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Detecting the Capacitance-based Gamepad for
Protecting Mobile Game Fairness

Shilei Bai, Bin Liang, Jianjun Huang, Wei You, Jiachun Li, Yaping Li, Wenchang Shi

Abstract—Mobile game has become a big industry, whose success heavily depends on the game fairness. Recently, a new type of
physical cheating instrument, the capacitance-based gamepad (CBG), has been wildly used in popular mobile games. CBG players
can obtain an unfairly overwhelming control advantage (e.g., more sensitive clicking and sliding) over benign players. Moreover, as a
physical peripheral, CBG is completely transparent to the game application and the underlying system. This makes it inherently
immune to existing cheating detection techniques. In this study, by disassembling the CBG device, we find a leverageable physical
limitation that the distributions of generated clicking and sliding are more concentrated around a limited area or a boundary
respectively. Accordingly, a novel method is proposed to detect the CBG-based cheating. Specifically, to detect the CBG clicking, we
employ the entropy to measure the uncertainty of the clicking coordinates; and to detect the CBG sliding, we introduce the convex hull
identification algorithm to recognize the potential sliding boundary. We have applied our detection method to four popular mobile
games. The evaluation results demonstrate the effectiveness of the proposed method. We believe that the proposed method can be
easily adopted by the manufacturers to fight against the CBG-based cheating and protect the game fairness.

Index Terms—Mobile game, game cheating, capacitance-based gamepad, detection, entropy, convex hull.
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1 INTRODUCTION

W ITH the popularity of smart phones, the mobile game
industry has grown exponentially in recent years.

According to a report from Newzoo [36], mobile gaming
will continue to be the largest segment of the whole games
market and reach $70.3 billion following ten years of double-
digit growth. Tens of thousands of mobile games have been
developed. Some of them have even attracted hundreds
of millions of players, e.g., Game for Peace (a.k.a. Player
Unknown’s Battle Grounds, PUBG) [30].

Obviously, the fairness of a game is vital to its success.
However, game cheating techniques can seriously com-
promise the game fairness and break the game balance,
resulting in a decrease of player satisfaction, and even
retirement from the game [33]. In practice, the traditional
game cheating often requires modifying the game itself or
the infrastructure of user devices, e.g., repackaging game
applications to introduce cheating code or rooting smart
phones to replace critical libraries. Accordingly, some de-
fense techniques have been proposed to check the integrity
of the game application [14], [22], [27] or analyze the run-
time environment [34].

Recent years, physical peripherals are leveraged to per-
form sophisticated game cheating. Gamepad is a common
type of handheld peripherals, which is used to simulate
clicking and sliding actions in the game and provides much
more sensitive and agile game control than playing only
with human fingers on the smart phone screen. Allowing
players to use gamepads will compromise the fairness of
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a mobile game. For instance, in a shooting game, the nor-
mal players who play games just with their fingers are
more likely to be defeated by the players equipped with
gamepads. To ensure fairness, some game manufacturers
have begun to discriminate the gamepad players from nor-
mal ones. Tencent [12], the biggest mobile game manufac-
turer in China, prohibits the use of gamepads in the normal
game zones. In some game events, the user account will be
blocked if he or she is found to use a gamepad [1].

The early-age gamepads are usually connected to the
smart phones as an external device via wire or Bluetooth
and require the users to install some assistant applications.
To safeguard the game fairness, the mobile game manufac-
turers can employ various techniques (e.g., detecting suspi-
cious connections and applications) to sensor the existence
of such cheating instruments and block them [26].

Fig. 1: Using CBG in PUBG.

However, a new generation of the mobile gamepad has
emerged recently, which leverages the capacitance screen
technique to enhance the control over the game. In this
paper, we call it the capacitance-based gamepad (CBG). As
shown in Figure 1, a CBG device has some buttons and a
rocker. A button is used to produce a simulated clicking
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Fig. 2: Layers of the mutual capacitive touch screen.

action at a specific position, and the rocker can generate a
simulated sliding action and control its direction and speed.
Compared with the players’ fingers, the CBG device can
give the users an overwhelming micro control advantage
over benign players [4]. Unlike the early-age gamepads,
the CBG device is immune to existing detection techniques.
It does not need any wired or wireless connection to the
smart phones, neither does it need installing any assistant
applications, rooting the phones, repackaging or modifying
the game applications. What the players need is just to plug
the phone into the CBG’s slot. The game application and
the smart phone runtime environment remain unchanged.
In such cases, existing cheating detection techniques turn
out to be ineffective as no assistance programs or active
connections could be found in the phone equipped with a
CBG.

Naturally, how to detect the CBG-based game cheating
has become an important and urgent problem. In order
to design an effective detection method, we first need to
understand the working mechanism of CBG. In this study,
we physically disassemble the CBG device and conduct
some analysis experiments to investigate its principle. We
successfully learned that the CBG simulates the clicking and
sliding actions by directly transmitting the electric signals
to the smart phone screen and monitoring the responses. In
this way, CBG can work without any influence on the target
game application and its runtime environment. Fortunately,
we further found that there is significant difference between
the distributions of the touching coordinates generated by
the CBG and by human fingers. Due to the physical limita-
tion of the CBG device, the distributions of the CBG clicking
and sliding are more concentrated around a limited area or
a boundary respectively.

Based on the above observation, we propose a novel
method to detect the CBG-based game cheating by ana-
lyzing the coordinate sequences of the clicking and sliding
actions. Specifically, we leverage the entropy [16] to measure
the uncertainty of the clicking coordinates. Since the CBG
clicking produces a more concentrated distribution (i.e.,
less entropy) than the finger clicking, we can effectively
distinguish them from each other. Besides, the convex hull
identification technique [13] is introduced to recognize the
potential boundary of the sliding coordinates. In practice,
the extremum points of a sliding produced by the CBG
rocker will be more concentrated around the boundary. As
a result, the CBG sliding can be effectively detected by
computing the possibility of the extremum points being
covered by the identified boundary gap.

