
IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 1

Precise Dynamic Symbolic Execution for
Nonuniform Data Access in Smart Contracts

Jianjun Huang, Jiasheng Jiang, Wei You, and Bin Liang

Abstract—Dynamic symbolic execution (DSE) has been successfully adopted for vulnerability detection in desktop and mobile
platforms. Unfortunately, we cannot simply extrapolate those techniques to smart contracts. The major challenge is that smart contracts
exhibit a nonuniform data access mode. Other than accessing the data via uniform addresses, smart contracts compromise multiple
addressing modes, including flat address mode and key-value mode. More seriously, accessing a key-value table usually involves
additional hash operations to obtain the keys. In this paper, we propose a DSE framework to resolve the nonuniform data access in
smart contracts. More specifically, we exactly track the symbolic variables with concrete addresses and compute the actual/hash keys
for table-like accesses. We also take the symbolic keys into account to distinguish data accesses incidentally with the same concrete
keys resulting from artificially generated values. We describe the DSE framework in operational semantics. On top of the framework, we
implement an integer overflow detector NOVA and a multi-transactional vulnerability detector MTVD. The experiments show that NOVA

outperforms state-of-the-art analysis tools in detecting the integer overflows with much higher precision and recall, 94.2% and 93.0%,
respectively. MTVD successfully reports three ether leaking vulnerabilities and one suicidal issue from real-world smart contracts.

Index Terms—Smart Contracts, Nonuniform Data Access, Dynamic Symbolic Execution, Operational Semantics, Integer Overflow

F

1 INTRODUCTION

A FTER the introduction of Bitcoin, the cryptocurrencies
have attracted a huge number of people. The second

largest blockchain platform, Ethereum, supports to run
smart contracts for distributing and investing the tokens, a
special type of virtual coins. The Ethereum smart contracts
are mainly developed in Solidity and compiled into byte-
code to run in the Ethereum virtual machine (EVM). Our
investigation shows that, more than two million of smart
contracts have been deployed in Ethereum so far.

Despite the success, the vulnerabilities in smart contracts
have resulted in quite a lot of damages. For example, a
reentrancy bug in the DAO contract led to a loss of more
than 60 million of dollars [1] and the exploitation of an
integer overflow in the contract of BeautyChain Coin (BEC)
made all the tokens worthless [2].

It has become emergent to detect the vulnerabilities in
smart contracts. Fortunately, dynamic symbolic execution
(DSE) has achieved great success for vulnerability detection
in desktop and mobile platforms [3], [4], [5], [6]. However,
directly extrapolating those mature techniques to smart
contracts is nontrivial. Different with traditional platforms
on which the data are uniformly accessed with the same
addressing mechanism, smart contracts compromise multi-
ple addressing modes. We call it the nonuniform data access
mode. More specifically, while some data are stored in
flat addressed regions and accessible via general addresses,

• J. Huang, J. Jiang, W. You and B. Liang are with the School of Information,
Renmin University of China, Beijing 100872, China; and also with Key
Laboratory of DEKE (Renmin University of China), MOE, China. E-mail:
{hjj, jjscool, youwei, liangb}@ruc.edu.cn.

Manuscript received XXXX, 2020; revised XXXX, 2021; accepted XXXX
2021. Date of publication XXXX 2021; date of current version XXXX 2021.
(Corresponding author: Bin Liang.)
Recommended for acceptance by
Digital Object Identifier no.

some other data are placed in a key-value table [7]. Retriev-
ing a table slot requires a valid key and in many cases,
the key is obtained through hash operations on several
data fields. The obvious difference impedes our attempt of
simply employing the DSE solution from other platforms
and inspires us to propose a DSE engine that can well
resolve the nonuniform data access nature so as to precisely
track the data flows symbolically.

In this paper, we present a precise and comprehensive
DSE framework targeting smart contracts and formalize
the approach in operational semantics. The framework ad-
dresses the nonuniform data access problem in three folds.
First, with artificially generated values, a concrete execution
operates the data in flat addressed regions with certainty
and thus the framework can track the symbolic variables
accurately, eliminating any nondeterminacy. Second, con-
crete values and their hash results are used to position the
slots in the key-value table. By this means, we can easily
discover relevant slots of symbolic expressions and multiple
accesses to the same slot can be correctly connected. Third,
we take the potentially symbolic representations as a second
level key for accessing a table slot, to address the challenge
of positioning the same slot for different queries when the
artificial values are the same.

On top of the DSE framework, we implement an integer
overflow detector, NOVA, and apply it to 21,016 smart
contracts that have been deployed in Ethereum. We verify
200 open-sourced smart contracts in Remix [8], the IDE for
smart contract development and testing, and the results
show that NOVA achieves high precision and recall, 94.2%
and 93.0%, respectively. We also compare NOVA with four
state-of-the-art tools, OYENTE [9], MYTHRIL [10], OSIRIS [11]
and VERISMART [12]. The comparisons demonstrate that
NOVA drastically reduces the false positives while detecting
much more real vulnerabilities. Furthermore, we implement

IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 2

MTVD to detect two kinds of multi-transactional vulnerabil-
ities (i.e., ether leaking and suicidal), and MTVD reports four
vulnerabilities from the collected open-source contracts.

Our work makes the following major contributions.

• We propose a dynamic symbolic execution frame-
work for smart contracts. To the best of our knowl-
edge, our work is the first to present a DSE frame-
work for precisely resolving the nonuniform data
accesses in smart contracts.

• We present operational semantics to formalize the
working mechanism of the framework. The proposed
semantics provide rich information for DSE and han-
dling the nonuniform data accesses.

• We implement an integer overflow detector NOVA
and evaluate it on real-world smart contracts. We
verify 200 smart contracts with the exploits gener-
ated by NOVA in Remix [8], compare NOVA with
state-of-the-art tools and demonstrate its effective-
ness with low false positive and false negative rates.

• We implement MTVD to detect multi-transactional
vulnerabilities. The experimental results show that
our DSE framework is capable to be extended for
more-challenging vulnerability detection.

2 BACKGROUND AND MOTIVATION

We use the simplified smart contract in Figure 1 to talk
about the background and motivate our technique.

Smart contract. Ethereum smart contracts are usually
developed in Solidity, as shown in Figure 1(a). The con-
tract MVToken contains a field balances and a function
transfer. The former records a mapping from the users’
account to the number of tokens they hold and the latter
transfers the tokens from a sender to a list of recipients,
each for the amount of value and charged certain amount
of fee. The developers introduce a SafeMath library to
ensure safe arithmetic operations. Line 2 presents an ex-
ample of safe addition. An assert is placed after the
addition, which can break down the execution and roll back
all changes if the condition is unsatisfactory, guaranteeing
no integer overflows for the addition in a normal execution.
The safe addition is invoked at line 13. Line 15 examines the
conditions for subsequent operations. Violating the condi-
tions results in abnormal termination and state reverting, as
done by the assert.

EVM and nonuniform data access. The smart contract
is compiled into bytecode and then executed in EVM. As
shown in Figure 1(b), during an execution, EVM maintains
four data regions, the read-only input region, a runtime
stack, a transient memory and a persistent storage. The first
three regions are alive only when a smart contract is being
executed while the storage holds the global state of the
contract, which spans the life across different executions.

While in desktop programs, all memory accesses are
carried out through uniform addresses, the data regions in
EVM show a nonuniform access mode. The stack behaves
as what its name shows. The input and the memory are
byte arrays starting at address zero. The input contains a
four-byte signature that directs the execution to the specific
function and a series of 32-byte data, following the order of
the formal parameters. If there exist variable-length arrays,

e.g., to, the corresponding slot saves the offset to the actual
array content, the length of the array and the elements. The
memory is used to temporarily store data chunks which
usually exceed 256 bytes, the data size of a stack element.
The arrays in the input are copied to the memory and then
loaded to the stack for operations. The storage is organized as
a key-value table [7]. Simple fields can be directly accessed
with their compiler-determined indices. Complex fields like
the mapping balances require hash values as the keys.
For example, to retrieve the data for balances[from],
EVM computes a hash value of from · indexbalances, where
the symbol ‘·’ denotes a concatenation, and visits the slot
corresponding to the hash value.

Symbolic execution. Static symbolic executions have
been widely used to capture the bugs in smart con-
tracts [9], [10], [13]. However, Frank et al. have shown
in a recent study that state-of-the-art tools generally
encounter problems for precisely modeling the nonuni-
form data accesses [14]. For instance, an array in the
input involving symbolic offset and length can make
the memcopy operation nondeterministic. An example is
the multiTransfer(address[], uint[]) function in
RocketCoin [15]. Symbolically copying the second array
from input to memory encounters a symbolic offset which
is determined by the symbolic length of the first array. In
addition, storage accesses usually involve hash operations
and ineffective handling would obviously influence the
analysis.

