constraint is of the form “range|op|value”.
For example, the constraint “[24,32)≤4048” indicates that the
value at offset [24,32) in the target object must be less than
or equal to 4048. The constraint sets are statically collected
by analyzing LLVM IR to determine the usage of object
fields in each path leading to memory copy sites of objects,
with special consideration given to the CmpInst instructions
involving object fields, as implemented in ELOISE [16]. We
record the relationship between a bridge (or router) object
and the constraints of the corresponding memory copy paths
in Bridge2CstSet (or Router2CstSet).
Example. Table 1 presents two examples of the bridge and
router objects. The bridge object xfrm algo auth is
allocated in the generic slab caches with slot size larger than
96 bytes. The field at offset [64, 68) in xfrm algo auth
affects the size argument of a memory copy operation.
The source and destination buffers of the memory copy
are allocated in the generic slab caches with slot sizes larger
than 96 bytes and larger than 1k bytes, respectively. There are
no constraints related to the fields of xfrm algo auth
along the memory copy paths. The router object msg msg
is allocated in the generic slab caches with a slot size of
4k bytes. The field at offset [32, 40) in msg msg affects
the dst argument of a memory copy operation. The source
buffer of the memory copy originates from the user space.
The constraints along the memory copy paths require the
value at offset [24, 32) in msg msg is no more than 4048.

4.2. Triggering Allocation and Memory Copy

The aforementioned procedure statically identifies poten-
tial bridge and router objects, along with their corresponding
allocation and memory copy sites, as well as the triggering
system calls and the associated path constraints. For a bridge

815

1 // bridge object: xfrm_algo_auth
2 buf1 = alloc_and_fill_in_values(<controlled_values>);
3 buf2 = alloc_and_fill_in_values(<controlled_values>);
4 xfrm_sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_XFRM);
5 sendmsg(xfrm_sock, buf1, 0); // alloc syscall
6 sendmsg(xfrm_sock, buf2, 0); // copy syscall
7
8 // router object: msg_msg
9 buf = alloc_and_fill_in_values(<controlled_value>);

10 id = msgget(IPC_PRIVATE, IPC_CREAT | 0666));
11 msgsnd(id, buf, BODY_SIZE_4K, 0); // alloc & copy syscall

Figure 7: Code snippet that triggers the allocation and
memory copy of the bridge object xfrm algo auth
(xaa) and the router object msg msg (msg). Specifically,
Line 5 triggers the allocation of xaa, Line 6 triggers the
memory copy of xaa, and Line 11 triggers both the allocation
and memory copy of msg.

or router object to be useful for exploitation, the adversary
must prepare a testcase corpus that can sequentially trigger
the allocation and memory copy of the object. While fuzzing
is a natural approach to achieve this, the extensive search
space renders blind fuzzing highly ineffective. To address this
challenge, we propose a two-stage constraint-guided fuzzing
approach. The first stage is designed to trigger the allocation
of a bridge or router object and its associated source and
destination buffers. The second stage focuses on triggering
the memory copy sites, based on the testcases generated
in the first stage. The constraints along the memory copy
paths are used to guide mutations in the second stage. We
instrument the kernel source code with customized monitor
functions (refer to as monitor anchors) to signal when the
allocation or memory copy sites of interest are reached.

Algorithm 1 describes how the triggering process works.
Given a bridge or router object of type type, we obtain its
allocation sites (Line 4), memory copy sites (Line 5) and
the constraints along the memory copy paths (Line 6). For
each memory copy site, we further obtain the allocation
sites of the source and destination buffers (Lines 10-11). We
retrieve the system calls that can reach the allocation and
memory copy sites for the various kinds of interest (Lines
7-8 and 12-16). After these initial steps, we proceed with the
fuzzing process. Separate testcase queues are maintained for
the two stages: queue stage1 for Stage1 (represents the
allocation-triggering stage) and queue stage2 for Stage2
(represents the copy-triggering stage). The fuzzing process
continues until the resource limit is reached, with Stage1 or
Stage2 randomly selected at each iteration (Lines 17-21).

The process logic of Stage1 is as follows. First, the
monitor anchors set at the allocation sites of interest are
activated (Line 24), while those at other sites are deactivated
(Line 23). Next, there is an equal chance of creating new
testcases by mutating existing ones randomly selected from
queue stage1 (Lines 26-27), or generating them from
scratch by combining the system calls that can reach the
allocation sites of interest (Lines 29-32). After executing the
new testcase, the state feedback from the activated monitor
anchors is observed (Line 33). If all kinds of allocation
sites of interest are reached, the new testcase is added to

Algorithm 1: Triggering allocation and memory copy.
Input : type: ObjType
Output : corpus: ObjType 7→ {Testcase}
Main :

1 queue stage1← ∅, queue stage2← ∅, corpus← {}
2 alloc syscall setsrc ← ∅, alloc syscall setdst ← ∅
3 alloc syscall setobj ← ∅, copy syscall setobj ← ∅
4 alloc setobj ← Type2AlocSet[type]
5 copy setobj ← Bridge2CopySet(type)

⋃
Router2CopySet(type)

6 cst setobj ← Bridge2CstSet(type)
⋃

Router2CstSet(type)
7 for allocobj in alloc setobj do
8 alloc syscall setobj

⋃
= Alloc2SyscallSet[allocobj]

9 for copy in copy setobj do
10 alloc setsrc ← Copy2SrcAllocSet[copy]
11 alloc setdst ← Copy2DstAllocSet[copy]
12 for allocsrc in alloc setsrc do
13 alloc syscall setsrc

⋃
= Alloc2SyscallSet[allocsrc]

14 for allocdst in alloc setdst do
15 alloc syscall setdst

⋃
= Alloc2SyscallSet[allocdst]

16 copy syscall setobj
⋃

= Copy2SyscallSet[copy]

17 while NotReachResourceLimit() do
18 if queue stage2 ̸= ∅ and TossCoin() = HEAD then
19 Stage2()

20 else
21 Stage1()

22 return corpus

Procedure : Stage1()
23 DeactivateAllMonitorAnchors()
24 ActivateMonitorAnchors(alloc setsrc, alloc setdst, alloc setobj)
25 if queue stage1 ̸= ∅ and TossCoin() = HEAD then
26 testcase← RandomSelect(queue stage1)
27 testcase← RandomMutate(testcase)

28 else
29 alloc syscallsrc ← RandomSelect(alloc syscall setsrc)
30 alloc syscalldst ← RandomSelect(alloc syscall setdst)
31 alloc syscallobj ← RandomSelect(alloc syscall setobj)
32 testcase← Combine(alloc syscallsrc, alloc syscalldst, alloc syscallobj)

33 state← MonitoredExecute(testcase)
34 if state ⊨ ALLOC SRC and state ⊨ ALLOC DST and state ⊨ ALLOC OBJ then
35 queue stage2

⋃
= testcase

36 else if state ⊨ ALLOC SRC or state ⊨ ALLOC DST or state ⊨ ALLOC OBJ then
37 queue stage1

⋃
= testcase

Procedure : Stage2()
38 DeactivateAllMonitorAnchors()
39 ActivateMonitorAnchors(copy set)
40 testcase← RandomSelect(queue stage2)
41 if TossCoin() = HEAD then
42 testcase← ConstraintGuidedMutate(testcase, cst setobj)

43 else
44 copy syscallobj ← RandomSelect(copy syscall setobj)
45 testcase← Combine(testcase, copy syscallobj)

46 state← MonitoredExecute(testcase)
47 if state ⊨ COPY then
48 corpus[type]

⋃
= testcase

queue stage2 (Lines 34-35). Otherwise, if only some kinds
are reached, the new testcase is added to queue stage1
(Lines 36-37).

Stage2 follows a process logic similar to Stage1 with
the following differences. First, the monitor anchors activated
are those placed at the memory copy sites of interest (Lines
38-39). Second, the mutation of existing testcases is guided
by the path constraints (Line 42). Third, a new testcase is
generated by combining existing testcases with system calls
that can reach the memory copy sites of interest (Lines 44-

816

45), rather than being created from scratch. Finally, if the
memory copy sites of interest are reached, the new testcase
is added to the final result corpus (Lines 46-48).
Monitor Anchors Setup. We instrument kernel source code
and insert a monitor anchor right behind each allocation site
and memory copy site of our interest. With these anchors,
when kernel execution reaches these sites, a feedback will be
provided to the fuzzing program through copy to user.
Note that the kernel is instrumented only once, while the
inserted monitor anchors can be activated and deactivated
on-demand at runtime.

Due to the complexity of the Linux kernel, various other
kernel routines may also reach the instrumented sites, such
as exception signals from processes, interrupt signals from
peripheral devices, activities from other kernel threads or user-
land processes. To eliminate the interference, we enhance
our monitor anchors with the ability to determine whether
their invocation originates from the system calls of interest.
Specifically, within each monitor anchor, we check whether
the value of the kernel variable system state equals to
SYSTEM RUNNING, and if the pid of the current process
matches that of the fuzzing program.
Fuzzing Strategy. In the first stage, we perform random
mutation to add or remove system calls, and change the
values of system call parameters. In the second stage, the
focus shifts to modifying parameter values and repeating
existing system calls, without adding new system calls or
removing existing ones. During this stage, we probe which
system call parameters affects the fields associated with the
constraints, and prioritize the mutation of these parameters.
Example. In Figure 7, we present the code snippets that
trigger the allocation and memory copy of the bridge object
xfrm algo auth and the router object msg msg. The
first and second invocations of the sendmsg system call,
with different buffer contents, result in the allocation and
memory copy of an xfrm algo auth object, respectively.
The allocation and memory copy of a msg msg object occur
sequentially via the invocation of the msgsnd system call.