The proposed method has been applied to four popular
mobile games and evaluated on Android and iOS devices.
The experiment results show that our method can effectively
detect the CBG clicking and sliding actions in real-world
mobile games with very high precision, especially no false

Fig. 3: Structure of the touch layer.

positives or false negatives for the CBG clicking detection.

In summary, this paper makes the following contribu-
tions.

• We demystify the principle of the CBG device via
physically disassembling it and performing analysis
experiments. From our investigation, the researchers
and game manufacturers can learn how the CBG
simulates clicking and sliding actions in games and
develop corresponding defense techniques. To the
best of our knowledge, this is the first work that
deeply investigates the working principle of the CBG
from the viewpoint of detection.

• We propose a novel CBG detection method based on
the entropy analysis and convex hull identification.
The experiments on four popular real-world mobile
games demonstrate that the proposed method can
effectively detect the CBG-based cheating. We be-
lieve that the manufacturers can easily integrate our
method into their mobile games to defeat the CBG-
based cheating.

The rest of the paper is organized as follows. Section 2
investigates and presents the principle of the CBG device.
Section 3 elaborates our detection method and discusses
its robustness. Section 4 evaluates the proposed method
on Android and iOS. After discussing the limitations and
possible future works in Section 5, we review the related
work in Section 6 and conclude the paper in Section 7.

2 THE CBG DEMYSTIFIED

In this section, we first provide the background of mutual
capacitive touch screen, then analyze the working mecha-
nism of the capacitance-based gamepad and illustrate how
it simulates the clicking and sliding, the most commonly
used operations in real-world mobile games.

2.1 Mutual Capacitive Touch Screen
Due to its high resolution and multi-recognition capability,
mutual capacitance has become the most popular type of
touch screens adopted by recent smart phones [10]. For
example, since iPhone 6, all iPhones are equipped with
mutual capacitive touch screens.

As shown in Figure 2, a mutual capacitive touch screen
consists of three layers, i.e., the protective glass layer, the
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Fig. 4: Disassembling the CBG.

touch layer and the display screen layer, from top to bottom.
In particular, the touch layer is responsible for locating the
touch points on the screen. Figure 3 zooms in the structure
of the touch layer. It is composed of two separate electrode
plates, each equipped with parallel lines of electrodes in
the horizontal rows and the vertical columns, respectively.
The horizontal and vertical electrodes are inter-connected
by capacitors, forming a rectangular coordinate system on
the screen.

The processing unit of mobile phone (PUMP) sends scan-
ning signals via vertical electrodes in a round-robin fashion,
which are received by all horizontal electrodes. When a
finger touches a capacitor on the screen, its capacitance
will be reduced, which in turn weakens the intensity of
the scanning signal. The location of the touch point can be
determined by identifying the pair of horizontal and vertical
electrodes that exhibits a weaker signal with roll polling.
As an instance, assuming that during the period of sending
signal from the y-th vertical electrode, the x-th horizontal
electrode receives a weaker signal (than other horizontal
electrodes), the coordinate of the touch point is determined
as (x, y).

2.2 Capacitance-based Gamepad

Clicking and sliding are two elemental operations for mobile
games. The CBG device can leverage the capacitance screen
technique to perform more sensitive and agile clicking and
sliding than the normal players can do with their fingers.

Figure 4 presents the disassembly diagram of a CBG
device, which is composed of four components, including
the signal sender and receiver, the operator panel and the
processing unit. In particular, the signal sender and receiver
are equipped with a set of copper sheets to simulate the
screen touch. The operator panel contains several buttons

for clicking and a rocker for sliding. The processing unit of
the CBG (PUG) connects the buttons and the rocker in the
operator panel with the copper sheets of the signal sender
and receiver.

We present the principle of the CBG in Figure 5. To
simulate clicking and sliding on the screen, the CBG con-
verts the pressing of the buttons and the shaking of the
rocker to electric signals. During a game play, when the
player operates the rocker or the buttons, the corresponding
control commands will be sent to PUG and interpreted to
determine the coordinates of the touch points on the screen,
say (x, y). The PUG will accordingly assign a specific copper
sheet on the signal receiver side (responding for the y-th
vertical electrode) to monitor the scanning signal. When
the target signal is captured, a copper sheet on the signal
sender side (responding for the x-th horizontal electrode)
will be commanded to send an interfering signal to weaken
the capacitance of the corresponding capacitors. As a result,
the PUMP is deceived to believe that there is a finger touch
on the screen at the coordinate of (x, y).

Since the CBG directly interacts with the screen at the
electric signal level, the player only needs to plug the mobile
device into the CBG’s slot and operates the rocker and the
buttons when playing with a CBG, without any wired or
wireless connections to the smart phones or any additional
applications installed.

We illustrate how the CBG simulates the clicking and
sliding below.

Simulation of Clicking. Suppose the player presses a but-
ton of the CBG to simulate a click at point A(X3, Y2) on the
smart phone screen. The PUG will choose the second copper
sheet on the signal receiver side (denoted as R2) and the
third copper sheet on the signal sender side (denoted as S3)
for the simulation. As shown in Figure 5, once the scanning
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Fig. 5: Principle of the CBG.

signal sent from the PUMP is perceived at R2, the PUG will
emit a weakening signal at S3 to deceive the PUMP. In other
words, when the Y2-th vertical electrode is scanned by the
PUMP, the X3-th horizontal electrode will be applied with a
weakening signal by the PUG. Consequently, a click action
on (X3, Y2) is simulated.