Dynamic symbolic execution (DSE) can help address the
above issues with concrete execution which provides actual
values for memcopy and hash operations. Symbolic execu-
tion engine can utilize these concrete values to precisely
label and differentiate the symbolic variables. However, the
nonuniform data accesses prevent us from employing a ma-
ture DSE technique for traditional programs and motivate
us to develop a smart contract targeted DSE technique.

Integer overflow. Now we pay attention to one of
the most dangerous vulnerabilities in smart contracts, the
integer overflow vulnerability. In a recent report, integer
underflow and overflow are ranked as two of the four
biggest vulnerabilities in smart contracts [16]. Specifically,
the integer underflow/overflow (overflow for brevity in this
paper) vulnerabilities account for 95.3% of the high-severity
instances found by the analysts. Therefore, in this paper, we
mainly focus on the integer overflow vulnerability.

The smart contract in Figure 1(a) contains four poten-
tially vulnerable arithmetic operations, two additions at
lines 3 and 19, a subtraction at line 16 and a multiplication
at line 14. Carefully auditing the code, we can exclude the
addition within the safe math library and the subtraction,
because they are protected by a post assertion or a pre-
requirement. The developers may forget to protect the other
two operations, leaving a chance of being exploited via the
integer overflow vulnerabilities. The BeautyChain Token is
a famous example [2].

In our example, if an adversary executes the function
with two recipients, value = 2255 and fee = 1, amount
at line 14 will be just 2 because the multiplication result
exceeds the maximum integer 2256−1. Such a small amount
easily passes the requirement check at line 15. The sender
pays only two tokens (line 16) while each recipient can

IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 3

1 library SafeMath {

2 function add(uint a, uint b) internal returns (uint) {

3 uint c = a + b;

4 assert(c >= a);

5 return c;

6 }

7 }

8 contract MVToken {

9 using SafeMath for uint;

10 mapping (address => uint) balances;

11 function transfer(address from, address[] to, uint

value, uint fee) public returns (bool) {

12 uint count = to.length;

13 uint each = value.add(fee);

14 uint amount = count * each;

15 require(amount > 0 && balances[from] >= amount);

16 balances[from] = balances[from] - amount;

17 for (uint i = 0; i < count; i++) {

18 address receiver = to[i];

19 balances[receiver] = balances[receiver] + value;

20 }

21 // other operations are omitted

22 }

23 }

(a) Example smart contract code.

sig (4 bytes) from (32 bytes)

to.offset (32 bytes)

value (32 bytes)

fee (32 bytes)

to.length (32 bytes)

to[0] (32 bytes)

/*more elements in to*/

pointto

input

callthe
function

(b) Nonuniform data accesses for a running contract.

stack

load
to

stack

memory

copy
to

m
em

ory

storage

balances
···

···

load

store

push/pop

load
store

Fig. 1. Motivating example. On the left is a simplified smart contract and on the right is the nonuniform data accesses when the contract is running.

obtain 2255 tokens. Because too many tokens emerge all of
a sudden but the total value of the tokens are not changed
accordingly, all other investors will find their holdings are
worth nothing.

Though Ghelab et al. have demonstrated that state-of-
the-art bug-finding tools can emit high false positives and
false negatives [17], we detect the vulnerabilities in the ex-
ample with two bug-finders, OYENTE [9] and MYTHRIL [10],
and manually inspect the results. OYENTE reports no real
problems but one false alarm with two missed vulner-
abilities and MYTHRIL correctly uncovers the suspicious
multiplication overflow but misses the addition at line 19.
Besides, MYTHRIL reports an overflow involving the array
size calculation, but in practice, the arrays inside the input
are generally small and their sizes in bytes are far less than
the maximum integer in smart contract.

Our solution. We build a DSE framework, combining
concrete and symbolic executions, which utilizes concrete
values to handle nonuniform data accesses. Based on the
DSE engine, we implement a precise integer overflow de-
tector NOVA. NOVA leverages the SMT solver Z3 [18] to
determine whether certain state (the input or storage val-
ues) can pass the safety checks but lead to overflows. For
the example contract, NOVA reports two integer overflows
without false warnings.

3 DYNAMIC SYMBOLIC EXECUTION FRAMEWORK

We propose a DSE framework for smart contracts. More
specifically, we describe the operational semantics of the
bytecode instructions, which are suitable for dynamic sym-
bolic executions on the EVM bytecode. In general, the

program ::= instruction*
instruction i ::= POP | PUSH v | ADD | MUL | SUB | LT

| JUMPI | CALLDATALOAD | CALLDATACOPY
| MLOAD | MSTORE | SLOAD | SSTORE | SHA3
| CALL | RETURN | REVERT | SUICIDE | · · ·

value v ::= 256-bit unsigned integer

Fig. 2. The language definition for the EVM bytecode.

DSE framework launches the given bytecode for execution,
generates concrete and symbolic values for the inputs and
unknown storage fields, and collects the path condition
along the execution. At the end of the execution, Z3 is used
to search a new feasible path. With the resolved concrete
values, the DSE framework restarts another execution and
places the values on request so that the execution is directed
to the specific path. Repeating the procedure until all feasi-
ble paths have been explored, the DSE framework finishes
the analysis for the target contract.

In below sections, we first introduce some basic nota-
tions and then focus on describing the semantics for path
exploration and nonuniform data access handling.

3.1 Operational Semantics: Basics
Figure 2 defines the language of the contract bytecode. Most
instructions do not have their operands explicitly shown in
the bytecode. The only exception is PUSH which pushes the
given 256-bit integer into the stack. Due to the space limit,
we omit many instructions that will not be discussed in this
paper.

To ease the discussion, we define symbols for different
purposes and use mathematic symbols like ‘+’ and ‘<’ di-
rectly in symbolic operations for simplicity. Figure 3 shows

IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 4

LT-T
[(a, b), (p, q),S′] = S.pop(2) a < b S′′ = S′.push(1) s = p < q P ′ = is symbolic(s)?P.push(s) : P ζ = Σ(pc+ 1)

Σ, C,S,M, T ,P, E, pc,LT⇒ Σ, C,S′′,M, T ,P ′, E, pc+ 1, ζ

LT-F
[(a, b), (p, q),S′] = S.pop(2) a ≥ b S′′ = S′.push(0) s = p ≥ q P ′ = is symbolic(s)?P.push(s) : P ζ = Σ(pc+ 1)

Σ, C,S,M, T ,P, E, pc,LT⇒ Σ, C,S′′,M, T ,P ′, E, pc+ 1, ζ

JUMPI-T
[(d, 1), , S′] = S.pop(2) ζ = Σ(d)

Σ, C,S,M, T ,P, E, pc,JUMPI⇒ Σ, C,S′,M, T ,P, E, d, ζ

JUMPI-F
[(d, 0), , S′] = S.pop(2) ζ = Σ(pc+ 1)

Σ, C,S,M, T ,P, E, pc,JUMPI⇒ Σ, C,S′,M, T ,P, E, pc+ 1, ζ

Fig. 3. Rules for collecting path constraints (unsigned less-than comparison LT) and directing the concrete execution (conditional jump JUMPI).

the rules for two representative instructions, the unsigned
less-than comparison LT and the conditional jump JUMPI.

When an instruction is being executed, the DSE frame-
work maintains a state of the running smart contracts,
consisting of a tuple of the following symbols. Σ maps the
indices of all instructions to the corresponding instructions.
C, S ,M and T represent the states for the input, the stack,
the memory and the storage, respectively. Each is made up
of the concrete state and the symbolic state, distinguished
by the subscripts. For example, Cc records the concrete
values in the input and Cs maps the offsets to the symbolic
values. Note that symbolic containers, e.g., Sc, can hold
concrete values as well. We use P to hold the path condition
that current execution has passed and maintain in E the
heuristically inferred constraints for practical enhancement,
e.g., a restriction of the array length. The index of current
instruction is denoted by pc. With the concrete and symbolic
states, the framework performs the operations and validates
the checks above the line in the rule.

We collect a path constraint when executing LT. Follow-
ing the semantics, we pop two elements from the stack and
evaluate the comparison. In the notation, (a, b) denotes the
pair of concrete values, p and q represent the elements from
the symbolic stack and S ′ maintains the remaining elements.
If a < b holds in LT-T, we generate a symbolic expression,
save it to P and fetch next instruction for execution. Note
that, instead of saving the expression “p < q” to Ss, we
use the concrete value one as the expression should always
evaluate to be true and could probably slow down the
constraint solving when used in other expressions.

The instruction JUMPI pops two elements from the stack.
If the second element is equal to one, the execution moves
to the instruction at index d (JUMPI-T). Otherwise, the
sequentially next instruction is to be executed (JUMPI-F).
We use the symbol ‘ ’ to indicate that the symbolic elements
are uninteresting for this instruction.

3.2 Path Exploration and Execution Restart
As we mentioned earlier, the DSE framework explores a new
feasible path at the end of an execution and then restarts
another execution targeting the specific path. In smart con-
tracts, a path can be terminated normally or abnormally.
A normal termination keeps all changes to the storage in
the blockchain and an abnormal termination discards any
changes and reverts the state. RETURN and REVERT are
typical instructions for each case separately. We display only
the semantics for RETURN in Figure 4, but it is straightfor-
ward to replace RETURN with the other path-terminating
instructions to deduce corresponding rules.