4.3. Chaining and Exploring Capabilities

After identifying the bridge and router objects and
generating a corpus of testcases that trigger the relevant
allocation and memory copy sites, the next step is to chain
the vulnerable object with the appropriate bridge and router
objects for a given PoC and explore the potential capabilities.
Simply combining the PoC with testcases that trigger the
corresponding allocation and memory copy operations is
insufficient, as various interferences may impede complete
exploration of potential capabilities. The major interferences
include: 1 the uncertain order of allocation and memory
copy operations on bridge and router objects caused by
unscheduled system calls, and 2 the uncertain memory
layout introduced by heap fengshui techniques. The simulated
environment eliminates uncertainty by directly enforcing
the write capability on the bridge and router objects in
sequence, which would otherwise require carefully crafted

Algorithm 2: Chaining and exploring capabilities.
Input : poc: Testcase

vulobj type: ObjType
bridge set: {ObjType}
router set: {ObjType}
corpus: ObjType 7→ {Testcase}

Output : exp set: {Testcase}
Main :

1 exp set← ∅
2 ActivateSimulationAnchors(vulobj type)
3 capability ← SimulatedExecute(NULL, poc)
4 DeactivateAllSimulationAnchors()
5 testcase2capability ← {poc 7→ capbility}
6 while NotReachResourceLimit() do
7 testcase1 ← RandomSelect(KeySetOf(testcase2capability))
8 capability1 ← testcase2capability[testcase1]
9 if GetCapabilityType(capability1) = CAP UNCONTROL OVERWRITE then

10 type← RandomSelect(bridge set)

11 else if GetCapabilityType(capability1) = CAP CONTROL OVERWRITE then
12 type← RandomSelect(router set)

13 testcase2 ← RandomSelect(corpus[type])
14 if Match(capability1, type) then
15 Chain(testcase1, testcase2, type)

16 return exp set

Procedure : Chain(testcase1, testcase2, type)
17 capability1 ← testcase2capability[testcase1]
18 capabilityori ← capability1

19 while True do
20 testcase2 ← CapabilityGuidedMutate(testcase2, capability1)
21 ActivateSimulationAnchors(type)
22 capabilitynew ← SimulatedExecute(capability1, testcase2)
23 DeactivateAllSimulationAnchors()
24 if capabilitynew ≽ capabilityori then
25 testcasenew ← Combine(testcase1, testcase2)
26 capabilityori ← capabilitynew

27 else
28 capabilitynew ← capabilityori

29 break

30 if GetCapabilityType(capabilitynew) = CAP ARBITRARY WRITE then
31 exp set

⋃
= testcasenew

32 else if capabilitynew /∈ ValueSetOf(testcase2capability) then
33 testcase2capability[testcasenew] = capabilitynew

memory layout management and system call scheduling
strategies in the real-world environment. By this design, we
simplify the complex exploit generation into two distinct
processes: capability exploration in a simulated environment,
and exploitation synthesis in a real-world environment.

We perform capability-guided fuzzing to generate pro-
totype exploits. Algorithm 2 outlines the process for chain-
ing and exploring capabilities. We maintain a global map
testcase2capability, which records testcases along with
their capabilities. Given a PoC, we first execute it in the
simulated kernel environment to determine its capability
(Lines 2-4) and record it in testcase2capability (Line 5).
Then, we perform the fuzzing process until the resource limit
is reached (Lines 6-15). In each iteration, we randomly select
a testcase from testcase2capability (Line 7) and examine
its current capability (Line 8). If the selected testcase has
an uncontrolled overwrite capability (Line 9), we attempt to
chain it with a randomly selected bridge object (Line 10).
Otherwise, if the selected testcase already has a controlled
overwrite capability (Line 11), we attempt to chain it with a
randomly selected router object (Line 12). Before performing

817

Figure 8: Example of the system call scheduling.

the chaining, we judges whether the capability matches the
selected object (Lines 14-15).

The processing logic of chaining is as follows. First, we
retrieve the capability of testcase1 (Line 17) and record
it as the original capability (Line 18). Then, we perform
capability-guided mutation to explore the capability bound
(Lines 19-29). Specifically, testcase2 is mutated based on
the analysis of historical mutations; and the capability of
testcase1 is enforced on the execution of mutated testcase2
(line 20), simulating the capability achieved by executing the
combination of testcase1 and testcase2. The exploration of
the capability bound terminates when no stronger capability
can be achieved through further mutations (Line 24). If the
resulted capability allows for arbitrary memory write, then
a prototype exploit is produced (Lines 30-31). Otherwise, if
a previously unseen capability is observed, we record the
combination of testcases along with the new capability (Lines
32-33). The simulation anchors are activated and deactivated
before and after the simulated execution (Lines 21 and 23).

If multiple combinations of bridge and router objects are
available for a given OOB vulnerability, we prioritize select-
ing those with critical fields positioned near the beginning
(to minimize the impact on other fields during tampering),
those with fewer constraints on the fields being tampered
with (to simplify heap spraying and payload construction),
and those whose allocation and copying occur in separate
system calls (to expand the time window and increase the
likelihood of success).
Simulation Anchors Setup. Simulation anchors are instru-
mented before each memory copy site of our interest. They
can be activated on-demand at runtime to enforce a specified
write capability on a given object and track the resulting
write capability. To enforce a specified write capability, the
memory copy operation on the given object is intercepted and
modified to directly write the specific value at the designated
offset of the given object, as indicated by the capability.

The resulting write capability is tracked by redirecting the
memory copy operation of the given object to two distinct
pre-allocated memory areas. One area is filled with byte
values of 0x0, while the other is filled with byte values of
0xFF. By comparing the contents of these two memory areas
after the redirection, we can determine the exact offset and
value that the write capability has affected.

4.4. Synthesizing Exploitation

The prototype exploits produced in the previous stage
are functional only within the simulated environment. The
final stage is dedicated to synthesize a complete exploit that
performs successfully in a real-world setting. This requires
a careful design of memory management and system call
scheduling strategies. The memory management strategy
involves memory layout manipulation and memory content
spraying, which are standard in kernel heap vulnerability
exploitation [17], [22]. This subsection specifically focuses
on the system call scheduling strategy.

Given a prototype exploit, we first decompose it into three
distinct components, each corresponding to the vulnerable,
bridge, and router objects. Next, we extract the system calls
responsible for the allocation and memory copy operations
for each component. We then execute the prototype exploit
for multiple times, measuring the average execution time of
each system call under consideration, from its invocation
to the point where the allocation or memory copy sites of
interest are reached. With this information, we can accurately
schedule the system calls. In particular, we need to ensure:
1 the allocation of the bridge object occurs before the

triggering of the vulnerability; 2 the allocation of the router
object occurs before the memory copy on the bridge object;
3 the triggering of the vulnerability, the memory copy on

the bridge object, and the memory copy on the router object
occur in sequential order. The allocation of the bridge object
and router object, memory copy on bridge object and router
object, and the triggering of the vulnerability do not need to
be executed individually by unique system calls, as long as
their order satisfies the three requirements. The corresponding
system calls are then scheduled in accordance with these
requirements.
Example. We illustrate system call scheduling using the
running example, as depicted in Figure 8. The getdents64
system call triggers the OOB vulnerability. The msgsnd
system call performs both the allocation and memory copy
of the router object simultaneously in a single invocation.
The sendmsg system call performs the allocation and
memory copy of the bridge object in different invocations,
depending on the different parameters. Given the execution
time of each system call (measured from its invocation to

818

the point where the allocation or memory copy sites of
interest are reached or the target vulnerability is triggered)
and the three requirements on the order of critical kernel
operations, we place the corresponding events in the timeline
in reverse chronological order to infer the invocation time
of each system call. Finally, we determine the scheduling
order for these system calls: msgsndcopy

alloc > sendmsgalloc

> getdents64 > sendmsgcopy. Here, the expression
“syscallA>syscallB” means syscallA should be invoked
before syscallB . We use time stamp counter (referred to as
sleep) to introduce a delay between consecutive system calls,
ensuring sufficient time before executing the next one. The
final exploit that works for the running example is shown in
Appendix D.

5. Evaluation

We evaluate BRIDGEROUTER from three aspects.

• Accuracy: How accurate does BRIDGEROUTER
identify the bridge and router objects? (§5.1)

• Applicability: Is BRIDGEROUTER applicable to
generic caches of different sizes? (§5.2)

• Effectiveness: How effective does BRIDGEROUTER
upgrade OOB vulnerability to the capability of arbi-
trary memory write? (§5.3)

We measure the accuracy by examining the false positives
and false negatives. The applicability is evaluated on a crafted
OOB write vulnerability that works for arbitrary size of
generic caches, while a 14 real-world vulnerabilities are
further evaluated and BRIDGEROUTER is compared with
KOOBE [15] and SLUBStick [40]. Two case studies (§5.4)
detail the effectiveness of BRIDGEROUTER.
Experimental Settings. All experiments are conducted on
a machine with 13th Gen Intel® CoreTM i9-13900 CPU
and 32 GB memory. We choose Linux kernel v6.6 (the
latest with long-term support) as the target kernel. The
target kernel is run in QEMU, with multiple kernel defenses
enabled, including KASLR, KCFI, KPTI and SMEP/SMAP.
All vulnerabilities in the experiments are ported to the kernel.