Ideally, when a button is pressed for multiple times, the
corresponding CBG clicking is supposed to hit on the same
coordinate on the screen. However, the PUG can emit a
weakening signal in the horizontal direction only after it
receives the scanning signal in the vertical direction. This
fact results in an inevitable scanning deviation in Y -axis.
For instance, the PUMP may senses at Y3 instead of Y2 for
the weakened signal in the above example. In contrast, for a
specific target button, the associated signal sender is fixed.
As a consequence, multiple CBG clicking points for the same
button should be concentrated in the vertical direction (X-
coordinates) but relatively discrete in the horizontal direc-
tion (Y -coordinates).

Simulation of Sliding. Without loss of generality, we as-
sume the player shakes the rocker in the CBG to simulate
a sliding in a vertical direction, from point B(X1, Y1) to
point C(X3, Y1). The R1 and S1 copper sheets correspond
to the start point, and R1 and S3 correspond to the end
point. Similarly as done in the clicking simulation, once R1

perceives the electric signal from the PUMP, copper sheets
will send a series of weaken signals in sequence along S1 to
S3. In practice, when the Y1-th vertical electrode is scanned
by the PUMP, the horizontal electrodes from X1 to X3 will
be applied a sequence of weakening signals. The sliding
from (X1, Y1) to (X3, Y1) is then simulated.

Because the copper sheets of the signal sender and
receiver can only perturb a small portion of the touch screen,

the CBG sliding is actually confined within a potential
physical boundary. Meanwhile, the rocker is designed very
sensitive to motion and the player often shakes the rocker
violently for a better performance. As a result, the CBG slid-
ing inevitably approaches or touches the physical boundary
frequently. In other words, the extremum points of the CBG
sliding will be concentrated around the boundary. Related
analysis and examples will be presented in Section 3.2.

3 APPROACH

In this section, we elaborate our approach to detecting the
clicking and sliding simulated by the CBG based on the
above investigation. Specifically, we employ the entropy
analysis and the convex hull identification to catch the CBG
clicking and the CBG sliding respectively.

In order to carefully observe the distributions of the
clicking and sliding points, we carry out some experiments
on a simple demo application, in which we can easily collect
the desired data. The demo application has one button for
clicking and one rocker for sliding, mimicking the common
operation interface of real-world mobile games. Each click-
ing or sliding event is captured by the application and the
point coordinates are recorded.

3.1 Detecting the CBG Clicking
A clicking event on the smart phone screen refers to the
procedure of pressing somewhere on the screen and then
releasing without movement. It can be triggered by the hu-
man fingers, as well as by the CBG. We aim to differentiate
the two types of clicking events in mobile applications. As
analyzed in Section 2.2, the clicking points produced by the
CBG are more concentrated around the target button widget
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(a) CBG (b) Fingers

Fig. 6: Distribution of clicking points. The rounded rectangle indicates the effective area that can activate the target button.

Fig. 7: Entropy of sliding points.

(especially along the vertical direction, i.e., the X-axis), and
the finger clicking points tend to scatter more randomly.
Namely, We have reason to suppose that the points of the
two clicking events possess different location distributions.

To validate the hypothesis, we use the demo application
to record 200 clicking events for the CBG and the human
fingers respectively. Figure 6 illustrates the distributions
of the points. It is clear that the CBG clicking points are
more concentrated along the X-axis than the finger clicking
points.

Based on the observation, we propose an entropy-based
approach to differentiating the two types of clicking events.
Entropy [16] is often used to measure the uncertainty in
a series of discrete numbers or the degree of ordering
of a system. The more orderly a system is, the lower its
entropy is. On the opposite, the more chaotic a system is,
the higher its entropy is. Given a discrete data sequence
X = {x1, x2...xn}, and the frequency distribution of X
denoted as P = {p1, p2...pm}, the entropy of X is defined
as Equation 1.

H(X) =
m∑
i=1

pilog
1

pi
(1)

For the two types of clicking points, the uncertainties
of their X-coordinates are obviously different. Naturally,

the entropy values of X-coordinates can be immediately
leveraged to detect the CBG clicking, whose entropy should
be lower than that of the finger clicking.

In the real-world scenarios, the numbers of the clicking
points may be different among different rounds of plays.
In order to calculate the entropy values under a uniform
scale, we divide the collected clicking points of a play
round into multiple groups of the same size. The entropy is
calculated for the groups individually, and then the average
of these entropy values is used to measure the uncertainty
of the clicking points in a round of play. To facilitate the
discussion, we denote the group size as N , which is a
predefined and adjustable value. For the i-th round of play,
we denote the number of the collected points as Si and the
number of groups as ki, thus we have ki = Si/N . We further
denote the vertical coordinate sequence of the i-th round as
{Xj

i }, where j ranges from 1 to ki. The average entropy of
the i-th round (denoted as Hi) is computed as Equation 2.

Hi =

∑ki

j=1 H(Xj
i )

k
(2)

In order to distinguish between the finger clickings and
the CGB clickings, we borrow the idea of the support vector
machine (SVM) [21] to determine the detection threshold.
For a linearly separable two-class data set, there are in-
finitely many separating hyperplanes. In SVM classifiers,
the best hyperplane is learned to separate two classes of data,
which can maximize the distance to the closest data points
(i.e., the margin) from both classes. The data points closest
to the separating hyperplane are called as support vectors.
Theoretically, maximizing the margin means maximizing
the generalization performance.

In fact, the detection threshold can be considered as
a hyperplane in the one-dimensional space. Generally, the
CBG clicking has a lower average entropy than the finger
clicking. In other words, the two kinds of events are sepa-
rable. We can use any value between the maximum average
entropy of CBG clicking training events and the minimum
one of the finger training events as the threshold.

Naturally, we also want to seek the threshold with the
maximum margin to get a robust detector. In this study, the
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(a) CBG (b) Fingers

Fig. 8: Distribution of sliding points.

TABLE 1: Average entropy of the demo data.