We explore new paths by manipulating the gathered
path condition P . An empty P indicates no more paths
(RETURN-N) and the framework finishes the analysis with
an invalid index (−1) and a nonexistent instruction (⊥). If
any path constraint exists, we perform a depth first search
algorithm, negating the latest path constraint and validating
if the modified path condition represents a new path. If
not, we check the remaining path constraints (RETURN-
E). In other words, the RETURN-family rules are applied
to the same instruction with the updated path condition.
RETURN-F handles the case of seeing a new but infeasible
path and RETURN-T restarts an execution for a new feasible
path by resetting next instruction. It is notable that, we
restrict the constraint solving with the heuristically obtained
constraints E so that we will never start an execution with
impractical concrete values, e.g., an array length of 2255.
The concrete values resolved by Z3 are taken along with
the restarted execution.

3.3 Input Loading

The instruction CALLDATALOAD loads a 32-byte chunk from
the input to the stack for later operations. Before we dive
into the details, it is noted that the compiler will not gen-
erate bytecode that reads data from the input region at the
same offset more than once. Namely, each CALLDATALOAD
processes a distinctive part in the input. We have four rules
to model the instruction, as shown in Figure 5.

In most cases, the DSE framework executes
CALLDATALOAD with completely concrete offset in the
input, e.g., loading from and to.offset in Figure 1. The
rule CDL-C-N is applied when no concrete value has been
assigned to the specific concrete offset. We use Cc ` a :⊥
to indicate that in Cc, a maps to nothing. We artificially
generate concrete data and associate a new symbolic
variable to the offset. The notation [a : c]Cc means to update
Cc with a new mapping relation a→ c.

When arrays exist, e.g., to in Figure 1, the concrete val-
ues are not enough in the first execution. Because we know
nothing about the input structure, a generated array offset
can be invalid and thus lead to incorrect access to the array
content. We handle this case in CDL-S-N with heuristics.
If we see a symbolic offset, we infer that we encounter
an array access and the target denotes the length of the
array. The corresponding concrete and symbolic values are
created and saved. We do not update C because the provided
concrete offset ac is potentially invalid. The actual array
offset is heuristically computed at the end of an execution
(see Figure 4), based on the structure of the input and the

IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 5

RETURN-N
is empty(P)

Σ, C,S,M, T ,P, E, pc,RETURN⇒ ∅, ∅, ∅, ∅, ∅, ∅, ∅,−1,⊥

RETURN-E
not empty(P) [s,P ′] = P.pop() S = P ′ ∧ ¬s ¬is new path(S)

Σ, C,S,M, T ,P, E, pc,RETURN⇒ (RETURN-N/E/F/T only) Σ, C,S,M, T ,P ′, E, pc,RETURN

RETURN-F
not empty(P) [s,P ′] = P.pop() S = P ′ ∧ ¬s is new path(S) solve(S ∧ E) = ∅

Σ, C,S,M, T ,P, E, pc,RETURN⇒ (RETURN-N/E/F/T only) Σ, C,S,M, T ,P ′, E, pc,RETURN

RETURN-T
not empty(P) [s,P ′] = P.pop() S = P ′ ∧ ¬s is new path(S) [C′c, T ′c] = solve(S ∧ E) C′c 6= ∅ ζ = Σ(0)

Σ, C,S,M, T ,P, E, pc,RETURN⇒ Σ, C′, ∅, ∅, T ′, ∅, ∅, 0, ζ

Fig. 4. Semantics for path exploration and execution restart (RETURN).

CDL-C-N

[a, a,S′] = S.pop() Cc ` a :⊥ c = mk concrete() s = mk symbolic() C′c = [a : c]Cc C′s = [a : s]Cs
S′′c = S′c.push(c) S′′s = S′s.push(s) ζ = Σ(pc+ 1)

Σ, C,S,M, T ,P, E, pc,CALLDATALOAD⇒ Σ, C′,S′′,M, T ,P, E, pc+ 1, ζ

CDL-S-N

[ac, as,S′] = S.pop() is symbolic(as) c = mk concrete() S′′c = S′c.push(c) s = mk symbolic() S′′s = S′s.push(s)
ao = back for offset(as) E ′ = E.push((ao < X) ∧ (s < Y)) mark array info(ao, as, s) ζ = Σ(pc+ 1)

Σ, C,S,M, T ,P, E, pc,CALLDATALOAD⇒ Σ, C,S′′,M, T ,P, E ′, pc+ 1, ζ

CDL-R-N

[a, ,S′] = S.pop() Cc ` a : c Cs ` a :⊥ ¬is location of array offset(a)
s = mk symbolic() S′′c = S′c.push(c) S′′s = S′s.push(s) C′s = [a : s]Cs ζ = Σ(pc+ 1)

Σ, C,S,M, T ,P, E, pc,CALLDATALOAD⇒ Σ, C′,S′′,M, T ,P, E, pc+ 1, ζ

CDL-R-A

[a, ,S′] = S.pop() Cc ` a : c Cs ` a :⊥ is location of array offset(a)
S′′ = S′.push(c) C′s = [a : c]Cs ζ = Σ(pc+ 1)

Σ, C,S,M, T ,P, E, pc,CALLDATALOAD⇒ Σ, C′,S′′,M, T ,P, E, pc+ 1, ζ

Fig. 5. Rules for CALLDATALOAD, which moves the data from the input region to the stack.

number of input accesses. We perform a backward search
on the symbolic offset as and acquire the symbolic variable
ao that is associated with the offset value in the input. For
an array in the input, we should see as = ao + 4. We
restrict the array offset and length for practical consideration
and insert corresponding constraints into E . In addition, we
mark the array related representations such that we can
build a correct input with the arrays.

In a restarted execution in which proper concrete data
have been constructed by RETURN-T for an offset but the
data do not indicate the offset of an array, we apply CDL-R-
N to update the states. If the array offset is encountered, e.g.,
to.offset in Figure 1, instead of generating a symbolic
variable, we use the actual offset afterwards (CDL-R-A) to
relax any correlated symbolic operations.

3.4 Memory Operations
Memory operations essentially involve three instructions.
CALLDATACOPY copies data from the input to the memory.
MLOAD transfers data from the memory to the stack and
MSTORE reverses the data movement. Figure 6 presents the
operational semantics for the three instructions.

The rule CDC-S is related to the condition in which the
array offset has not been concretely determined. In other
words, the corresponding CALLDATACOPY is executed after
a dependent CALLDATALOAD that was applied CDL-S-N.
We fake an array according to the provided size and record
the values in the memory. When we are processing a known
array after CDL-R-A, we apply the rule CDC-C to generate
symbolic variables for the elements and any unknown con-
crete values and update the memory. For brevity, we use di
to denote the input offset d+ i ∗ 32 and let mi = m+ i ∗ 32.

The next three rules in Figure 6 model the data flows
between the memory and the stack, corresponding to MLOAD

and MSTORE. MLOAD-C processes fully concrete data with-
out any symbolic value associated and MLOAD-S retrieves
both the concrete and symbolic values, e.g., an array element
copied from the input. MSTORE simply overwrites the
memory records with the given values.

The CDL-* (in Figure 5) and CDC-* rules together help
the DSE framework precisely model any arrays in the input
and track the corresponding memcopy operations accu-
rately. The problem of nondeterministic array read/write
faced by lightweight static symbolic executions can be easily
overcome in our DSE framework. Besides, concrete offsets
make it more efficient to decide if multiple operations via
MLOAD/MSTORE indeed process the same chunk, compared
to the fully symbolic execution approaches [14].

3.5 Storage Accesses

The storage is organized as a key-value table. SLOAD and
SSTORE accesses the corresponding slot in the table with a
given key. Simple fields are associated to constant keys that
are determined at the compilation time. Complex fields pass
a hash operation to generate the keys. Concrete execution
can do the hash operation and obtain a real hash value.
However, it is still challenging to precisely track the sym-
bolic expressions and update the concrete storage region if
we simply adopt the original key-value table representation.