5.1. Accuracy of Objects Identification

As discussed earlier, BRIDGEROUTER relies on static
analysis to identify the bridge and router objects. Due to
inherent limitations of static analysis, BRIDGEROUTER in-
evitably introduces false positives (i.e., mistakenly identifying
certain objects as bridge or router objects) and false negatives
(i.e., failing to identify actual bridge or router objects). We
design an experiment to evaluate the false positives (FP) and
false negatives (FN).

To evaluate FP, we apply an automated approach along
with our manual effort. For an object identified as a bridge
or router object by BRIDGEROUTER, we first use the fuzzing
technique proposed in §4.2 to trigger its allocation and mem-
ory copy sites. If the fuzzing technique fails, we manually
investigate whether the failure stems from inaccurate the

1 typedef struct {
2 unsigned off;
3 unsigned len;
4 void __user *val;
5 } param_t;
6
7 void *vulobj;
8
9 SYSCALL_DEFINE2(oob, unsigned, cmd, void *, param) {

10 param_t p;
11 copy_from_user(&p, param, sizeof(param_t));
12 switch (cmd) {
13 case ALLOC:
14 vulobj = kmalloc(p.len, GFP_KERNEL); break;
15 case WRITE:
16 copy_from_user(vulobj+p.off, p.val, p.len); break;
17 }
18 return 0;
19 }

Figure 9: The crafted OOB write vulnerability.

static analysis or the limitation of the fuzzing technique. An
identified object is classified as a FP only if both automated
fuzzing and our manual review cannot find a concrete input
that triggers its allocation and memory copy sites.

To evaluate FN, the ideal approach would be to review
all the allocation and memory copy sites for each kernel
object and manually determine whether it aligns with the
definitions of the bridge and router objects as presented in
§4.1. However, this is impractical due to the complexity and
vast codebase of the Linux kernel. Therefore, we evaluate
FN using a random sampling approach as [16]. Specifically,
we randomly sampled 500 out of 2,373 heap-allocated kernel
objects and manually identify all of its allocation and memory
copy paths. This process takes two months of effort from
an experienced Linux kernel code reviewer. We identify FN
by comparing our manually analyzed results with those of
BRIDGEROUTER.
Results. BRIDGEROUTER reports 44 bridge objects and
13 router objects in the target Linux kernel, of which we
confirmed 37 true positives for bridge objects and 8 for bridge
and router objects. Thus, the FP rates for bridge and router
objects are 16% and 38%, respectively. By comparing these
results with the randomly sampled and manually confirmed
objects, we found that our manually confirmed objects are
a subset of those identified by BRIDGEROUTER. While
this finding does not directly conclude 0% FN rate, as
the scale of the kernel limits our ability to manually audit
all kernel objects, it suggests that the false negatives of
BRIDGEROUTER are minimal. We argue that such perfor-
mance is entirely satisfactory in practice. We believe that, for
a potentially exploitable OOB vulnerability, BRIDGEROUTER
can effectively identify the bridge and router objects needed
to generate a complete exploit (see §5.3). The full list of
accurately identified bridge and router objects can be found
in Appendix C.

5.2. Applicability to Generic Caches

To evaluate the applicability of BRIDGEROUTER to
generic caches of different sizes, we introduce a crafted OOB

819

TABLE 2: Applicable bridge and router objects for generic
caches of different sizes.

VulObj Cache Bridge Router
kmalloc-8 - -
kmalloc-16 xfrm sec ctx msg msg
kmalloc-32 kioctx table urb
kmalloc-64 kioctx table urb
kmalloc-96 xfrm sec ctx msg msg
kmalloc-128 ip6t replace hfsplus sb info
kmalloc-192 cfg80211 beacon data urb
kmalloc-256 snd kcontrol hfsplus sb info
kmalloc-512 cfg80211 beacon data ubifs info
kmalloc-1k xfrm algo auth ubifs info
kmalloc-2k xfrm algo auth ubifs info
kmalloc-4k xfrm algo auth ubifs info

write vulnerability into the Linux kernel. The vulnerable code
allocates memory on-demand to fit any supported cache size,
and allows for out-of-bounds writes. BRIDGEROUTER will
upgrade the OOB write capability to an arbitrary memory
write primitive. The code snippet of the crafted vulnerability
is shown in Figure 9. Specifically, an additional system
call sys oob is created to manipulate the vulnerable
object vulobj (Line 7). The system call consists of memory
allocation and write functionalities. In the allocation func-
tionality (Lines 13-14), the length for allocation is obtained
from the user-provided parameter param, and a memory
chunk is allocated from an appropriate generic cache. In the
write functionality (Lines 15-16), all the three arguments of
copy from user are affected by the user space. With the
two functionalities, the crafted vulnerability enables memory
allocation from any generic cache (ranging from kmalloc-8
to kmalloc-4k) and allows for overwriting arbitrary values at
any offset. Without loss of generality, the crafted vulnerability
is configured to overwrite a fixed byte value (0xF0).
Results. For vulnerable objects residing in generic caches
ranging from kmalloc-16 to kmalloc-4k, BRIDGEROUTER
is able to find appropriate bridge and router objects to chain
together, achieving arbitrary memory write. BRIDGEROUTER
did not find appropriate bridge and router objects for vulnera-
ble objects reside in kmalloc-8. We argue that the likelihood
of an OOB vulnerable object being allocated from kmalloc-8
is very low, as the allocated chunk is quite small (no more
than 8 bytes), while OOB vulnerabilities typically occur in
larger objects. We inspected all public OOB vulenrabilities in
recent years and found that fewer than 1% involve vulnerable
objects allocated in kmalloc-8. Therefore, it is reasonable to
claim that BRIDGEROUTER is applicable to generic caches
of different sizes. Table 2 presents examples of applicable
bridge and router objects for generic caches of different sizes.
The “VulObj Cache” column indicates the cache size of
the vulnerable object.

5.3. Effectiveness on Real-World Vulnerabilities

To further demonstrate the effectiveness of BRIDGER-
OUTER in exploiting real-world vulnerabilities, we perform a
statistical analysis of 97 (74 from CVE and 23 from Syzbot)

TABLE 3: Exploitation on real-world vulnerabilities. KB for
KOOBE, SS for SLUBStick, and BR for BRIDGEROUTER.
The percentages shown in the table represent the success rate
of the exploitation, which is measured by running the exploit
100 times and repeating the process 10 times to compute
the mean value.

ID Capability Exp KB SS BR
CVE-2022-34918 kmalloc-64[0:48]=* ✔ ✔ ✔(<1%) ✔(36%)
CVE-2022-27666 kmalloc-4k[0:*]=* ✔ ✔ ✔(2%) ✔(23%)
CVE-2022-2639 kmalloc-4k[0:*]=* ✔ ✔ ✔(1%) ✔(27%)
CVE-2022-0995 kmalloc-96[0:32]=1bit ✔ ✘ ✔(3%) ✔(39%)
CVE-2022-0185 kmalloc-4k[0:*]=* ✔ ✔ ✔(6%) ✔(46%)
CVE-2021-42327 kmalloc-1k[0:*]=* ✔ ✔ ✘ ✔(39%)
CVE-2021-42008 kmalloc-4k[0:*]=* ✔ ✔ ✔(2%) ✔(31%)
CVE-2023-6931 kmalloc-64[0:*]=rnd val ✔ ✘ ✘ ✔(21%)
CVE-2023-2598 kmalloc-*[0:*]=* ✔ ✔ ✔(13%) ✔(58%)
aa6df9d3... [42] kmalloc-4k[0:*]=rnd val ✘ ✘ ✘ ✔(18%)
4f7a1fc5... [44] kmalloc-96[0:*]=fix val ✘ ✘ ✘ ✔(23%)
dc3b1cf9... [43] kmalloc-96[0:*]=* ✘ ✘ ✘ ✔(33%)
797c55d2... [46] kmalloc-96[0:32]=1bit ✔ ✘ ✔(3%) ✔(36%)
57028366... [45] kmalloc-1k[0:*]=rnd val ✘ ✘ ✘ ✔(16%)

heap OOB write vulnerabilities discovered in the Linux
kernel over the last 4 years (2021˜2024). Among these 97
vulnerabilities, 23 have publicly available reproducible PoCs,
and 14 have publicly available exploitable Exps. We compare
the effectiveness of BridgeRouter, KOOBE, and SLUBStick
in exploiting the 23 vulnerabilities with public PoCs.

Two SOTA kernel OOB exploitation approaches (KOOBE
and SLUBStick) are compared with BRIDGEROUTER. There
are three noteworthy concerns. First, KOOBE is designed
to hijack control flows rather than performing arbitrary
memory writes. If KOOBE can modify the pointer in an
adjacent object to a controlled value, we consider it capable
of exploiting the vulnerability. Second, SLUBStick is not
fully automated. Following the authors’ instructions, we
make every effort to generate exploits by implementing the
techniques such as vulnerability pivoting, page recycling and
reclaiming, as mentioned in their paper. Third, SLUBStick
cannot exploit any vulnerability when the page table check
defense is enabled. For the purposes of our evaluation, we
disable this defense for SLUBStick.