Type Points N=20 N=50 N=100
CBG 200 1.45 1.62 1.71

Finger 200 2.45 2.83 3.01

support vectors can be easily identified from the CBG and
finger clicking events by directly checking their the average
entropy rather than learned with an optimization algorithm
(i.e., the sequential minimal optimization algorithm [29]).
The finger clicking event with the minimal average entropy
(denoted as MinFC ) and the CBG clicking event with the
maximal average entropy (denoted as MaxCC ) are identi-
fied as the two support vectors, The mean value of them is
taken as the detection threshold to maximize the margin.

Equations 3, 4 and 5 show how MinFC , MaxCC and
Threshold C are calculated, where H

F
i and H

C
i indicate

the average entropy values of the generated points in the
i-th play round with the finger and the CBG, respectively.

MinFC = Min({HF
i }) (3)

MaxCC = Max({HC
i }) (4)

Threshold C = (MinFC +MaxCC)/2 (5)

We exemplify our approach with the observed data
shown in Figure 6. The average entropy values in the
different group sizes N (20, 50 and 100) are presented in
Table 1. We can see that although the entropy increases as
N increases, the CBG clicking always has a much smaller
average entropy value than the finger clicking. In other
words, using the average entropy can spot the CBG clicking
effectively. We further evaluate our approach with a larger
set of data for both Android and iOS in Section 4.2.

3.2 Detecting the CBG Sliding

A sliding event describes the process of pressing somewhere
on the screen, moving and then releasing. Unlike the click-
ing, the points of a sliding event often scatter in a much

larger screen area, even larger than half of the whole screen.
Regardless of whether a sliding event is simulated or not,
the distributions of sliding points have a high uncertainty
by nature. In other words, it is infeasible to differentiate
the finger sliding and the CBG sliding by measuring their
uncertainty with entropy.

To illustrate the issue, we record 50 rounds of finger and
CBG sliding in PUBG and compute their entropy respec-
tively. From Figure 7, we can see the entropy value ranges
of the two type of sliding points overlap heavily. It is clear
that directly using the entropy to detect the CBG sliding will
lead to unacceptable false positives and false negatives.

Fortunately, due to the physical limitation of the CBG
rocker, the simulated sliding is actually confined within a
potential boundary, and the CBG sliding is likely to touch
the physical boundary frequently. On the contrary, there is
not a fixed boundary to restrict the finger sliding. Intuitively,
given a group of sliding events, if the majority of their
extremum points are located near a potential boundary, we
can believe that these events are very possibly produced by
a CBG rocker.

To study the distribution of sliding points, we use the
demo application to record the sliding points for a few
minutes performed by the CBG and the finger respectively.
The coordinates of the collected points are illustrated in
Figure 8. Obviously, there is an potential boundary with a
rectangle shape for the CBG sliding (Figure 8a), and many
points gather around the boundary. Compared with the
CBG sliding, the points of a finger sliding scatter more
randomly in the screen. There is not an obvious boundary
around them (Figure 8b).

The key of detecting the CBG sliding is to effectively
identify the boundary according to the coordinates of slid-
ing points. Inspired by the study in computational geometry,
we leverage the convex hull concept [13] to identify the
potential boundary of the sliding events. For a given set
of points, their convex hull is the smallest convex set that
contains all points. On a two-dimensional plane, the convex
hull of a point set is the smallest convex polygon that joins
the outermost points. For example, the polygon represented
by the red line segments in Figure 9 is the convex hull of the
point set Q = {q1, q2, ..., q14}.
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Fig. 9: Example of the convex hull.

Fig. 10: Example of the inflection point.

Based on the above discussion, we design a technique
to detect the CBG sliding via examining the distribution of
the extremum points of the sliding point sequence. Given
a sliding event, we first find all the extremum points,
including inflection points and termination points, from the
event points, and then use them to identify the convex hull,
i.e., the boundary. Eventually, all the extremum points are
checked whether they are located near the convex hull one
by one. If it is true for most extremum points, the sliding
event will be labelled as a CBG sliding.

Step 1: Identifying Extremum Points. The convex hull is
computed based on the extremum points. In this study, the
extremum points consist of two types of points. Besides the
sliding termination points of the sliding sequences, their
inflection points are also used to identify the complete
hull. We design a simple but effective search algorithm to
discover the inflection points as far as possible. On the
two-dimensional screen plane, if the direction of a sliding
changes on either X or Y axis at a point of its sliding
point sequence, we will mark the point as an inflection
point. As shown in Figure 10, a sliding starts from A, passes
through B and reaches C. From A to B, all X- and and Y -
coordinates increase but the X-coordinates decrease along
B to C . Thus, the point B is regarded as an inflection point.
Eventually, we get two extremum points for the example,
i.e., B and C.

Step 2: Computing the Convex Hull. The convex hull is
computed with the identified extremum points, which is

Algorithm 1: IdentifyConvexHull (points)
1 startPoint←− getFarthestPointInHorizontal (points);
2 lastPoint←− ∅;
3 curPoint←− ∅;
4 nextPoint←− ∅;
5 angles←− [];
6 boundary ←− [];
7

8 while curPoint != startPoint do
9

10 if curPoint == ∅ then
11 curPoint←− startPoint;

12

13 boundary ←− addPoint (boundary, curPoint);
14 angles←− getAngles (points, lastPoint, curPoint);
15 nextPoint←− getPointWithMinAngle (angles);
16

17 lastPoint←− curPoint;
18 curPoint←− nextPoint;

19

20 output boundary ;

built on the smallest convex polygon that joins the out-
ermost points. The widely used Jarvis March algorithm
is employed for the task. Algorithm 1 gives a high-level
overview of it. Interested readers can refer to [20] for details.
The algorithm starts from selecting the farthest point in
horizontal, i.e., the one with the maximum Y -coordinate
(line 1), and then performs a loop to find out the convex
boundaries (lines 8 ∼ 18). In each iteration, it calculates for
each point in points the angle between the line connecting
the point and the current point curPoint and the line
connecting curPoint and the last point lastPoint (line 14).
The point with the minimal angle is selected as the current
point (line 15) and will be added into the boundary points
set (line 13) in the next iteration. Eventually, the algorithm
outputs the point set of the convex hull, i.e., boundary.