To cope with the problem, we design a two-fold access
model for the storage, taking the involved expression as the
second level indicator of a data slot and the concrete key
used by SLOAD/SSTORE as the first level indicator. Take
Figure 7 as an instance. The DSE framework will maintain
the storage in a form of (X −→ {{Y → balfrom}, {Z →
balto}}) at the end of the function, where balx denotes
the symbolic expression of balances[x]. X is a concrete

IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 6

CDC-S

[(m, dc, l), (, ds,),S′] = S.pop(3) is symbolic(ds) n = d l
32
e 0 ≤ i < n [.., ci, ..] = mk concrete(n)

[.., si, ..] = mk symbolic(n) mark array elements([..., si, ...]) M′c = [mi : ci]Mc M′s = [mi : si]Ms ζ = Σ(pc+ 1)

Σ, C,S,M, T ,P, E, pc,CALLDATACOPY⇒ Σ, C,S′,M′, T ,P, E, pc+ 1, ζ

CDC-C

[(m, d, l), (, d,),S′] = S.pop(3) n = d l
32
e 0 ≤ i, j, x < n Cc ` dj : cj ∀(x 6= j), cx = mk concrete()

[.., si, ..] = mk symbolic(n) mark array elements([..., si, ...]) M′c = [mi : ci]Mc M′s = [mi : si]Ms ζ = Σ(pc+ 1)

Σ, C,S,M, T ,P, E, pc,CALLDATACOPY⇒ Σ, C,S′,M′, T ,P, E, pc+ 1, ζ

MLOAD-C
[a, ,S′] = S.pop() Ms ` a :⊥ Mc ` a : c S′′ = S′.push(c) ζ = Σ(pc+ 1)

Σ, C,S,M, T ,P, E, pc,MLOAD⇒ Σ, C,S′′,M, T ,P, E, pc+ 1, ζ

MLOAD-S
[a, ,S′] = S.pop() Ms ` a : s Mc ` a : c S′′c = S′c.push(c) S′′s = S′s.push(s) ζ = Σ(pc+ 1)

Σ, C,S,M, T ,P, E, pc,MLOAD⇒ Σ, C,S′′,M, T ,P, E, pc+ 1, ζ

MSTORE
[(m, c), (, s),S′] = S.pop(2) M′c = [m : c]Mc M′s = [m : s]Ms ζ = Σ(pc+ 1)

Σ, C,S,M, T ,P, E, pc,MSTORE⇒ Σ, C,S′,M′, T ,P, E, pc+ 1, ζ

Fig. 6. Semantic rules for the memory operations, including memcopy (CALLDATACOPY), read (MLOAD) and write (MSTORE).

1 function transferFrom(address from, address to,

uint value) ... {

2 require(value > 0 && value <= balances[from]);

3 balances[from] = balances[from] - value;

4 balances[to] = balances[to] + value;

5 }

Fig. 7. A vulnerable function in an ERC20 contract.

value, with which SLOAD and SSTORE visit the storage slots,
e.g., the result of sha3(0, 0) in the above example. Y and Z
are the corresponding symbolic expressions, i.e., from and
to, respectively.

We further refer to Figure 7 and briefly explain how
an symbolic execution works with naive key-value map-
pings to concretely illustrating the necessity of the two-
fold access model. Our DSE engine initially generates a
concrete value 0x0 for every input field. Namely, from and
to are assigned 0x0. Symbolic executions will not update
their values since they are not involved in any conditional
checks. When the DSE is about to execute line 3, the path
constraint corresponding to the earlier require is (value >
0) ∧ (value ≤ balfrom), in which we use value to represent
the symbolic input of the parameter value and balfrom
to denote the symbolic variable for balances[from], for
simplicity. According to smart contract semantics, the DSE
framework computes a hash value via an SHA3 instruction
on the concatenation of the index of balances (e.g., 0x0)
and the value of from (0x0), i.e., sha3(0, 0). Later, the DSE
engine looks up the corresponding value of the concrete
hash value in the storage via an SLOAD instruction. Nothing
is found and thus a symbolic variable bf is created and
bound to the corresponding storage slot. The execution of
line 3 will update the slot with a new symbolic expression
(balfrom − value) upon an SSTORE instruction. To fetch
balance[to], a hash operation as sha3(0, 0) is performed
as to is assigned 0x0 as well. Though balances[from]
and balances[to] should generally refer to different
storage slots, the DSE framework here treats them the
same, provided the same concrete hash. Hence, the previ-
ously stored expression (balfrom − value) is retrieved for
balances[to] and the addition is symbolically emulated
as ((balfrom − value) + value). Such a symbolic execution

schema will obviously lead to a missed vulnerability at
line 4 in Figure 7 if an integer overflow checker is built on
the framework.

With the two-fold model, however, we can distinguish
balfrom from balto based on the second level key, i.e., the
symbolic from and to, even if both are assigned 0x0 in
the concrete execution. We propose the semantic rules in
Figure 8, handling various cases.

For the first time of looking up a value in the storage, we
apply SLOAD-N, creating a new symbolic representation
and updating the storage. If a concrete key is revisited, the
framework compares the given symbolic expression with
each key (i.e., Y and Z in the above example) in the second
level mappings. A fresh as denotes a new slot access and we
generate values for it (SLOAD-S-RN). Otherwise, we reuse
existing values (SLOAD-S-RR). The functions sat and unsat
utilize the SMT solver to test whether the given expression is
satisfactory or not. Though not detailed in the rule SSTORE,
the framework performs the same checking when updating
a storage field.

SLOAD-C-RR is applied when a fully concrete key is
reused for storage access in current execution. In a restarted
execution where the target field may have been assigned a
concrete value at the first visit, we generate only the corre-
sponding symbolic variable (SLOAD-C-RN). Vs in SLOAD-
S-* rules can also be ⊥ but we omit the cases due to the
space limit.

The next two rules handle the hash instruction SHA3.
Completely concrete data are directly hashed, as displayed
in SHA3-C. If any part of the data is symbolic, we concate-
nate the concrete and symbolic parts to make the symbolic
key used for a later storage access.

Recall the vulnerable function in Figure 7. With the two-
fold storage access model, our DSE framework symbolically
performs the addition at line 4 as (balto−value) constrained
by (value > 0) ∧ (value ≤ balfrom). As balto and balfrom
are two arbitrary symbolic variables, an integer overflow
checker on top of the DSE framework can easily uncover
the potential addition overflow vulnerability.

3.6 Multi-transactional Execution
The framework can also support multi-transactional execu-
tions. We show the rule MT in Figure 9. If an execution
reaches the end of current path (e.g., RETURN and REVERT),

IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 7

SLOAD-N

[ac, as,S′] = S.pop() Tc ` ac :⊥ c = mk concrete() s = mk symbolic() S′′c = S′c.push(c)
S′′s = S′s.push(s) T ′c = [ac : {as → c}]Tc T ′s = [ac : {as → s}]Ts ζ = Σ(pc+ 1)

Σ, C,S,M, T ,P, E, pc,SLOAD⇒ Σ, C,S′′,M, T ′,P, E, pc+ 1, ζ

SSTORE

[(ac, vc), (as, vs),S′] = S.pop(2) Tc ` ac : Vc V ′c = [as : vc]Vc T ′c = [ac : V ′c]Tc
Ts ` ac : Vs V ′s = [as : vs]Vs T ′s = [ac : V ′s]Ts ζ = Σ(pc+ 1)

Σ, C,S,M, T ,P, E, pc,SSTORE⇒ Σ, C,S′,M, T ′,P, E, pc+ 1, ζ

SLOAD-C-RR

[ac, as,S′] = S.pop() ¬is symbolic(as) Tc ` ac : Vc Ts ` ac : Vs Vs ` as : s
S′′c = S′c.push(c) S′′s = S′s.push(s) ζ = Σ(pc+ 1)

Σ, C,S,M, T ,P, E, pc,SLOAD⇒ Σ, C,S′′,M, T ,P, E, pc+ 1, ζ

SLOAD-C-RN

[ac, as,S′] = S.pop() ¬is symbolic(as) Tc ` ac : Vc Ts ` ac :⊥ s = mk symbolic()
T ′s = [ac : {as → s}]Ts S′′c = S′c.push(c) S′′s = S′s.push(s) ζ = Σ(pc+ 1)

Σ, C,S,M, T ,P, E, pc,SLOAD⇒ Σ, C,S′′,M, T ,P, E, pc+ 1, ζ

SLOAD-S-RN

[ac, as,S′] = S.pop() is symbolic(as) Tc ` ac : Vc Ts ` ac : Vs ∀(k → v) ∈ Vs, sat(as 6= k)
s = mk symbolic() V ′s = [as : s]Vs T ′s = [ac : V ′s]Ts S′′c = S′c.push(c) S′′s = S′s.push(s) ζ = Σ(pc+ 1)

Σ, C,S,M, T ,P, E, pc,SLOAD⇒ Σ, C,S′′,M, T ′,P, E, pc+ 1, ζ

SLOAD-S-RR

[ac, as,S′] = S.pop() is symbolic(as) Tc ` ac : Vc Ts ` ac : Vs ∃(k → v) ∈ Vs, unsat(as 6= k)
Vc ` as : c S′′c = S′c.push(c) S′′s = S′s.push(v) ζ = Σ(pc+ 1)

Σ, C,S,M, T ,P, E, pc,SLOAD⇒ Σ, C,S′′,M, T ,P, E, pc+ 1, ζ

SHA3-C

[(a, lc), ,S′] = S.pop(2) n = d lc
32
e ∀i ∈ [0, n),¬is symbolic(Ms(ai))

h = sha3(a, lc) S′′ = S′.push(h) ζ = Σ(pc+ 1)

Σ, C,S,M, T ,P, E, pc,SHA3⇒ Σ, C,S′′,M, T ,P, E, pc+ 1, ζ

SHA3-S

[(a, lc), ,S′] = S.pop(2) n = d lc
32
e ∃j ∈ [0, n), is symbolic(Ms(aj)) hc = sha3(a, lc) S′′c = S′c.push(hc)

hs = concat(Ms(a0), ...,Ms(an−1)) S′′s = S′s.push(hs) ζ = Σ(pc+ 1)

Σ, C,S,M, T ,P, E, pc,SHA3⇒ Σ, C,S′′,M, T ,P, E, pc+ 1, ζ

Fig. 8. Operational semantics for the storage accesses, involving the instructions SLOAD, SSTORE and SHA3.