Results. Table 3 shows the vulnerabilities and the results.
The CVE vulnerabilities are labelled with their CVE IDs,
and syzbot vulnerabilities use the commit hashes as their
IDs. The “Capability” column describes one of the
capabilities of the vulnerability. The last three columns
denote the exploitability and success rate of the vulnera-
bilities using KOOBE, SLUBStick and BRIDGEROUTER.
KOOBE succeeds in pointer modification in 7 vulnerabilities
and SLUBStick can perform arbitrary memory writes in 8
vulnerabilities. In contrast, BRIDGEROUTER acquires the
capability of arbitrary memory writes in 14 vulnerabilities.

Our automated capability upgrading approach may fail
in any phase of exploring potential capabilities (Phase I),
generating prototype exploits (Phase II), or synthesizing a
complete exploit (Phase III). We perform step-by-step exper-
imental analysis on the 23 heap OOB write vulnerabilities

820

... nr ... table

kioctx_table(kt)

...

#spray objs

... table ... transfer_buffer

kt_dstbuf

urb

USER SPACE&euidvulobj

... euid

cred

watch_filter(wf)

... ...

kt_srcbuf

kmalloc-64

kmalloc-192

#1
#2 #3

Figure 10: Memory layout for Case 1.

with reproducible PoCs, and found that 8 (35%), 1 (4%), 0
(0%) fail in Phase I, Phase II, Phase III, respectively.

We have also investigated why KOOBE and SLUBStick
fail in some cases. The major goal of KOOBE is to hijack
the control flow with diversified vulnerability capabilities.
It requires that the victim object contains pointer fields and
the vulnerabilities can take effect on the fields, modifying
the original pointer to a self-defined one. Therefore, the data
written via OOB must be user-controllable, making KOOBE
behave poorly for cases with weak vulnerability capabilities.

SLUBStick, on the other hand, pivots an OOB vulner-
ability to a dangling pointer for exploitation. To this end,
SLUBStick enforces the OOB capability on the objects with
reference counters or pointers. For reference counter, the
counter needs to be decreased by the OOB write, making
the exploitation quite difficult when the modified value is
relatively large. For pointer, certain bits of the pointer should
be zeroed via an OOB write, i.e., the zeroing capability of the
OOB vulnerability is required. Therefore, the requirement
of pivoting an OOB vulnerability by SLUBStick can be
induced as that sufficiently small values can be written via
the OOB vulnerability. However, some vulnerabilities in
Table 3 do not satisfy this requirement. Additionally, for
some vulnerabilities, we are unable to find suitable objects for
pivoting. These factors limit the applicability of SLUBStick.

For the exploitable cases of SLUBStick and BRIDGER-
OUTER, we further measure the success rate. Note that
we measure the success rate of the complete exploitation
chain, rather than individual components, such as cross-cache
reuse in SLUBStick and cross-cache overwrite migration
in BRIDGEROUTER. An exploit execution is considered
successful if it achieves arbitrary memory writes. We ran
each exploit 100 times to determine the success rate, which
we repeated 10 times to compute the mean value. Overall,
SLUBStick achieved a success rate of less than 4%. In
comparison, BRIDGEROUTER achieved an average success
rate of 32%, significantly outperforming SLUBStick.

5.4. Case Studies

We present two case studies to further demonstrate the
effectiveness of BRIDGEROUTER. In these case studies, after
upgrading the OOB vulnerability to enable arbitrary memory
writes, we leverage the upgraded capability to modify the

euid field of the cred structure to GLOBAL ROOT UID,
thus gaining root privilege.

Case 1: CVE-2022-0995. The PoC triggers the vulnerability
by writing an integer at a fixed position of a vulnerable
object allocated in kmalloc-96 and set one bit in a limited
scope to 1. Our capability exploring technique (§4.3) reveals
that the vulnerability also works in kmalloc-64.

Because the data to be written is uncontrollable, the
victim object’s field cannot be manipulated to point to a
specific address. As a result, KOOBE is unable to exploit
the vulnerability to modify the pointer field in an adjacent
object, preventing it from achieving control-flow hijacking.
Through the vulnerability, SLUBStick can corrupt the refer-
ence counter of the anon vma name object allocated in
kmalloc-96. By triggering the vulnerability twice, SLUBStick
manipulates the reference counter to induce a double-free con-
dition, which can be further exploited to obtain the capability
of arbitrary memory writes. However, SLUBStick requires
an additional pivot process, which makes the exploitation
unstable. Moreover, the need to trigger the vulnerability
twice further reduces the success rate, resulting in an overall
success rate of only 3%.

As a contrast, BRIDGEROUTER can successfully exploits
CVE-2022-0995 with a success rate of 39%. We select a
kioctx table object as the bridge object and a urb
object as the router object. To carry out the exploitation, we
construct the memory layout as in Figure 10 via heap feng
shui techniques [17], [22]. The vulnerable object (wf) is
adjacent to the bridge object (kt), and the destination buffer
(kt dstbuf) is adjacent to the router object (urb). Besides,
multiple user-controllable buffer objects next to the source
buffer (kt srcbuf) can be heap sprayed.

When the vulnerability is triggered (#1 in Figure 10), the
fifth bit of kt�nr is set to 1, resulting in the number of bytes
copied by memcpy exceeding the buffer size. The source
buffer (kt srcbuf) is allocated adjacent to the bridge object
(kt) within the same slab cache, and its overflow content
can be controlled by pre-sprayed values. Thus the memcpy
operation will override urb�transfer buffer adjacent to
the destination buffer (kt dstbuf) with a controlled value
(#2 in Figure 10). Finally, urb�transfer buffer serves
as the destination for a copy from user operation (#3 in
Figure 10). Since both the value of urb�transfer buffer
and the user-space data for copy from user are user-
controllable, arbitrary memory writes are achieved. Specif-
ically, if an adversary overwrites urb�transfer buffer
to point to cred � euid and set the user-space data to
GLOBAL ROOT UID, root privilege will be obtained.

Case 2: dc3b1cf9111ab5fe98e7. For this syzbot vulnerability,
the PoC leverages the vulnerable object allocated in kmalloc-
96 to to perform an oversized string copy operation, which
enables the overwriting of non-zero byte values. By using
BRIDGEROUTER, we developed two exploits.

One exploit (Figure 11a) uses a xfrm sec ctx object
as the bridge object (xsc), which is adjacent to the vulnerable
object (hn) allocated in kmalloc-96. A msg msg object is
chosen as the router object (msg), adjacent to the destination

821

... ctx_len ... ctx_str

xfrm_sec_ctx(xsc)

...

#spray objs

... xfrm_user_sec_ctx ... next

msg_msg(msg)

USER SPACE&euidvulobj

... euid

cred

hfs_name(hn)

... ...

xsc_srcbuf

kmalloc-96

kmalloc-4k

xsc_dstbuf
 #1 #2

#3

(a) xfrm sec ctx as bridge and msg msg as router

... len data

source

gss_cl_ctx(gcc)

user-controllable
buffervulobj ... euid

credhfs_name(hn)

kmalloc-96

kmalloc-512 destination

...

...

hfsplus_sb_info(hsi)

s_vhdr s_backup_vhdr... ...

gcc_srcbuf

gcc_dstbuf

&euid&buf

#1

#2

#3#spray objs

(b) gss cl ctx as bridge and hfsplus sb info as router

Figure 11: Memory layout for Case 2.

buffer (xsc dstbuf). The exploit follows the same steps as
Case 1 to gain the capability of arbitrary memory writes and
to modify cred�euid.

The other exploit (Figure 11b) takes a gss cl ctx ob-
ject as the bridge object and a hfsplus sb info object
as the router object. The vulnerable object (hn) is adjacent to
the bridge object (gcc) in kmalloc-96, and a user-controllable
object is sprayed after the source buffer (gcc srcbuf). The
destination buffer (gcc dstbuf) is allocated just before the
router object (hsi). After triggering the vulnerability (#1
in Figure 11b), gcc� len is overwritten with an oversized
value. Then, a memcpy operation (#2 in Figure 11b) uses
gcc � len as the size to copy, leading to the overwriting
of hsi � s vhdr and hsi � s backup vhdr with pre-
spayed values. An adversary can carefully craft pre-spayed
values to make hsi� s vhdr point to a user-controllable
kernel buffer (filled with the value of GLOBAL ROOT UID)
and hsi � s backup vhdr point to cred � euid. Finally,
when another memcpy occurs (#3 in Figure 11b), the
buffer pointed to by hsi � s vhdr will be copied to the
buffer pointed to by hsi�s backup vhdr, leading to the
attainment of root privilege.

SLUBStick fails to exploit this vulnerability due to
its limited write capability. SLUBStick provides two tech-
niques for pivoting an out-of-bounds vulnerability to a
double-free vulnerability. The first technique uses OOB
vulnerability to modify an object’s reference count and
repeatedly triggering the vulnerability to bypass reference
count protections. However, since this vulnerability cannot
be triggered consecutively, the object can only be freed
once, which prevents a double-free condition. The second
technique requires corrupting a pointer within an object and
zeroing out the two least significant bytes of the pointer.
However, this vulnerability only allows for writing non-zero
byte values, the corrupted pointer cannot reliably point to
the start address of a page. This complicates the precise
release of the victim object and hinders the ability to induce
a double-free condition.