Step 3: Detecting the CBG Sliding. The CBG sliding is
detected via inspecting the distribution of the extremum
points around the convex hull. A convex hull has multiple
boundary edges. For a given extremum point, the Euclidean
distances [15] to each boundary edge are calculated. As-
sume a boundary edge connects two points (x1, y1) and
(x2, y2), such a connecting line can be expressed as Equa-
tion 6.

x− x1

x2 − x1
=

y − y1
y2 − y1

(6)

The above equation can be simplified to the form of ax +
by+ c = 0, and the distance d from a given extremum point
(x0, y0) to the line can be calculated as Equation 7.

d =

∣∣∣∣ax0 + by0 + c√
a2 + b2

∣∣∣∣ (7)

Finally, the minimum of the distances of the given ex-
tremum point to all boundary edges is used as the distance
to the convex hull. We set a gap range D and count how
many extremum points whose distances to the convex hull
are not larger than D. If there is a large enough percentage
P% of extremum points falling in the gap, we will consider
the sliding events are produced by a CBG rocker.
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(a) Duration (b) Speed (c) Pressure

Fig. 11: Other features for CBG detection.

TABLE 2: The statistics of the distances to the convex hull.

Type Points D=5px D=8px D=10px
CBG 1,675 66.67% 74.60% 79.37%

Fingers 1,953 20.87% 29.57% 41.74%

In a similar way of detecting the CBG clicking, the
maximum (MaxFS) and the minimum (MinCS) percentage
of extremum points within the boundary gaps are com-
puted, and the sliding detection thresholds (Threshold S)
are determined as the mid-range values of them.

We demonstrate our idea with the data in Figure 8,
and the results are presented in Table 2. The last three
columns summarize the percentages of extremum points
whose distances to the convex hull are not larger than 5px,
8px and 10px, respectively. For example, 66.67% (in row 2
and column 3) means that 66.67% of the CBG sliding related
extremum points locate within a 5-pixel gap of the convex
hull. On the contrary, only 20.87% (in row 3 and column 3)
of the finger sliding related extremum points are there. We
will further evaluate our approach with a larger set of data
on both Android and iOS in Section 4.3.

3.3 Robustness Analysis
Our detection approach exploits the physical limitations of
the CBG to detect the simulated clicking and sliding events.
Although these limitations are intrinsic to the design of
the CBG, they could be mitigated to some extent with the
upgrade of the CBG devices in the future. In this subsection,
we study the robustness of our detection approach against
the potential upgrades of the CBG.

Robustness of CBG Clicking Detection. Recall that the
CBG clicking is detected by leveraging the concentration
of the clicking points, which is caused by the one-to-one
mapping between a copper sheet and a button. That is, CBG
uses the same copper sheet for clicking the same button.
To de-concentrate the clicking points, an upgraded CBG
may try to correlate a single button with multiple copper
sheets in the same physical space. Theoretically, the more
copper sheets correlated to a single button, the lower the
concentration of the generated clicking points.

However, the maximum number of copper sheets is
bounded in practice. For example, in our experimental
environment, we find that in order to effectively simulate
a clicking event, the minimum width of each copper sheet
should be more than 1mm. As such, a 4-mm copper sheet

(the default setting for a general CBG) can be split into three
copper sheets at most. In other words, the number of the
copper sheets correlated to a single button can triple at most.

We further perform an entropy analysis to better un-
derstand the impact of multiple copper sheets on the con-
centration of clicking points. Without loss of generality, we
assume that every copper sheet in the original CBG has n
corresponding copper sheets in the upgraded CBG. The split
copper sheets share the same distribution of clicking points
with the original copper bench, since they use the same
physical material. The frequency of a coordinate generated
by each split copper sheet is 1

n times of that for the original
copper sheet. As such, the entropy for each split copper
sheets is log n

n times of that for original copper sheet, as
calculated by Equation 8. The total entropy of all the split
copper sheets is log n times of the original copper sheet, as
calculated by Equation 9.

H
′

j(X) =
m∑
i=1

pi
n
log

n

pi
=

log n

n
H(X) (8)

H
′
(X) =

n∑
j=1

H
′

j(X) = log n H(X) (9)

At the worst case, where an upgraded CBG splits a
copper sheet into three small copper sheets, the entropy
is around 1.58 times of the original entropy. As shown in
Table 1, under the sampling of 100 data points, the entropy
for the upgraded CBG is 2.70 (i.e., 1.71 * 1.58) , which is
still much smaller than that of the finger counterpart (i.e.,
3.01). That is, the increment of entropy caused by the limited
multiplication of copper sheets is not significant enough to
confuse the CBG clicking with the finger clicking. In other
words, our CBG clicking detection approach keeps effective.

Robustness of CBG Sliding Detection. The detection of
sliding relies on the the existence of physical boundary
of CBG and the sensitiveness of the rocker, i.e., the CBG
sliding is more likely to reach the physical boundary than
the finger sliding. To conceal the physical boundary, a
CBG may try to deteriorate the sensitiveness of its rocker
(so that the physical boundary is hardly reached) or set
different boundaries for different instances of the same
sliding intent (to vague the physical boundary). Either way
would inevitably degrades the user experience, which is
fundamentally contrary to the original intention of the CBG.
We believe none of these ways will get adopted in practice.
That is, the physical boundary is still most likely to be
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TABLE 3: Real-world mobile games for evaluation.

Game Downloads Major Operations
Game for Peace 2,458,770,270 Clicking & Sliding
Ride out Heroes 1,106,880 Clicking & Sliding
Strike of Kings 7,528,803,297 Sliding

Struggle of Snake 9,692,900 Sliding

TABLE 4: Devices for evaluation.