MT
end of path(inst) ζ = Σ(0)

Σ, C,S,M, T ,P, E, pc, inst⇒ Σ, ∅, ∅, ∅, T ,P, E, 0, ζ

Fig. 9. Semantics for a multi-transactional execution.

the framework can restart a new execution (i.e., transaction)
by preserving the storage state and the path condition, such
that the new transaction can follow current execution and
reuse the changed state of the smart contract.

4 IMPLEMENTATION

We implement the DSE framework on top of aleth [19],
the C++ implementation of Ethereum. We choose Z3 [18] as
the SMT solver and encode the symbolic values in 256-bit
bitvectors. We set the array relevant restrictions in Figure 5
as X = 100 and Y = 1000. In addition, we construct appro-
priate inputs that can trigger specific paths according to the
results of constraint solving and the learned information for
arrays.

NOVA. To demonstrate the effectiveness of the DSE
framework, we implement NOVA to detect one of the most
harmful vulnerabilities, the integer overflow. To perform
the detection, NOVA maintains a new state O for overflow
constraints corresponding to suspicious arithmetic opera-
tions, e.g., ADD. An overflow constraint tells about what
condition can be satisfied if an overflow occurs. The ADD
rule in Figure 10 gives an example. We save in O the
expression “s < p”. When a vulnerability is reported, NOVA
generates the exploitable inputs, helping analysts verify the
vulnerability.

Delayed Checking. Given the fact that smart contracts
may terminate abnormally and revert the state, checking the

overflow issues immediately for suspicious operations can
result in tremendous false alarms. NOVA adopts a mecha-
nism of delayed checking, detecting the vulnerabilities only
at the end of a normal termination. RETURN-CHECK in
Figure 10 iteratively checks if any overflow constraint is
satisfactory with known conditions P and E . If Z3 can find a
solution, NOVA reports the vulnerability. Note that this rule
is applied before the path exploration rules in Figure 4.

Storage-write oriented. In some cases, integer overflows
cannot result in any loss to the users even if the correspond-
ing path terminates normally, e.g., a user-provided over-
flow check in Megawttcoin [20] as shown below. Therefore,
NOVA examines only the paths that write to the storage.
1 if (balances[msg.sender] + _value <=

balances[msg.sender])

2 return false;

MTVD. We have also experimentally implemented
MTVD, in order to demonstrate the capability of the DSE
framework for detecting multi-transactional vulnerabilities
such as ether leaking and suicidal [21], [22]. While vulner-
abilities across multiple transactions are difficult to detect
without sufficient knowledge about the vulnerability logics,
we follow the heuristics presented in [21], [22]. If a specific
user (a.k.a, attacker) is able to make money from a contract
but he has never sent any ethers to the contract, we report
a leaking vulnerability in the contract. If an attacker can
kill a contract by executing a specific inter-transactional
path and bypassing the safety checks before the destruction
operation, we report a suicidal vulnerability.

Different with NOVA which treats all storage data as ar-
bitrary and does not differentiates the contract users, MTVD
considers the user (i.e., msg.sender) as a potential attacker

IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 8

ADD

[(a, b), (p, q),S′] = S.pop(2) c = a+ b S′′c = S′c.push(c) s = p+ q S′′s = S′s.push(s)
o = s < p O′ = is symbolic(s)?O.push(o) : O ζ = Σ(pc+ 1)

Σ, C,S,M, T ,P, E,O, pc,ADD⇒ Σ, C,S′′,M, T ,P, E,O′, pc+ 1, ζ

RETURN-CHECK
not empty(O) [o,O′] = O.pop() L = solve(P ∧ E ∧ o) L 6= ∅?report vulnerability(o, L) :⊥

Σ, C,S,M, T ,P, E,O, pc,RETURN⇒ (RETURN-CHECK only) Σ, C,S,M, T ,P, E,O′, pc,RETURN

Fig. 10. Semantics for collecting overflow constraints at suspicious instructions (e.g., ADD) and delayed checking at RETURN.

and assigns it a specific value 0xFF...FF. Any correlated stor-
age slots are initially empty, e.g., balances[msg.sender]
= 0. Under such settings, MTVD first performs symbolic
executions on all possible transactions and discovers paired
write/read of the same storage slots across transactions. We
consider the paired write/read operations can be related
to bypass the safety checks, e.g., owner = msg.sender
in one transaction and if (owner == msg.sender) in
the other transaction. After successfully executing the first
transaction, we use the storage state as the initial state
of executing the second transaction. In other words, the
first access to some storage data (e.g., owner in the above
example) in the second transaction will meet a concrete
value instead of a symbolic state. By this means, if the at-
tacker successfully triggers the sensitive operations, MTVD
will report the vulnerabilities and corresponding exploitable
inputs for verification.

5 EVALUATION

In this section, we will present the evaluation results for
the smart contracts deployed on Ethereum and discuss the
causes of the inaccuracies and the comparisons with two
state-of-the-art bug-finding tools.

5.1 Experimental Setup
To ease the process of auditing the evaluation results, we
collected 21,016 open-source smart contracts from the Ether-
scan website [23] and their corresponding bytecode in the
blockchain.

We evaluated NOVA on all the collected smart contracts
on a machine with Intel Xeon Silver 4110 CPU and 82
GB memory with Ubuntu 18.04. We parallelize four NOVA
instances spontaneously to speed up the analysis. Because
Z3 may be stuck with certain complex constraints, we set the
maximum time for solving a given constraint to 100 seconds.
Timeout is treated as unsolvable, i.e., there do not exist any
inputs that satisfy the constraint. While most smart contracts
can be finished quickly, some cost hours as we will see in
Section 5.2. Hence, we set the maximum time for one smart
contract to five minutes.

To show the effectiveness of NOVA, we compare it
with four state-of-the-art tools, OYENTE [9], MYTHRIL [10],
OSIRIS [11] and VERISMART [12].

To evaluate the effectiveness of MTVD, we first run it
on the vulnerable smart contracts mentioned in [21], [22],
and then perform the detection on all the contracts from our
repository.

5.2 Experiment Results of NOVA

NOVA reports 16,108 integer overflow vulnerabilities in
total. Verifying the correctness of the vulnerabilities can be

������

��

��

	�

�

� �
� �

��

��

	��

���

���

����

�

�

	�

��

��

���

Fig. 11. Summary of the 200 smart contracts. The X-axis shows the size
of the smart contracts in the form of the number of bytecode instructions.
The bars denote the number of smart contracts of the corresponding
sizes and the line represents the accumulated percentage.

�

���

���

���

���

���	
 ����� ��	� ���	
 ����� �����

Fig. 12. Statistics of the instructions for memory/storage accesses, hash
and branch operations in the 200 smart contracts.

done in a private blockchain and we use Remix [8] for this
purpose. Because the occurrence of an integer overflow will
not crash the execution, we feed the smart contracts with
the generated exploits and inspect the storage changes to
confirm the occurrences of the vulnerabilities.

While verifying all the reported vulnerabilities is time-
consuming and tedious and we do not have an oracle of the
contracts, we focus those contracts reported by at least two
tools to contain integer overflow vulnerabilities. Since all
other tools have reported many vulnerabilities that are not
covered by NOVA, we get a chance of inspecting whether
and why NOVA misses some real problems. we randomly
selected 200 smart contracts for inspection.

Scalability. Figure 11 presents the size of the 200 smart
contracts (i.e., the number of instructions) and the accu-
mulated distribution, and Figure 12 shows the statistics
of the instructions for memory/storage accesses, hash and
branch operations. Though the smallest contract contains
182 instructions, the average size is 4,443 and more than 3/4
of the smart contracts contain fewer than 6,000 instructions.
It is also noticeable that NOVA can scale to large contracts
with more than 10k instructions. In fact, it completes the
analysis for the largest contract (15,873 instructions, more
than 800 memory/storage accesses and 380 branches) in 103
seconds and reports three real overflows.