6. Discussion

Scientific Contribution of Our Work. Prior research works
primarily leverage pivoting to elevate the capability of a
limited vulnerability. In contrast, our work introduces a new
approach for capability elevation in a gradual upgrading man-

ner. Specifically, in this paper, we target kernel OOB write
vulnerabilities and propose a solution that gradually upgrades
an uncontrolled overwrite capability to a controlled over-
write capability, ultimately achieving an arbitrary memory
write primitive. In theory, the concept of gradual capability
upgrading can be applied to other types of vulnerabilities
as well. Take the use-after-free (UAF) vulnerability as an
example. After freeing the vulnerability object, we use a
bridge object to occupy the freed slot. Then, by leveraging
the UAF capability, we corrupt a field of the bridge object,
causing it to use a larger length parameter during the copy
operation. The subsequent process of chaining the router
object is similar to the OOB exploitation method described
in this paper. We leave the in-depth exploration of this
possibility as future work.
Uniqueness of Our Work. We summarize our work to
possess the following uniqueness. First, different with the
current page-level attacks, we propose a novel slot-level cross-
cache attack method. Second, our approach does not involve
vulnerability pivoting. Instead, it enhances the vulnerability
capability step by step and upgrades the restricted OOB
capability to arbitrary memory write. Third, the critical
objects for exploitation are automatically identified, rather
than based on any prior knowledge. Fourth, we automate the
full exploitation chain, not just a few core exponents.

Our work can be distinguished from SOTA works from
difficult aspects. In terms of cross-cache attack, SLUBStick
proposes page recycling and reclaiming to realize page-
level cross-cache attacks, while BRIDGEROUTER realizes
the slot-level cross-cache attack based on copy operations
on bridge objects. Shortening the exploitation chain can
decrease the influence of time windows. Regarding the usage
of auxiliary objects, ELOISE [16] utilizes elastic objects to
leak kernel data, SLUBStick [40] uses auxiliary objects to
pivot vulnerabilities for cross-cache write, and the work [37]
uses thanos objects to create the double-free state. Our work
leverages bridge and router objects to gradually upgrade the
vulnerability capability.
Comparison between BRIDGEROUTER and SLUBStick.
Both BRIDGEROUTER and SLUBStick aim to elevate a
limited heap vulnerability to an arbitrary memory write
primitive. However, BRIDGEROUTER outperforms SLUB-
Stick in the following aspects, making it more stable and
reliable for vulnerability exploitation. In terms of capability
upgrading, SLUBStick pivots different types of vulnera-

822

bilities into dangling pointers, and further leverages these
dangling pointers to obtain a memory write primitive. This
process requires the coordinated use of multiple auxiliary
objects, which must remain simultaneously active within
specific time windows to enable their interactions. In contrast,
BRIDGEROUTER strategically establishes an exploit chain
based on vulnerability capabilities, utilizing fewer auxiliary
objects and imposing fewer temporal constraints. In terms
of cross-cache attacks, SLUBStick relies on a heavy-weight
page recycling and reclaiming mechanism to achieve page-
level cross-cache attacks. In contrast, BRIDGEROUTER reuses
existing kernel copy operations to achieve slot-level cross-
cache attack, eliminating the uncertainties associated with
the page recycling and reclaiming mechanism. In terms of
arbitrary memory write, SLUBStick achieves it by tampering
with page table entries to illegally map physical memory,
which could be detected and prevented by the page table
check security defense [7]. In contrast, BRIDGEROUTER
achieves it by manipulating the dst parameter of normal
kernel copy operations, bypassing page table checks entirely.

Characteristics of Bridge and Router Objects. Bridge and
router objects assume different roles during the exploitation
process. A bridge object transforms an uncontrolled overwrite
capability (which writes to an adjacent location within
one memory allocator cache) into a controlled overwrite
capability (which writes to an adjacent location in a different
memory allocator cache). Meanwhile, a router object directs
the destination and/or the source buffers of a memory copy
operation, ultimately enabling an arbitrary memory write
primitive. We clarify that the bridge and router objects are
representative objects that widely exist in the kernel codebase
and can be leveraged for gradual capability upgrading. While
we have made our best effort to generalize the definitions of
bridge and router objects in terms of capability upgrading,
it is possible that other types of objects operating similarly
to bridge or router objects exist.

Mitigation. The main factors that impact the success of our
exploitation approach include memory layout management
(supported by the heap fengshui technique) and specific
memory allocation and copy patterns (supported by the
bridge and router objects). Mitigations can be designed by
addressing these two factors. Recent Linux kernels provide
defenses against the heap fengshui technique. Some of these
defenses, such as shuffle page allocator and page table check,
target page-level cross-cache attacks (as used by SLUBStick),
do not impact slot-level cross-cache attacks (as used by our
approach). Other defenses, such as slab freelist randomization
and random kmalloc caches, may reduce the success rate of
slot-level cross-cache attacks. However, these defenses incur
significant performance overhead, hindering their adoption
as default configuration. Moreover, some advanced adversary
techniques have been proposed to bypass these defenses.

One possible mitigation is isolation for memory al-
location, which could help prevent slot-level cross-cache
attacks by segregating memory regions used by different
objects. Different isolation solutions have been proposed,
which differ in the grains of isolation. For example, XNU’s

kalloc type [9] provides a type isolation, ensuring that once
a particular address is used for a given type of object, only
objects of that type can occupy that address for the lifetime of
the program. While this approach works well for mitigating
temporal memory safety issues (e.g., UAF), it fails to mitigate
spatial memory safety issues (e.g., OOB). From version v5.14,
Linux kernel moves specific objects from the generic caches
to the accounted caches of the same size (e.g., msg msg
is moved from kmalloc-4k to kmalloc-cg-4k). Despite these
efforts, we have still identified appropriate combinations
of bridge and router objects in generic caches. In theory,
segmenting each bridge and router object to a dedicated slab
cache can defend against our attack approach. However, as
many of these bridge and router objects are most widely
used kernel structures, isolation all of them could result in
significant performance overhead.

Another possible mitigation is to randomize the structure
layout of bridge and router objects, or check the integrity
of their critical fields. Structure layout randomization can
hinder our attack by making it difficult to locate critical field
offsets, thereby increasing the complexity of exploitation.
Integrity checks for structure fields can be implemented
using a canary-like mechanism, which places guard values
before sensitive fields and verifies whether these values
are altered whenever an associated memory copy occurs.
This approach can help detect and prevent unauthorized
modifications to critical fields, thereby mitigating OOB-based
attacks. Again, since bridge and router objects are widely
used within the kernel, these mitigations (which involve
changing the implementation of these objects) may introduce
additional memory fragmentation.

7. Related Work

OOB Exploitation. The most relevant work is the exploita-
tion of heap OOB vulnerability. Pivoting the vulnerability is
one common approach to OOB exploitation. ELOISE [16]
identifies elastic kernel objects on popular OSes, which
can pivot OOB write to arbitrary read in the kernel. SLUB-
Stick [40] converts the given OOB vulnerability into a double-
free vulnerability and uses dangling pointer to manipulate the
page table, granting the capability of arbitrary memory read
and write. Similarly, DirtyCred [35] pivots the vulnerability
to get a dangling pointer, perform heap spray and occupy the
freed spot with a high-privileged credential object, to escalate
privilege. Some others like KOOBE [15] focus on capability
extraction and OOB vulnerability evaluation automation.
Kernel Exploitation. Heap spraying [17], [18] is critical
in kernel vulnerability exploitation. Page-level cross-cache
techniques [33], [40], [51] are proposed to handle the
circumstance when victim and vulnerable objects are not in
the same cache. Recently, side-channel attacks against the
SLUB allocator [29], [40] can make heap allocation more
predictable. Return-oriented programming (ROP) [27], [28]
modifies the control flow to user space or directly mapped
memory. Data-oriented programming [24], [25] identifies data
oriented gadgets and chains disjoint gadgets in an expected

823

order to realize attacks. The techniques that can bypass kernel
mitigation are also paid attention to. Researchers employ
side-channel attacks to leak the kernel information [13], [21],
[26], to bypass KASLR. Meltdown [36] leverages out-of-
order execution and side-channels on modern processors to
bypass SMEP/SMAP from a user space program.
Exploit Automation. Automated exploitation has long been
studied [11], [20], [23], [53]. Brumley et al. [12] first
introduce the automatic patch-based exploit generation prob-
lem, using the patch to identify the vulnerability point and
then generating corresponding inputs to trigger it. Several
studies [10], [14] automate the exploit writing pipeline for
stack-based buffer overflow. For automated heap vulnerability
exploit generation, Repel et al. [41] leverage concolic exe-
cution to search for exploitation primitives; Revery [48] and
HeapHopper [19] employ symbolic execution and fuzzing
to discover IP hijacking and heap allocation primitives.
Extensive expertise is usually required for kernel exploitation.
ExpRaise [30] raises interrupts to expand time windows,
increasing the success rate of race-condition exploitation.
FUZE [50] and TAODE [37] analyze the root cause of UAF
vulnerabilities and then automatically generate exploits.