Device OS Resolution
iPhone 6 iOS 11 1334 * 750

Huawei Mate 20 X Android 9.0 2240 * 1080

retained in future upgraded CBG. Hence, our CBG sliding
detection approach can keep effective.

3.4 Other Features for Detection

The above subsections demonstrate how to use the distri-
bution of the touch points to identify the CBG clicking/s-
liding from the finger operations. Below we will discuss the
feasibility of using other features (e.g., speed, pressure and
duration, etc.) as the metrics for CBG detection.

Using Duration for Detection. The work of [32] uses the
duration of keystroke as a feature to distinguish between
human players and bots that use API to trigger UI events.
The intuition is that API-triggered UI events have relatively
shorter keystroke duration than those triggered by human.
Unfortunately, such a feature is not suitable for detecting
CBG. There is not obvious difference between human play-
ers using fingers and the players using CBG. Figure 11a
shows the duration distributions of the CBG clicking and
the finger clicking for 100 rounds of tests respectively. As
we can see, the two distributions look very similar and are
difficult to be distinguished.

Using Speed for Detection. Similar with duration, the
speed of sliding does not have enough discrimination to
be used for CBG detection. Figure 11b shows the speed
distributions of the CBG sliding and the finger sliding, each
containing the data for 100 tests. We can observe that the two
distributions have a large overlap, which makes it difficult
to distinguish one from the other.

Using Pressure for Detection. Besides duration and speed,
the pressure is another feature of a clicking event. However,
the vast majority of Android devices and the early-age iOS
devices are not equipped with pressure sensors. They use
the decay of electronic signals to approximate the pressure.
Such an approximation is very inaccurate, which hinders it
from being used for the CBG detection. Figure 11c shows
the pressure distributions of the CBG clicking and the finger
clicking for 100 tests respectively. As we can see that these
two distributions are not easy to be distinguished, making
the pressure not a good candidate feature for the CBG
detection.

4 EVALUATION

We have implemented our detection methods and applied
them to four predominant mobile games, including Game
for Peace [5], Ride out Heroes [6], Strike of Kings [7] and

TABLE 5: The information of the involved players.

No. Age Gender
1 22 male
2 25 male
3 16 male
4 24 male
5 25 female
6 25 female
7 26 female
8 26 female
9 26 female
10 32 male

TABLE 6: Thresholds learned from the training clicking
data.

N
Android iOS

MaxCC MinFC Threshold MaxCC MinFC Threshold
20 1.32 2.40 1.86 1.50 2.16 1.83
50 1.50 2.90 2.20 1.60 2.58 2.09
100 1.57 3.30 2.44 1.63 2.77 2.20

Struggle of Snake [8]. The major operations of the first two
games are clicking and sliding, while the last two games
primarily use sliding. Table 3 shows the detailed informa-
tion of the tested mobile games. All the experiments are
conducted on Huawei Mate 20 X (Android 9.0) and iPhone
6 (iOS 11). The device configurations are shown in Table 4.
We choose two popular CBG devices, WASP2 [3] and FC [2],
as the target gamepads. Due to space limitation, we only
present the data of the evaluation on WASP2 in this paper.
The evaluation on FC has a very similar result.

4.1 Experimental Setup

Ten players are involved in the experiments. We present in
Table 5 their ages, genders and roles from the viewpoint of
how their operation data are used. Notice that the players
age from 16 to 32, which fits the fact that young people in
China are the majority in the mobile game’s world [11].

To facilitate the evaluation, we first develop a demo
game application to collect the clicking and sliding points
produced by the CBG and human fingers. The data are
used to train the detection thresholds and test our approach
on Android and iOS. On each platform, every player is
required to normally play several rounds of clicking and
sliding with their fingers and the CBG. In total, we collect
100 rounds of clicking and sliding data on each platform,
50 produced with fingers and 50 with the CBG. Each round
contains 200 clicking points and a series of sliding points.
Eventually, 20,000 clicking points and 326,303 sliding points
are collected.

We randomly select 80% of the data produced by 10
players on the demo application as the training set to
determine the detection thresholds. The rest 20% of the data
are used as the testing set to evaluate our approach with the
learned thresholds. They are further applied to detect the
CBG operations in the four real-world mobile games.

4.2 CBG Clicking Detection

The entropy thresholds used to identify the CBG clicking are
determined with 80 rounds (80%) of the clicking data, which
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(a) Android (b) iOS

Fig. 12: Clicking detection on the demo application.

(a) Game for Peace (b) Ride out Heroes

Fig. 13: Clicking detection on the real-world mobile games.

are randomly selected from the collected data on the demo
application. Table 6 presents the obtained thresholds under
different group size settings (N={20, 50, 100}). Columns 2 ∼
4 and 5 ∼ 7 show the data on Android and iOS, respectively.
For each platform, the mid-ranges of the minimal average
entropy of the finger clicking (MinFC ) and maximal aver-
age entropy of the CBG clicking (MaxCC ) are calculated
and taken as the detection thresholds in the way discussed
in Section 3.1.

The learned thresholds are first applied to the rest 20
rounds (20%) of the clicking data. Figure 12 illustrates the
distributions of the average entropy values (Hi) under each
setting, and the thresholds are marked as dashed lines.
We can clearly see that all the thresholds under different
group sizes work perfectly. Both on Android and iOS, we
can perfectly tell the CBG clicking from the finger clicking
without any false positives or false negatives.

We then examine whether our approach and the learned
thresholds can effectively detect the CBG clicking in the real-
world mobile games. We choose two popular mobile games,
Game for Peace and Ride out Heroes, as the evaluation tar-
gets. In the two games, the majority of the player operations
are clicking. As illustrated in Figure 13, it is clear that the
learned thresholds can be used to effectively differentiate
the CBG clicking and the finger clicking in the games.

TABLE 7: CBG clicking detection on two popular games.