Performance. Figure 13 presents the number of paths
NOVA has executed for each smart contract and the cor-
responding time cost. On average, NOVA executes about
44 paths per smart contract. While the number of paths is
displayed in an ascending order, the time cost is not linear,

IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 9

�

��

���

���

���

���

�

��

���

���

���

���

�
��

��
��
��
	

�
��

�
��
�
�

Fig. 13. The number of paths NOVA has executed (dashed line, in an
ascending order) and the corresponding time cost (solid line) for the
200 smart contracts.

mainly because of the cost for constraint solving. Among
the 200 smart contracts, 20 cost more than five minutes. For
the other 180 smart contracts, the average time cost is 70.2
seconds, demonstrating the efficiency of NOVA.

Accuracy. NOVA totally reports 496 vulnerabilities. For
each smart contract, we inspect the source code and the
reports from the other tools. Besides, we exploit the re-
ported vulnerabilities with the generated exploits in Remix.
467 vulnerabilities are verified to be true, leaving 29 false
warnings. We also discover 35 missed issues. The false
positive (FP) rate and false negative (FN) rate are 6.8% and
7.0%, respectively. Below we will discuss the inaccuracies in
details.

5.2.1 False Positives

We find four FPs in 29 smart contracts. The root cause is that
NOVA detects vulnerabilities per path and some semantic
restriction information from another path is not taken into
account. The EdgelessCasino [24] contract presents an ex-
ample as below.
1 contract CasinoBank {

2 uint public waitingTime;

3 function setWaitingTime(uint nwt) ... {

4 require(nwt <= 24 hours);

5 waitingTime = nwt;

6 }

7 function requestWithdrawal() public {

8 withdrawAfter[msg.sender] = now + waitingTime;

9 }

10 }

NOVA reports an integer overflow at line 8. Looking at
only that line, a constant (now) plus a field variable is very
likely to overflow, when the field variable waitingTime is
modifiable elsewhere. However, waitingTime is initially
set to 90 minutes and when the owner intends to modify it,
it is restricted to be at most 24 hours at line 4. Consequently,
the vulnerable addition acquires a time value in near future.
Given the fact that the time can be accurately represented in
traditional 64-bit machines, the addition will never overflow
in 256-bit Ethereum. Therefore, we consider it as a FP.

SBGToken [25] shows a more typical case of false pos-
itives. from only the function burn, NOVA reports a sub-
traction overflow at line 4 as the operation is not protected
as the other subtraction at line 3. However, in the smart
contract, totalSupply denotes the total number of tokens
held by the owner and all investors, whose accounts are
maintained by balanceOf. As a result, when the constraint
at line 2 holds, totalSupply will never be smaller than

value. Hence, line 4 will not result in any overflow and
NOVA emits a FP here.
1 function burn(uint256 _value) public ... {

2 require(balanceOf[msg.sender] >= _value);

3 balanceOf[msg.sender] -= _value;

4 totalSupply -= _value;

5 }

Suppressing such FPs is nontrivial without the knowl-
edge about the semantic restrictions and particularly diffi-
cult if we only have the deployed bytecode at hand. Auto-
matically inferring the semantic restrictions usually requires
cross-path analysis, which deeply inspects the whole pro-
gram and builds the relations among different operations
to the same data (for EdgelessCasino), or even a thorough
understanding of the source code (for SBGToken). However,
too heavyweight analysis or manual intervention hinders
the applicability for large-scale integer overflow detection.
Fortunately, the small number of such cases makes it rea-
sonable to keep away from those solutions. Another way
of handling the FP issues could be to execute the smart
contracts with user inputs as the initial storage states, so
as to avoid the interference of impractical arbitrary initial
storage.

5.2.2 False Negatives
NOVA misses 35 integer overflows. We carefully examined
them and found the constraint solving is responsible for the
FNs.

Safe multiplication (safemul) is an obstacle for Z3 to
solve the constraints. When a safemul is presented in a
path, the path constraint introduced by assert is collected,
e.g., (a == 0 || c / a == b). With this constraint, Z3
fails to solve the final constraints for vulnerability detection.
Below is an example in MainSale [26].
1 contract MainSale {

2 uint public commandPercent = 10;

3 function mintTokensForCommand(address recipient,

uint tokens) ... {

4 max = token.totalSupply().mul(commandPercent)

5 .div(100 - commandPercent)

6 .div(1 ether);

7 }

8 }

The field commandPercent is supposed to be bounded
but it is modifiable in another function. The adversaries may
modify commandPercent or an incidental operation may
put an unexpected value for it, leading to an overflow at
line 5. The use of safe math library introduces the safemul
assertion into the path condition. Z3 cannot tell the result
before timeout.

We further examine Z3’s capability of solving constraints
with the safemul assertion with different bitvector lengths.
When we encode the integer values to 32 or 64 bits, the same
constraints can be solved in one second. Even if the integers
are 255-bit long, Z3 completes the solving in several minutes
on a typical laptop. However, 256-bit encoding prevents it
from solving the corresponding constraint even for hours.
Improving Z3 could help but it is beyond the scope of this
paper.

Timeout makes the contribution to 27 FNs. NOVA in-
volves a lot of symbolic comparisons to determine a storage

IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 10

TABLE 1
The number of total paths, time cost and newly discovered

vulnerabilities for two smart contracts finished within one day.

#Paths Time (hours) #NewVuln
MainSale [26] 123 5.05 3
POSC [27] 115 8.35 4

���

����

��� ���

����

��

���	

��
�

	��

�

��	 �
�

��	 �
�

�
���
���
���

����
�
��

��� ������ ������� ������ ���������

�����

��

��

Fig. 14. Comparison results for the 200 smart contracts among NOVA
and four state-of-the-art tools, including the total number of reported
vulnerabilities, the number of false alarms and false negatives.

access and each comparison can cost massive time. Besides,
any involved safemul can lead to timeout of the solver.
Hence, the maximum time of five minutes can be easily ex-
hausted with abundant symbolic comparisons and safemul
operations.

We further examine the FNs. They are distributed in
five different smart contracts, among which one has 6k+
instructions, one has 10k+ instructions and the rest contain
9k+ instructions.

We re-run NOVA on the five smart contracts with such
FNs for at most 24 hours. Seven missed flaws (7/27 =
25.9%) in two smart contracts are uncovered. Table 1 lists the
results. MainSale [26] takes more than five hours to complete
and POSC [27] costs more than eight hours. Unfortunately,
the other three smart contracts cannot be finished within 24
hours and we terminate their executions without any issues
reported.

A possible solution can be to leverage static analysis
to prioritize the paths. Simple paths with fewer time-
consuming operations are executed first such that potential
flaws can be discovered with a given time budget.

5.3 NOVA v.s. State-of-the-art Tools

We compare NOVA with OYENTE, MYTHRIL, OSIRIS and
VERISMART on the 200 smart contracts with the same time-
out settings, i.e., five minutes for one smart contract. Fig-
ure 14 shows the comparison results. Compared with NOVA,
OYENTE and VERISMART report much more vulnerabilities
with a lot of FPs while MYTHRIL and OSIRIS detect fewer
flaws but misses hundreds of real problems.

Table 2 presents the detection accuracy of the five tools,
in which Precision = #TP

#TP+#FP and Recall = #TP
#TP+#FN ,

where #TP = #Total − #FP . We can see that NOVA
presents much higher precision and recall. Among the
four tools, OSIRIS, with significant improvements on top of
OYENTE, gains the highest accuracy but still shows lower
precision and recall than NOVA.

We will present in next section several typical cases that
are successfully detected by NOVA but inaccurately handled
by two tools under active development.

TABLE 2
Detection accuracy of NOVA and state-of-the-art tools.

NOVA OYENTE MYTHRIL OSIRIS VERISMART
Precision 94.2% 17.7% 68.2% 84.3% 22.6%
Recall 93.0% 50.6% 30.3% 56.6% 48.8%

5.3.1 Case Studies

Case 1: multiplication. OYENTE does not support the de-
tection of multiplication overflows. Below is a very simple
function in Klassicoin [28] and the vulnerable multiplica-
tion at line 4 is missed by OYENTE. Our DSE framework
treats the user account address msg.sender as a special
input and assigns it a constant value. By solving the con-
straint msg.sender == fundsWallet, it gives the field
fundsWallet a proper value that is reused in the second
execution by the rule SLOAD-C-RN in Figure 8, such that
the concrete execution can reach line 4. NOVA builds an
overflow constraint for the operation and checks vulnerabil-
ities with RETURN-CHECK in Figure 4 when the execution
reaches the end.
1 function changeSupply(uint supp) returns (uint) {

2 if (msg.sender != fundsWallet)

3 throw;

4 totalSupply = supp * 1000000000000000000;

5 return totalSupply;

6 }

Case 2: array operations. Arrays in the input usually involve
all the data regions, as we have discussed in Section 3.
Besides, some smart contracts contain array-typed fields.
Failing to precisely handle the arrays is a major cause of the
inaccuracies. OYENTE skips the instruction CALLDATACOPY
and ignores any connections between the input array and
the memory. As a result, it lacks the ability of detecting
array related problems, e.g., the potential addition overflow
in Figure 1. MYTHRIL, on the contrary, is able to handle
the first array in the input but fails for additional arrays.
RocketCoin [15] contains a function as below.
1 function multiTransfer(address[] _addresses,

uint[] _amounts) ... {

2 uint totalAmount;

3 for (uint a = 0; a < _amounts.length; a++) {

4 totalAmount += _amounts[a];

5 } ... // more operations are omitted

6 }

The addition at line 4 operates the second array in
the input, which exceeds the capability of OYENTE and
MYTHRIL, causing an undetected vulnerability. NOVA treats
every array in the same manner and can successfully report
the addition overflow vulnerability in this smart contract.