8. Conclusion

In this paper, we propose a practical approach for kernel
OOB exploitation to achieve arbitrary memory writes. Two
special kinds of kernel objects, i.e., bridge and router, are au-
tomatically identified from the kernel, to chain the vulnerable
object and a victim object. Associated allocation and memory
copy operations can be then leveraged to achieve arbitrary
memory writes. A prototype system, BRIDGEROUTER, is
developed to automate the whole procedure of exploit
generation. Experiments have demonstrated the accuracy
of BRIDGEROUTER in identifying bridge and router objects
and the effectiveness of BRIDGEROUTER in upgrading OOB
vulnerabilities to arbitrary memory writes.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
constructive comments. The work is supported in part by
National Natural Science Foundation of China (NSFC) under
grants 62272465 and 62272464, the Fundamental Research
Funds for the Central Universities and the Research Funds
of Renmin University of China under grant 22XNKJ29, and
Public Computing Cloud, Renmin University of China.

References

[1] Attack methodology of slubstick. https://github.com/CheUhxg/Bridg
eRouter/blob/main/comparison.pdf.

[2] Buddy memory allocation. https://en.wikipedia.org/wiki/Buddy m
emory allocation.

[3] Escaping containers using the dirty pipe vulnerability. https://securi
tylabs.datadoghq.com/articles/dirty-pipe-container-escape-poc.

[4] Exploit by blasting cred. https://github.com/CheUhxg/BridgeRouter/
blob/main/exploits/blast cred/exploit.c.

[5] Exploiting kernel races through taming thread interleaving.
https://i.blackhat.com/USA-20/Thursday/us-20-Lee-Exploiting-Kerne

l-Races-Through-Taming-Thread-Interleaving.pdf.

[6] Linux kernel: Product details, threats and statistics. https://www.cv
edetails.com/product/47/Linux-LinuxKernel.html?vendor id=33.

[7] Page table check. https://www.kernel.org/doc/html/v5.17/vm/page t
able check.html.

[8] Slab allocation. https://en.wikipedia.org/wiki/Slab allocation.

[9] Towards the next generation of xnu memory safety: kalloc type.
https://security.apple.com/blog/towards-the-next-generation-of-xnu

-memory-safety/.

[10] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David
Brumley. AEG: automatic exploit generation. In Proceedings of the
Network and Distributed System Security Symposium, NDSS 2011,
San Diego, California, USA, 6th February - 9th February 2011. The
Internet Society, 2011.

[11] Teresa Nicole Brooks. Survey of automated vulnerability detection
and exploit generation techniques in cyber reasoning systems. CoRR,
abs/1702.06162, 2017.

[12] David Brumley, Pongsin Poosankam, Dawn Xiaodong Song, and
Jiang Zheng. Automatic patch-based exploit generation is possible:
Techniques and implications. In 2008 IEEE Symposium on Security
and Privacy (SP 2008), 18-21 May 2008, Oakland, California, USA,
pages 143–157. IEEE Computer Society, 2008.

[13] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin
Schwarzl, and Daniel Gruss. KASLR: break it, fix it, repeat. In
ASIA CCS ’20: The 15th ACM Asia Conference on Computer and
Communications Security, Taipei, Taiwan, October 5-9, 2020, pages
481–493. ACM, 2020.

[14] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David
Brumley. Unleashing mayhem on binary code. In IEEE Symposium
on Security and Privacy, SP 2012, 21-23 May 2012, San Francisco,
California, USA, pages 380–394. IEEE Computer Society, 2012.

[15] Weiteng Chen, Xiaochen Zou, Guoren Li, and Zhiyun Qian. KOOBE:
towards facilitating exploit generation of kernel out-of-bounds write
vulnerabilities. In 29th USENIX Security Symposium, USENIX Security
2020, August 12-14, 2020, pages 1093–1110. USENIX Association,
2020.

[16] Yueqi Chen, Zhenpeng Lin, and Xinyu Xing. A systematic study of
elastic objects in kernel exploitation. In CCS ’20: 2020 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event,
USA, November 9-13, 2020, pages 1165–1184. ACM, 2020.

[17] Yueqi Chen and Xinyu Xing. SLAKE: facilitating slab manipulation
for exploiting vulnerabilities in the linux kernel. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019, pages 1707–
1722. ACM, 2019.

[18] Yu Ding, Tao Wei, Tielei Wang, Zhenkai Liang, and Wei Zou. Heap
taichi: exploiting memory allocation granularity in heap-spraying
attacks. In Twenty-Sixth Annual Computer Security Applications
Conference, ACSAC 2010, Austin, Texas, USA, 6-10 December 2010,
pages 327–336. ACM, 2010.

[19] Moritz Eckert, Antonio Bianchi, Ruoyu Wang, Yan Shoshitaishvili,
Christopher Kruegel, and Giovanni Vigna. Heaphopper: Bringing
bounded model checking to heap implementation security. In 27th
USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,
USA, August 15-17, 2018, pages 99–116. USENIX Association, 2018.

[20] Behrad Garmany, Martin Stoffel, Robert Gawlik, Philipp Koppe, Tim
Blazytko, and Thorsten Holz. Towards automated generation of
exploitation primitives for web browsers. In Proceedings of the 34th
Annual Computer Security Applications Conference, ACSAC 2018,
San Juan, PR, USA, December 03-07, 2018, pages 300–312. ACM,
2018.

824

https://github.com/CheUhxg/BridgeRouter/blob/main/comparison.pdf
https://github.com/CheUhxg/BridgeRouter/blob/main/comparison.pdf
https://en.wikipedia.org/wiki/Buddy_memory_allocation
https://en.wikipedia.org/wiki/Buddy_memory_allocation
https://securitylabs.datadoghq.com/articles/dirty-pipe-container-escape-poc
https://securitylabs.datadoghq.com/articles/dirty-pipe-container-escape-poc
https://github.com/CheUhxg/BridgeRouter/blob/main/exploits/blast_cred/exploit.c
https://github.com/CheUhxg/BridgeRouter/blob/main/exploits/blast_cred/exploit.c
https://i.blackhat.com/USA-20/Thursday/us-20-Lee-Exploiting-Kernel-Races-Through-Taming-Thread-Interleaving.pdf
https://i.blackhat.com/USA-20/Thursday/us-20-Lee-Exploiting-Kernel-Races-Through-Taming-Thread-Interleaving.pdf
https://www.cvedetails.com/product/47/Linux-LinuxKernel.html?vendor_id=33
https://www.cvedetails.com/product/47/Linux-LinuxKernel.html?vendor_id=33
https://www.kernel.org/doc/html/v5.17/vm/page_table_check.html
https://www.kernel.org/doc/html/v5.17/vm/page_table_check.html
https://en.wikipedia.org/wiki/Slab_allocation
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/

[21] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch side-channel attacks: Bypassing SMAP and
kernel ASLR. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October
24-28, 2016, pages 368–379. ACM, 2016.

[22] Sean Heelan, Tom Melham, and Daniel Kroening. Automatic heap
layout manipulation for exploitation. In 27th USENIX Security
Symposium, USENIX Security 2018, Baltimore, MD, USA, August
15-17, 2018, pages 763–779. USENIX Association, 2018.

[23] Sean Heelan, Tom Melham, and Daniel Kroening. Gollum: Modular
and greybox exploit generation for heap overflows in interpreters. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2019, London, UK, November 11-15,
2019, pages 1689–1706. ACM, 2019.

[24] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and
Zhenkai Liang. Automatic generation of data-oriented exploits. In
24th USENIX Security Symposium, USENIX Security 15, Washington,
D.C., USA, August 12-14, 2015, pages 177–192. USENIX Association,
2015.

[25] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua,
Prateek Saxena, and Zhenkai Liang. Data-oriented programming: On
the expressiveness of non-control data attacks. In IEEE Symposium
on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26,
2016, pages 969–986. IEEE Computer Society, 2016.

[26] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing side
channel attacks against kernel space ASLR. In 2013 IEEE Symposium
on Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22,
2013, pages 191–205. IEEE Computer Society, 2013.

[27] Vasileios P. Kemerlis, Michalis Polychronakis, and Angelos D.
Keromytis. ret2dir: Rethinking kernel isolation. In Proceedings of
the 23rd USENIX Security Symposium, San Diego, CA, USA, August
20-22, 2014, pages 957–972. USENIX Association, 2014.

[28] Vasileios P. Kemerlis, Georgios Portokalidis, and Angelos D.
Keromytis. kguard: Lightweight kernel protection against return-to-
user attacks. In Proceedings of the 21th USENIX Security Symposium,
Bellevue, WA, USA, August 8-10, 2012, pages 459–474. USENIX
Association, 2012.

[29] Yoochan Lee, Jinhan Kwak, Junesoo Kang, Yuseok Jeon, and By-
oungyoung Lee. Pspray: Timing side-channel based linux kernel
heap exploitation technique. In 32nd USENIX Security Symposium,
USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023, pages
6825–6842. USENIX Association, 2023.

[30] Yoochan Lee, Changwoo Min, and Byoungyoung Lee. Exprace:
Exploiting kernel races through raising interrupts. In 30th USENIX
Security Symposium, USENIX Security 2021, August 11-13, 2021,
pages 2363–2380. USENIX Association, 2021.

[31] Frank Li and Vern Paxson. A large-scale empirical study of security
patches. In Bhavani Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017, pages 2201–2215.
ACM, 2017.