N
Thres
hold

Game for Peace Ride out Heroes

MaxCC MinFC
FP
(%)

FN
(%) MaxCC MinFC

FP
(%)

FN
(%)

20 1.86 1.64 2.62 0 0 1.37 2.69 0 0
50 2.20 1.85 3.27 0 0 1.50 2.82 0 0
100 2.44 1.89 3.66 0 0 1.64 3.56 0 0

TABLE 8: Thresholds learned from the training sliding data.

Android iOS
D

(px)
MinCS

(%)
MaxFS

(%)
Thres
(%)

D
(px)

MinCS

(%)
MaxFS

(%)
Thres
(%)

10 49.26 30.86 40.06 5 48.65 28.28 38.47
20 57.75 45.68 51.72 8 51.35 39.66 45.51
30 62.68 53.09 57.89 10 54.05 46.93 50.49

Table 7 summarizes the CBG clicking detection results. We
can see that there are not any false positives and false
negatives under different size settings. It is demonstrated
that our approach also works perfectly for the two games.
Note that the same detection thresholds can be applied to
both the demo application and the real-world mobile games.

4.3 CBG Sliding Detection
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(a) Android (b) iOS

Fig. 14: Sliding detection on the demo application.

In the same way, the thresholds for detecting the CBG
sliding are also learned with randomly selected 80% of the
sliding data.

Table 8 gives the thresholds under different gap range
settings. Specifically, the gap ranges (D) are set as 10px,
20px and 30px for Android, and 5px, 8px and 10px for
iOS. Because our Android device (Huawei Mate 20X) has a
higher resolution (2240 * 1080) than iPhone 6 (1334 * 750), we
employ larger gap ranges in the experiments on Android.
Columns 1 ∼ 4 and 5 ∼ 8 show the data on Android and
iOS, respectively. As discussed in Section 3.2, the maximum
(MaxFS) and the minimum (MinCS) percentage of points
within the boundary gaps are computed, and the sliding
detection thresholds (Threshold S) are determined as the
mid-range values of them.

The learned thresholds are first applied to the rest 20%
of the sliding data. Figure 14 illustrates the percentages of
the extremum points who fall in the boundary gap. The
CBG data are presented in solid lines, while the finger data
are presented in dashed lines. We can find that there is a
potential watershed between the CBG sliding and the finger
sliding. Table 9 summarizes the detection results. Only a few
false positives occur on iOS when the gap range is set to 8px
or 10px. Under other gap range settings, there are not any
false positives or false negatives.

All the four real-world games are used to evaluate our
sliding detection approach. Figure 15 visualizes the percent-
ages of boundary points of the testing data. We can see
that there is an obvious gap between the finger sliding and
the CBG sliding. Table 10 summarizes the sliding detection
results. It is shown that our approach can successfully detect
the CBG sliding with very high accuracy. There are not any
false positives, and the false negative rate is almost zero.
Except in just one play round in Game for Peace where the
gap range is set as 10px, all the CBG sliding are spotted
successfully. Notice that we can completely eliminate false
negatives by choosing a larger gap range (e.g., 20px), and
do not introduce any false positives in the meantime.

4.4 System Overhead
We measure the introduced system overhead of our ap-
proaches on Huawei Mate 20 X with 8GB memory, Android
9.0 system and Kirin 980 CPU. We average the time cost
of 100 repeated experiments and show the configurations
and results in Table 11. For clicking detection, there are

TABLE 9: Sliding detection results on the demo application.

D
(px)

Thres
(%)

Android
D

(px)
Thres
(%)

iOS
MinCS

(%)
MaxFS

(%)
FP
(%)

FN
(%)

MinCS

(%)
MaxFS

(%)
FP
(%)

FN
(%)

10 40.06 52.54 23.75 0 0 5 38.47 48.65 32.28 0 0
20 51.72 61.02 35.38 0 0 8 45.51 51.35 37.04 0 0
30 57.89 68.42 48.75 0 0 10 50.49 54.05 41.80 0 0

200 rounds and each round contains 500 coordinates. And
for sliding detection, there are 160 rounds and each round
contains a few minutes sliding points.

It can be seen that it takes 1.062 seconds for our CBG
clicking detection scenario to analyze 100,000 coordinates
and on average processing a round of 500 coordinates
consumes only 5 milliseconds. The total time for our CBG
sliding detection to analyze the 361,590 sliding points (160
rounds) is 4.747 seconds, i.e., the average overhead is 30
milliseconds, higher than the clicking detection as it spends
more time to identify the convex hull and compute the
distances. We argue that our detection method is practical
enough to be adopted in real-world games, since its over-
head is negligibly small.

5 DISCUSSION

While the experiments have demonstrated the effectiveness
of our approach in detecting CBG, the work has some
limitations.

Experimental Limitations. As a baby step towards the
detection of the emerging CBG-based game cheating, our
experiments are currently conducted on a demo application
that simulates typical game environment and four promi-
nent real-world mobile games. The data collection for the
demo application is achieved in an in-the-box manner, since
we can integrate the data collection code into the demo ap-
plication. However, we cannot directly instrument the data
collection code into the real-world games, since they have
complicated validation on the package integrity. Therefore,
we adopt an out-of-the-box manner to collect clicking and
sliding data for real-world games. Specifically, on Android,
we use adb to obtain the coordinates of the events. For iOS,
it is possible to collect coordinates information of a target
application at the system level by jail-breaking the device.
In our current evaluation, the demo application is tested
on both Android and iOS, while the real-world games are
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(a) Game for Peace (b) Ride out Heroes

(c) Strike of Kings (d) Struggle of Snake

Fig. 15: Sliding detection on the real-world mobile games.

TABLE 10: Sliding detection results.