OYENTE and MYTHRIL also report a great number of
false warnings related to the array calculation. The array
metadata (the length and offset) in the input is normally
associated with a symbolic variable. Such values can involve
in arithmetic operations, e.g., adding a constant to the offset
for the actual position of the array and multiplying 0x20 to
get the byte size of the array for memcopy. These arithmetic
operations can be detected as vulnerabilities. However, as
we discussed in Section 3.3, it is impractical to feed the
smart contract with a very large array. Our DSE framework

IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 11

imposes restrictions to the array metadata as done in Fig-
ure 5, NOVA does not report corresponding calculations
as potential overflows. The FP emitted by MYTHRIL for
Figure 1 is related to this case. OYENTE does not report the
multiplication overflow, but it still reports a possible prob-
lem if the length of to is 2256, which is actually impossible.
Similarly, it produces a lot of false alarms when performing
arithmetic operations on the sizes or offsets of the storage
fields of array types, e.g., string, uint[].

5.3.2 Orthogonality
From the comparison, we can see that our approach as well
as NOVA can complement existing detection tools to hit the
vulnerabilities that are missed by other tools. Besides, we
believe that NOVA can be leverated to validate the detection
results of static analysis tools.

5.4 Experimental Results of MTVD

As mentioned earlier, we evaluate MTVD on the vulnerable
contracts present in [21], [22] and all the selected contracts.
MTVD successfully identifies the leaking and suicidal vul-
nerabilities reported in previous works. Besides, it reports
three ether leaking vulnerabilities and one suicidal vulnera-
bility, without false warnings.

An example is Zemana [29] shown below, in which the
function QuantumPay is publicly accessed. An attacker can
invoke it, changing the contract owner at line 3, and then
calls withdraw to steal the ethers in the smart contract at
line 9, without investing any ethers to the contract.
1 contract Zemana is ERC20 {

2 function QuantumPay () public {

3 owner = msg.sender;

4 distr(owner, totalDistributed);

5 }

6 function withdraw() onlyOwner public {

7 address myAddress = this;

8 uint256 etherBalance = myAddress.balance;

9 owner.transfer(etherBalance);

10 }

11 }

5.4.1 Discussion
Detecting multi-transactional vulnerabilities involving deep
states is challenging when the states grow exponen-
tially [22]. While the main purpose of this paper is to present
a DSE framework for smart contracts, we did not pay much
attention to a detector that is capable to detect arbitrary
multi-transactional vulnerabilities. Instead, we implement
MTVD with naive heuristics, to simply demonstrate that
we can extend the DSE framework to detect such vulner-
abilities. However, we believe the other researchers with
insightful ideas can also leverage the DSE framework to
implement scalable and effective detectors.

6 RELATED WORK

In this section, we will review the research efforts on
smart contracts. Leveraging symbolic execution techniques
accounts for a major part of the effort. Some researchers
transform the smart contracts, either source code or byte-
code, to another intermediate language and verify if certain

specifications are violated. In addition, dynamic testing
techniques are applied to discover the vulnerabilities.

OYENTE [13] is one of the earliest effort to detect vul-
nerabilities in smart contracts with the help of symbolic
execution. The maintainers also augmented OYENTE for in-
teger overflow vulnerability detection [9]. MANTICORE [30],
MYTHRIL [10] and OSIRIS [11] works in similar way as
OYENTE to detect the vulnerabilities. TEETHER [31] searches
critical instructions and generates exploits for the corre-
sponding paths by utilizing the symbolic execution tech-
niques. TEETHER handles the hash operations by evaluating
the hash’s inputs to obtain concrete values, over which the
hash value is computed. Our approach hashes on concrete
values too, but the concrete values are assigned at the first
access and propagated along the execution. Our method
reduces the expense of constraint solving at every hash op-
eration, compared with TEETHER. SCOMPILE [32] identifies
the critical paths involving monetary transactions and only
apply symbolic execution techniques to top ranked critical
paths. With similar consideration, NOVA examines only the
paths with storage modification. MAIAN [21] employs static
symbolic analysis to find the properties of execution traces
that are across multiple invocations of a smart contract, in
order to detect the greedy, prodigal and suicidal contracts.
This idea can be helpful to suppress some false warnings
we have mentioned in Section 5.2.1. ETHBMC [14] models
all the data accesses fully symbolically while our approach
employs concrete execution to easily determine the nonuni-
form data accesses.

SECURIFY [33] does not directly employ symbolic exe-
cution to uncover the security issues. Instead, it extracts
semantic information through symbolic analysis and then
checks if any predefined safety properties could be violated.
Similarly, VANDAL [34] decompiles the bytecode into a lan-
guage that can expose the data- and control-flow structures,
and then inspect if the smart contract violates any specifica-
tions. SMARTCHECK [35] converts the source code of smart
contracts into an XML format and detects vulnerability
patterns by using XPath queries on the XML. ZEUS [36]
translates the Solidity source code into LLVM [37] interme-
diate representations and leverage the LLVM framework to
perform abstract interpretation and symbolic model check-
ing. Hildenbrandt et al. describe the EVM semantics based
on the K framework [38] to verify important properties [39].
VERISMART [12] applies a domain-specific algorithm to
discover the transaction invariants and leverage them to
verify the smart contracts source code. VERX [40] formal-
izes the temporal safety properties, instruments the smart
contracts and then verifies the functional properties. VERX
models the storage in the theory of arrays and replaces the
original SHA3 operation with a simpler Z3 function which
constraints the behavior with weak assumptions. The new
hash function maps the input to the hash result and can also
be used in the DSE setting. In addition, we think that the
replacement of the hash function can be extremely useful,
compared with SHA3, when we aim to restore a reasonable
input for a specific hash value (see the example in [14]). Jiao
et al. develop a formal semantics for Solidity and verifies the
smart contracts against the semantics-level security proper-
ties [41]. Compared with the above approaches, we are the
first to describe the semantics suitable for dynamic symbolic

IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 12

execution. Moreover, the applicability of the approaches
requiring the source code is limited as only a very small
portion of the smart contracts are open-sourced [21], [42].

Annotary [43] performs concolic execution with the help
of developer-written annotations in Solidity source code and
we think the solution can also be helpful in address the
FP issues. SEREUM [44] performs taint analysis and mon-
itors the executions to protect the smart contracts against
the reentrancy bugs. CONTRACTFUZZER [45] leverages the
fuzzing techniques to test the smart contracts for vulnerabil-
ity detection by analyzing the runtime behaviors. Grossman
et al. proposed an online method to identify the callback
free objects for detecting the reentrancy vulnerabilities [46].
ETHRACER [47] leverages dynamic symbolic execution and
testing techniques to detect the order sensitive event rel-
evant bugs. TOKENSCOPE [48] monitors the behaviors in-
consistent with standard token interfaces. ILF [22] includes
neural networks to learn a proper fuzzing policy from the
generated inputs of symbolically analyzed smart contracts
and uses the policy to fuzz new programs. Based on the
heuristics provided by ILF, we build MTVD to detect two
kinds of multi-transactional vulnerabilities, i.e., ether leak-
ing and suicidal.

7 CONCLUSION

With the proliferation of cryptocurrencies and the smart
contracts, the security aspect has aroused great interest. As a
successful technique in traditional platform, dynamic sym-
bolic execution (DSE) is promising to detect vulnerabilities
in smart contracts. However, simply employing the DSE
solutions from other platforms is challenging due to the
nonuniform data access nature in smart contracts. In fact,
smart contracts compromise multiple addressing modes,
including typical flat address mode and complicated key-
value mode. In this paper, we propose a DSE framework
that is described in operational semantics. The framework
resolves the nonuniform data access issues precisely and
comprehensively by presenting proper solutions for dif-
ferent addressing modes. On top of the framework, we
implement NOVA to detect the integer overflow flaws, one
of the most harmful vulnerabilities that have caused sub-
stantially financial loss. We evaluate NOVA on real-world
smart contracts and verify the reported vulnerabilities in
a private blockchain. Comparisons demonstrate that NOVA
outperforms state-of-the-art bug-finding tools and the re-
sults show the effectiveness of our approach, with high
precision and recall over 90%. We also implement MTVD to
detect two kinds of multi-transactional vulnerabilities and
discover four problems in real-world smart contracts.