[32] Runhao Li, Bin Zhang, Jiongyi Chen, Wenfeng Lin, Chao Feng,
and Chaojing Tang. Towards automatic and precise heap layout
manipulation for general-purpose programs. In 30th Annual Network
and Distributed System Security Symposium, NDSS 2023, San Diego,
California, USA, February 27 - March 3, 2023. The Internet Society,
2023.

[33] Zhenpeng Lin. How autoslab changes the memory unsafety game.
https://grsecurity.net/how autoslab changes the memory unsafet

y game.

[34] Zhenpeng Lin, Yuhang Wu, and Xinyu Xing. Dirtycred: Escalating
privilege in linux kernel. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2022,
Los Angeles, CA, USA, November 7-11, 2022, pages 1963–1976. ACM,
2022.

[35] Zhenpeng Lin, Yuhang Wu, and Xinyu Xing. Dirtycred: Escalating
privilege in linux kernel. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2022,
Los Angeles, CA, USA, November 7-11, 2022, pages 1963–1976. ACM,
2022.

[36] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher,
Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading
kernel memory from user space. In 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018,
pages 973–990. USENIX Association, 2018.

[37] Danjun Liu, Pengfei Wang, Xu Zhou, Wei Xie, Gen Zhang, Zhenhao
Luo, Tai Yue, and Baosheng Wang. From release to rebirth: Exploiting
thanos objects in linux kernel. IEEE Trans. Inf. Forensics Secur.,
18:533–548, 2023.

[38] William Liu, Joseph Ravichandran, and Mengjia Yan. Entrybleed:
A universal KASLR bypass against KPTI on linux. In Proceedings
of the 12th International Workshop on Hardware and Architectural
Support for Security and Privacy, HASP 2023, Toronto, Canada, 29
October 2023, pages 10–18. ACM, 2023.

[39] Kangjie Lu, Marie-Therese Walter, David Pfaff, Stefan Nümberger,
Wenke Lee, and Michael Backes. Unleashing use-before-initialization
vulnerabilities in the linux kernel using targeted stack spraying. In
24th Annual Network and Distributed System Security Symposium,
NDSS 2017, San Diego, California, USA, February 26 - March 1,
2017. The Internet Society, 2017.

[40] Lukas Maar, Stefan Gast, Martin Unterguggenberger, Mathias Oberhu-
ber, and Stefan Mangard. Slubstick: Arbitrary memory writes through
practical software cross-cache attacks within the linux kernel. In 33rd
USENIX Security Symposium, USENIX Security 2024, Philadelphia,
PA, USA, August 14-16, 2024. USENIX Association, 2024.

[41] Dusan Repel, Johannes Kinder, and Lorenzo Cavallaro. Modular
synthesis of heap exploits. In Proceedings of the 2017 Workshop on
Programming Languages and Analysis for Security, PLAS@CCS 2017,
Dallas, TX, USA, October 30, 2017, pages 25–35. ACM, 2017.

[42] Syzbot. Kasan: slab-out-of-bounds write in diwrite. https://syzkaller.
appspot.com/bug?extid=aa6df9d3b383bf5f047f.

[43] Syzbot. Kasan: slab-out-of-bounds write in hfs asc2mac. https:
//syzkaller.appspot.com/bug?extid=dc3b1cf9111ab5fe98e7.

[44] Syzbot. Kasan: slab-out-of-bounds write in hfs bnode read key.
https://syzkaller.appspot.com/bug?extid=4f7a1fc5ec86b956afb4.

[45] Syzbot. Kasan: slab-out-of-bounds write in hfsplus bnode read key.
https://syzkaller.appspot.com/bug?extid=57028366b9825d8e8ad0.

[46] Syzbot. Kasan: slab-out-of-bounds write in watch queue set filter.
https://syzkaller.appspot.com/bug?id=797c55d2697d19367c3dabc1e

8661f5810014731.

[47] Ruipeng Wang, Kaixiang Chen, Chao Zhang, Zulie Pan, Qianyu Li,
Siliang Qin, Shenglin Xu, Min Zhang, and Yang Li. Alphaexp: An
expert system for identifying security-sensitive kernel objects. In 32nd
USENIX Security Symposium, USENIX Security 2023, Anaheim, CA,
USA, August 9-11, 2023, pages 4229–4246. USENIX Association,
2023.

[48] Yan Wang, Chao Zhang, Xiaobo Xiang, Zixuan Zhao, Wenjie Li,
Xiaorui Gong, Bingchang Liu, Kaixiang Chen, and Wei Zou. Revery:
From proof-of-concept to exploitable. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2018, Toronto, ON, Canada, October 15-19, 2018, pages 1914–1927.
ACM, 2018.

[49] Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou. KEPLER: facilitating
control-flow hijacking primitive evaluation for linux kernel vulner-
abilities. In 28th USENIX Security Symposium, USENIX Security
2019, Santa Clara, CA, USA, August 14-16, 2019, pages 1187–1204.
USENIX Association, 2019.

825

https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game
https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game
https://syzkaller.appspot.com/bug?extid=aa6df9d3b383bf5f047f
https://syzkaller.appspot.com/bug?extid=aa6df9d3b383bf5f047f
https://syzkaller.appspot.com/bug?extid=dc3b1cf9111ab5fe98e7
https://syzkaller.appspot.com/bug?extid=dc3b1cf9111ab5fe98e7
https://syzkaller.appspot.com/bug?extid=4f7a1fc5ec86b956afb4
https://syzkaller.appspot.com/bug?extid=4f7a1fc5ec86b956afb4
https://syzkaller.appspot.com/bug?extid=57028366b9825d8e8ad0
https://syzkaller.appspot.com/bug?id=797c55d2697d19367c3dabc1e8661f5810014731
https://syzkaller.appspot.com/bug?id=797c55d2697d19367c3dabc1e8661f5810014731

[50] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui Gong, and Wei
Zou. FUZE: towards facilitating exploit generation for kernel use-after-
free vulnerabilities. In 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, August 15-17, 2018, pages 781–
797. USENIX Association, 2018.

[51] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi Xie, Yuanyuan
Zhang, and Dawu Gu. From collision to exploitation: Unleashing
use-after-free vulnerabilities in linux kernel. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-16, 2015, pages 414–425.
ACM, 2015.

[52] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang, Xiaojing Liao,
Pan Bian, and Bin Liang. Semfuzz: Semantics-based automatic
generation of proof-of-concept exploits. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, pages
2139–2154. ACM, 2017.

[53] Bin Zhang, Jiongyi Chen, Runhao Li, Chao Feng, Ruilin Li, and
Chaojing Tang. Automated exploitable heap layout generation for
heap overflows through manipulation distance-guided fuzzing. In 32nd
USENIX Security Symposium, USENIX Security 2023, Anaheim, CA,
USA, August 9-11, 2023, pages 4499–4515. USENIX Association,
2023.

Appendix

A. Ethics Consideration

The Linux kernel exploitation approach proposed in this
paper is fundamentally aimed at strengthening the security
of the Linux kernel, rather than providing tools for malicious
purposes. We used the exploit data solely for experimental
purposes via an anonymous repository and ensured no public
disclosure prior to our testing. Additionally, all experiments
were conducted in a virtual environment, eliminating any
potential risks to public or live systems. We do not disclose
any details that could endanger the Linux kernel or its users.

B. Allocation and Memory Copy Functions

Table 4 lists the kernel functions responsible for memory
allocation and memory copy operations. The functions
kmem cache zalloc() and kmem cache alloc()
allocate kernel objects on dedicated slab caches, while the
other allocation functions allocate kernel objects on generic
slab caches. The function memcpy() copies data within the
kernel space, while the other memory copy functions transfer
data from the user space to the kernel space.

TABLE 4: Kernel functions for allocation and memory copy.

Category Functions

Allocation kmalloc(); kzalloc(); kcalloc(); kmalloc node();
kmalloc array node(); kcalloc node(); kzalloc node();

Memory Copy memcpy(); copy from user(); copyin();
skb put data(); skb copy to linear data of();

C. Bridge and Router Objects

Table 5 shows the full list of accurately identified bridge
and router objects. The columns from left to right are the

object category, object type, slab caches where the object
is allocated, the offset of the critical field, slab caches for
the source and destination buffers, and the path constraints.
We do not claim that Table 5 provides an exhaustive list of
all bridge and router objects. It is possible that some bridge
and router object are missed due to the limitations of our
static analysis and fuzzing approaches. However, the bridge
and router objects listed in Table 5 are sufficient to cover
all generic caches of different sizes except for kmalloc-8.

We have also conducted evaluations on two additional
versions: v5.15 (the latest long-term support v5.x version) and
v4.20 (the latest stable v4.x version). We have successfully
identified potential bridge and router candidates across all
the three versions, including 85, 88, 44 bridge candidates
in v4.20, v5.15, v6.6, respectively; and 23, 20, 13 router
candidates in v4.20, v5.15, v6.6, respectively. We have the
following observations. First, the combinations of bridge
and router objects for generic caches of different sizes listed
in Table 2 are available across different versions. Second,
different versions may have some unique bridge or router
objects, e.g., blk mq tag set serves as a bridge for v5.15
and tty struct serves as a router for v4.20. Third, same
object may play different roles in different versions, e.g.,
ubifs inode serves as a bridge in v5.15, but can serve as
both a bridge and a router in v4.20.