D
(px)

Threshold
(%)

Game for Peace Ride out Heroes Strike of Kings Struggle of Snake
MinCS

(%)
MaxFS

(%)
FP
(%)

FN
(%)

MinCS

(%)
MaxFS

(%)
FP
(%)

FN
(%)

MinCS

(%)
MaxFS

(%)
FP
(%)

FN
(%)

MinCS

(%)
MaxFS

(%)
FP
(%)

FN
(%)

10 40.06 32.23 7.55 0 2 60.75 9.15 0 0 62.87 9.83 0 0 51.79 21.21 0 0
20 51.72 70.67 9.80 0 0 66.53 23.62 0 0 76.93 14.98 0 0 72.48 28.28 0 0
30 57.89 72.30 14.77 0 0 68.86 28.78 0 0 81.49 21.06 0 0 81.97 34.34 0 0

TABLE 11: System overhead of our approach.

Scenario #Rounds #Points Total time (s) Avg. time (s)
Clicking 200 100,000 1.062 0.005
Sliding 160 361,590 4.747 0.030

tested on Android only. We argue that game developers,
who has the access to rebuild the game application, can
easily integrate our solution into the game for real-time
CBG-based cheating detection. Our detection approach is
application-agnostic and has negligible overhead, we be-
lieve it can work on most mobile games.

Potential Evasion. Our detection approach relies on the
coordinates of points generated by clicking and sliding. The
quantity and quality of the collected points will directly
affect the effectiveness of our approach. In some cases, the
number of the collected points may not be sufficient to
support the detection, e.g., in a quickly terminated round
of play. However, in the actual detection process, we do
not care such short-term round of player, who are harmless
losers. After all, the harmless losers will not directly affect
the fairness of the game even if they use CBG. We focus on
those players with high output. If such players use CBG,
they will have the most direct impact on the fairness of
the game. Fortunately, in the real game scenes, players with

high output will always generate a sufficient number of co-
ordinate points due to frequent operations. Our approaches
can detect individual CBG events but they suffer from the
cases that the players frequently switch the finger and CBG.
We will investigate some advanced clustering techniques to
partition the collected coordinates into different groups for
detection. Furthermore, we can track the player’s historical
operation patterns to aid the clustering.

6 RELATED WORK

Game cheating has attracted many researchers’ attention
and some defense techniques have been proposed. Unfor-
tunately, to the best of our knowledge, there is no exist-
ing work that can be used to detect the capacitance-based
gamepads. The existing techniques identify game cheating
mainly by detecting application integrity, runtime environ-
ment, assistant applications and abnormal behaviors.

Detecting application integrity. A straightforward way to
achieving game cheating is to instrument additional logic
into the original game application. However, this will in-
evitably compromise the integrity of the target game ap-
plication. There have been many works that detect the
application integrity [23], [24], [37], [38], [39], [40], [41]. In
addition, some recent works judeged whether a given two
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apps are a repackaged pair by executing them and observing
their runtime user interface traces. Yue et al. [28] proposed a
new concept, i.e., layout group graph (LGG), which is built
from UI trances to model the UI behaviors. The LGG can
be used to identify potential repackaged application pairs.
The repackaged applications are often obfuscated to bypass
analysis. Glanz et al. [22] proposed a two-step approach
to find obfuscated repackaged applications by leveraging
fuzzy hash similarity. The try to modify or delete related
code will corrupt the application itself. Although the above
techniques have been proven to be effective, detecting CBG
is beyond their capabilities because it can work without
compromising the integrity of the target game app.

Detecting runtime environment. In order to design an
effective cheating mechanism, the adversaries often analyze
the target game application in a simulator or a virtual exe-
cution environment. A number of existing works have been
proposed to detect the runtime environment of the target
application. Vidas et al. [35] summarized some features that
can be used to distinguish simulators and real devices. Bren-
gel et al. [14] developed a low-level timing-based method
to detect the hardware-virtualized systems. Luo et al. [27]
proposed a lightweight defense mechanism to prevent an
Android application from being launched by the host ap-
plication as a plugin. Chen et al. [19] detected whether a
remote target device is running in a virtual environment
by analyzing the TCP packets. Jing et al. [25] proposed a
framework that can automatically generate some heuristics
to prevent malicious applications from bypassing emulator-
based analysis. Google released SafetyNet [9] to provide
a set of APIs for checking whether the Android device is
in a safe state. Unfortunately, adopting a CBG does not
require any special runtime environment or modifying the
underlying system. This makes the above existing methods
become ineffective.

Detecting assistant application. Traditional gamepads are
often connected with the device via Bluetooth or an USB
wire. To make the gamepads work, installing an assistant
application is also required. The work in [26] proposed a
method to detect game plug-ins by checking the existence
of suspicious applications. However, installing an assistant
app or additional drivers is unnecessary for CBG. The
proposed work turns out to be ineffective.

Detecting abnormal behavior. Another way to achieve
game cheating is to playing games with bots. The existing
works detected game bots by observing the movement
paths [17], [18], the operation frequency [33] and the features
of the input data [31]. In theory, the method proposed in this
paper is also a kind of abnormal behavior detection, with
respect to the distribution of the operation points. However,
the detection features employed in existing methods rarely
appear in the behaviors of CBG operations. From the view
of game behaviors, a player equipped with a CBG just act
like a game master rather than a bot.

7 CONCLUSION

In this study, we reveal the principle of the CBG device via
disassembling it and performing analysis experiments. We
find that the CBG faces some physical limitations, which

can be leveraged to detect it. Based on the investigation, a
novel detection approach is proposed. We introduce entropy
to distinguish the CBG clicking from the finger clicking
via measuring the uncertainty of the click coordinates. The
CBG sliding is detected by examining the possibility of its
extremum points can reach the potential boundary, which
is recognized with the convex hull identification algorithm.
The detection experiments on iOS and Android demonstrate
that the proposed approach can effectively detect the CBG
clicking and sliding with very high precision. We believe
that our method can be employed by vendors to ensure the
fairness of mobile games.
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