D. Simplified Exploit for Running Example

Figure 12 presents the final Exp for the running example
in §3.1. For clarity, the code is simplified, with tedious details
omitted.

1 void * race_page;
2 struct msghdr msg;
3 int xfrm_socket, fd, fuse;
4 int pipe[2];
5 fuse = open(...)
6 race_page = mmap(0x1338000, 0x1000, fuse, ...);
7 sleep(...);
8 /* Alloc Router Object*/
9 msgsnd(, (void*) (race_page - 8), 4056);

10 xfrm_socket = init_xfrm_socket();
11 craft_of_msg1(msg);
12 sleep(...);
13 /* Alloc Bridge Object */
14 sendmsg(xfrm_socket, &msg, 0);
15 craft_of_fd(fd);
16 sleep(...);
17 /* Alloc and Copy Vulnerable Object */
18 syscall(__NR_getdents64, fd, &ent, 0x5dul);
19 craft_of_msg2(msg);
20 sleep(...);
21 /* Copy Bridge Object */
22 sendmsg(xfrm_socket, &msg, 0);
23 sleep(...);
24 /* Copy Router Object */
25 write(pipe[1], ...);

Figure 12: Simplified exploit of running example

826

TABLE 5: The full list of accurately identified bridge and router objects.

Category Struct Caches Offset (len/ptr) Source Buffer Destination Buffer Constraints
Bridge xfrm algo auth ≥ kmalloc-96 [64, 68) ≥ kmalloc-96 ≥ kmalloc-1k ∅
Bridge xfrm sec ctx ≥ kmalloc-16 [2, 4) ≥ kmalloc-16 kmalloc-4k ∅
Bridge ip options rcu ≥ kmalloc-32 [24, 25) ≥ kmalloc-32 ≥ kmalloc-32 [0, 8) != null, [8, 16) == kaddr

Bridge cfg80211 ibss params kmalloc-512 [56, 57) kmalloc-512 kmalloc-8k [0,8) != null, [8, 16) != null,
[16, 24) != null, [24, 28) ¡ 14

Bridge cfg80211 connect params kmalloc-512 [40, 48) kmalloc-512 kmalloc-8k [0,8) != null, [8, 16) != null,
[16, 24) != null , [24, 32) != null,

Bridge kioctx table ≥ kmalloc-32 [16, 20) ≥ kmalloc-32 ≥ kmalloc-64 ∅
Bridge cfg80211 scan request ≥ kmalloc-1k [32, 40) kmalloc-512 ≥ kmalloc-1k [0, 8) != null, [24, 32) != null
Bridge ext4 xattr info ≥ kmalloc-32 [16, 24) ≥ kmalloc-32 kmalloc-4k [0, 8) != null, [8, 16) != null

Bridge cfg80211 beacon data ≥ kmalloc-192 [96, 104) ≥ kmalloc-192 ≥ kmalloc-192 [0,8) != null, [8, 16) != null,
[16, 24) != null, . . .

Bridge gss cl ctx ≥ kmalloc-192 [48, 52) ≥ kmalloc-192 ≥ kmalloc-192 [24, 32) != null, [40, 48) != null

Bridge xhci segment kmalloc-64 [44, 48) ≥ kmalloc-8 ≥ kmalloc-8 [0,8) != null, [8, 16) != null,
[16, 24) == kaddr, [24, 32) == kaddr,

Bridge ip6t replace ≥ kmalloc-128 [44, 48) ≥ kmalloc-128 ≥ kmalloc-64 ∅
Bridge ieee80211 if ibss kmalloc-8k [120, 121) kmalloc-8k kmalloc-512 [24, 32) == kaddr, [56, 64) == kaddr
Bridge public key kmalloc-64 [4, 8) ≥ kmalloc-8 ≥ kmalloc-16 ∅
Bridge snd kcontrol ≥ kmalloc-192 [0, 4) ≥ kmalloc-256 ≥ kmalloc-192 ∅

Bridge xfrm policy kmalloc-1k [372, 373) kmalloc-1k kmalloc-1k [0,8) != null, [8, 16) != null,
[16, 24) != null,. . .

Bridge nfs fh kmalloc-192 [0, 2) kmalloc-192 kmalloc-192 ∅

Bridge hid device kmalloc-8k [40, 44) ≥ kmalloc-32 ≥ kmalloc-32 [0, 8) != null, [16, 24) != null,
[32, 40) != null

Bridge hid report kmalloc-4k [2124, 2128) ≥ kmalloc-64 ≥ kmalloc-64 [0,8) != null, [8, 16) != null,
[16, 24) != null, . . .

Bridge nfs client kmalloc-1k [160, 168) kmalloc-1k kmalloc-1k ∅
Bridge property entry ≥ kmalloc-32 [1, 2) ≥ kmalloc-16 ≥ kmalloc-16 ∅

Bridge svc rqst buddy page [168, 176) buddy page ≥ kmalloc-512 [16, 24)!=null, [24, 32) != null,
[32, 40) != null

Bridge ip options kmalloc-64 [3, 4) kmalloc-64 kmalloc-2k ∅
Bridge ip options rcu kmalloc-64 [3, 4) kmalloc-64 kmalloc-64 ∅
Bridge fdtable kmalloc-64 [0, 4) ≥ kmalloc-8 ≥ kmalloc-8 ∅
Bridge ipt replace ≥ kmalloc-128 [40, 44) ≥ kmalloc-128 ≥ kmalloc-64 ∅
Bridge ipv6 rpl sr hdr ≥ kmalloc-16 [1, 2) ≥ kmalloc-16 ≥ kmalloc-2k ∅
Bridge netprio map ≥ kmalloc-128 [16, 20) ≥ kmalloc-128 ≥ kmalloc-128 [0, 8) != null, [8, 16) == kaddr
Bridge sock reuseport ≥ kmalloc-2k [20, 22) ≥ kmalloc-2k ≥ kmalloc-2k [0, 8) != null, [8, 16) == kaddr

Bridge cfg80211 conn kmalloc-8k [40, 48) kmalloc-8k ≥ kmalloc-256 [0,8) != null, [8, 16) != null,
[16, 24) != null , [24, 32) != null,

Bridge fuse io args kmalloc-256 [184, 188) ≥ kmalloc-16 ≥ kmalloc-16 [160, 168) == kaddr, [168, 176) != null,
[176, 184) != null

Bridge hbucket ≥ kmalloc-64 [24, 25) ≥ kmalloc-64 ≥ kmalloc-64 [0, 8) != null, [8, 16) == kaddr
Bridge tcp md5sig key kmalloc-192 [0, 4) kmalloc-192 ≥ kmalloc-1k ∅

Bridge ceph snap realm kmalloc-256 [88, 92) ≥ kmalloc-64 ≥ kmalloc-64 [8, 16) != null, [32, 40) != null,
[40, 48) != null, [80, 88) != null]

Bridge p9 conn kmalloc-512 [104, 108) kmalloc-512 kmalloc-8k [0,8) != null, [8, 16) != null,
[16, 24) != null ,. . .

Bridge jffs2 sum dirent mem ≥ kmalloc-64 [30, 31) ≥ kmalloc-64 ≥ kmalloc-32 [0, 8) != null
Router msg msg kmalloc-4k [32, 40) USER SPACE N/A [24,32)≤ 4048
Router msg msgseg kmalloc-4k [0, 8) USER SPACE N/A ∅
Router seq file seq file cache [0, 8) USER SPACE N/A ∅

Router urb kmalloc-192 [96, 104) USER SPACE N/A [8, 16) != null, [24, 32)!=null
[32, 40) != null, . . .

Router xfrm state xfrm state cache [432, 440) N/A N/A [0,8) != null, [8, 16) != null,
[16, 24) != null , . . .

Router ubifs info kmalloc-4k [2720, 2728) N/A N/A [0,8) != null, [8, 16) != null,
[152, 160) != null , . . .

Router btrfs fs info kmalloc-4k [776, 768) N/A N/A [24,32) != null, [32, 40) != null,
[40, 48) != null ,. . .

Router hfsplus sb info kmalloc-512 [24, 32) N/A N/A [0,8) != null, [8, 16) != null,
[16, 24) != null,. . .

827

E. Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

E.1. Summary. The paper presents an exploitation technique
for the Linux Kernel, designed to transform ”uncontrolled”
Out-of-Bounds (OOB) vulnerabilities (in which the attacker
does not control the values being written) into Arbitrary
Memory Writes. The proposed methodology involves iden-
tifying two specific types of kernel objects: Bridges and
Routers. Specifically, it utilizes a combination of static
analysis and fuzzing to find suitable Bridge and Router
objects and determine how to use them as part of an exploit.
The paper shows how the proposed methodology can be
applied to exploit synthetic and real-world bugs.

E.2. Scientific Contributions.

• Creates a New Tool to Enable Future Science
• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established

Field

E.3. Reasons for Acceptance.

1) The development of an automated system for gen-
erating exploits for Linux kernel vulnerabilities
advances the current state of the art in Automatic
Exploit Generation (AEG). Future work in this area
could build upon the proposed techniques.

2) The paper introduces a novel technique for exploit-
ing vulnerabilities in the Linux kernel, effectively
demonstrating the exploitability of multiple real-
world bugs.

3) By introducing a novel exploitation technique that
incorporates a combination of static and dynamic
analysis, the paper marks a substantial progression
in the AEG field.

828