ACKNOWLEDGMENTS

This work is supported in part by National Natural Science
Foundation of China (NSFC) under grants U1836209 and
61802413, the Fundamental Research Funds for the Central
Universities, and the Research Funds of Renmin University
of China under grants 19XNLG02 and 20XNLG03.

REFERENCES

[1] K. Finley, “A $50 million hack just showed that
the dao was all too human,” Jun. 2016. [Online].
Available: https://www.wired.com/2016/06/50-million-hack-
just-showed-dao-human/

[2] T. McCallum, “Exploding rockets & millions of free
tokens? let’s take a good look at integer overflows,” Feb.
2019. [Online]. Available: https://hackernoon.com/exploding-
rockets-millions-of-free-tokens-lets-take-a-good-look-at-integer-
overflows-2800794e48d9

[3] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“EXE: Automatically generating inputs of death,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Nov. 2006, pp. 322–335.

[4] M. Christakis, P. Müller, and V. Wüstholz, “Guiding dynamic
symbolic execution toward unverified program executions,” in
Proc. 38th Int. Conf. Softw. Eng., May 2016, pp. 144–155.

[5] B. Loring, D. Mitchell, and J. Kinder, “Sound regular expression
semantics for dynamic symbolic execution of javascript,” in Proc.
40th ACM SIGPLAN Conf. on Programming Language Design and
Implementation, Jun. 2019, pp. 425–438.

[6] H. van der Merwe, “Verification of Android applications,” in Proc.
37th Int. Conf. Softw. Eng. - Volume 2, May 2015, pp. 931–934.

[7] S. Marx, “Understanding ethereum smart con-
tract storage,” Mar. 2018. [Online]. Available:
https://programtheblockchain.com/posts/2018/03/09/under
standing-ethereum-smart-contract-storage

[8] The Ethereum Community, “Remix - ethereum IDE,” Accessed:
Jun. 2020. [Online]. Available: http://remix.ethereum.org/

[9] “Oyente,” Accessed: Jun. 2020. [Online]. Available:
https://github.com/melonproject/oyente

[10] “Mythril,” Accessed: Jun. 2020. [Online]. Available:
https://github.com/ConsenSys/mythril

[11] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer
bugs in ethereum smart contracts,” in Proc. 34th Annu. Comput.
Secur. Appl. Conf., Dec. 2018, pp. 664–676.

[12] S. So, M. Lee, J. Park, H. Lee, and H. Oh, “Verismart: A highly
precise safety verifier for ethereum smart contracts,” in Proc. IEEE
Symp. Secur. Privacy, May 2020, pp. 1678–1694.

[13] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Oct. 2016, pp. 254–269.

[14] J. Frank, C. Aschermann, and T. Holz, “EthBMC: A bounded
model checker for smart contracts,” in Proc. 29th USENIX Secur.
Symp., Aug. 2020, pp. 2757–2774.

[15] “RocketCoin,” Accessed: Jun. 2020. [Online]. Available:
https://etherscan.io/address/0x6fc9c554c2363805673f18b3a2b19
12cce8bfb8a

[16] B. Meyer, “Ethereum smart contract vulnerabilities can
lead to millions in losses,” Nov. 2020. [Online]. Avail-
able: https://cybernews.com/security/ethereum-smart-contract-
vulnerabilities

[17] A. Ghaleb and K. Pattabiraman, “How effective are smart contract
analysis tools? evaluating smart contract static analysis tools using
bug injection,” in Proc. 29th ACM SIGSOFT Int. Symp. on Software
Testing and Analysis, Jul. 2020, pp. 415–427.

[18] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Proc.
of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 337–340.

[19] “Aleth - Ethereum C++ client, tools and libraries,” Accessed: Jun.
2020. [Online]. Available: https://github.com/ethereum/aleth

[20] “Megawttcoin,” Accessed: Jun. 2020. [Online]. Available:
https://etherscan.io/address/0x7f1f1e95b243708aa29cfba53e13d
45e28356d2b

[21] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding
the greedy, prodigal, and suicidal contracts at scale,” in Proc. 34th
Annu. Comput. Secur. Appl. Conf, Dec. 2018, pp. 653–663.

[22] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev,
“Learning to fuzz from symbolic execution with application to
smart contracts,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Nov. 2019, pp. 531–548.

[23] Etherscan, “Ethereum (ETH) blockchain explorer,” Accessed: Jun.
2020. [Online]. Available: https://etherscan.io/

[24] “Edgelesscasino,” Accessed: Jun. 2020. [Online]. Available:
https://etherscan.io/address/0x15f08079310e2c9dacaa73c0e4503
68185724aea

IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 13

[25] “SBGToken,” Accessed: Jun. 2020. [Online]. Available:
https://etherscan.io/address/0xb5980eb165cbbe3809e1680ef05c3
878ce25dacb

[26] “MainSale,” Accessed: Jun. 2020. [Online]. Available:
https://etherscan.io/address/0xb2819a0c3db0b9513a5ddd747f87
3877f622e083

[27] “POSC,” Accessed: Jun. 2020. [Online]. Available:
https://etherscan.io/address/0x3d807baa0342b748ec59aa0b01e93
f774672f7ac

[28] “Klassicoin,” Accessed: Jun. 2020. [Online]. Available:
https://etherscan.io/address/0xb85815bd8f610867c0b59dd386ca2
b0609fa0942

[29] “Zemana,” Accessed: Jun. 2020. [Online]. Available:
https://etherscan.io/address/0x63e89a05a3185100aa05eae9b5e15
b00f4a1687d

[30] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco,
J. Feist, T. Brunson, and A. Dinaburg, “Manticore: A user-friendly
symbolic execution framework for binaries and smart contracts,”
in Proc. 34th IEEE/ACM Int. Conf. Automated Softw. Eng., Nov. 2019,
pp. 1186–1189.

[31] J. Krupp and C. Rossow, “teEther: Gnawing at ethereum to au-
tomatically exploit smart contracts,” in Proc. 27th USENIX Secur.
Symp., Aug. 2018, pp. 1317–1333.

[32] J. Chang, B. Gao, H. Xiao, J. Sun, Y. Cai, and Z. Yang, “sCompile:
Critical path identification and analysis for smart contracts,” in
Formal Methods and Software Engineering. Cham, Switzerland:
Springer, 2019, pp. 286–304.

[33] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli,
and M. Vechev, “Securify: Practical security analysis of smart
contracts,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2018, pp. 67–82.

[34] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier,
V. Gramoli, R. Holz, and B. Scholz, “Vandal: A scalable
security analysis framework for smart contracts,” CoRR,
vol. abs/1809.03981, pp. 1–28, Sep. 2018. [Online]. Available:
http://arxiv.org/abs/1809.03981

[35] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in Proc. 1st Int. Workshop on Emerging
Trends in Software Engineering for Blockchain, May 2018, pp. 9–16.

[36] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “ZEUS: analyzing
safety of smart contracts,” in Proc. 25th Annu. Netw. Distrib. Syst.
Secur. Symp., Feb. 2018, pp. 1–15.

[37] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in Proc. Int. Symp.
on Code Generation and Optimization: Feedback-Directed and Runtime
Optimization, Mar. 2004, pp. 75–86.

[38] G. Ros, u and T. F. S, erbănută, “An overview of the K semantic
framework,” The Journal of Logic and Algebraic Programming, vol. 79,
no. 6, pp. 397 – 434, 2010.

[39] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian,
D. Guth, B. Moore, D. Park, Y. Zhang, A. Stefanescu, and G. Rosu,
“KEVM: A complete formal semantics of the ethereum virtual
machine,” in 31st IEEE Computer Security Foundations Symposium,
2018, pp. 204–217.

[40] A. PERMENEV, D. DIMITROV, P. TSANKOV, D. DRACHSLER-
COHEN, and M. VECHEV, “Verx: Safety verification of smart
contracts,” in Proc. IEEE Symp. Secur. Privacy, May 2020, pp. 1661–
1677.

[41] J. Jiao, S. Kan, S.-W. Lin, D. Sanan, Y. Liu, and J. Sun, “Semantic
understanding of smart contracts: Executable operational seman-
tics of solidity,” in Proc. IEEE Symp. Secur. Privacy, May 2020, pp.
1695–1712.

[42] M. Fröwis and R. Böhme, “In code we trust? - measuring the
control flow immutability of all smart contracts deployed on
ethereum,” in International Workshops on Data Privacy Management,
Cryptocurrencies and Blockchain Technology. Cham, Switzerland:
Springer, 2017.

[43] K. Weiss and J. Schütte, “Annotary: A concolic execution system
for developing secure smart contracts,” in Computer Security –
ESORICS 2019. Cham: Springer, Sep. 2019, pp. 747–766.

[44] M. Rodler, W. Li, G. Karame, and L. Davi, “Sereum: Protecting
existing smart contracts against re-entrancy attacks,” in Proc. 26th
Annu. Netw. Distrib. Syst. Secur. Symp., Feb. 2019, pp. 1–15.

[45] B. Jiang, Y. Liu, and W. K. Chan, “ContractFuzzer: Fuzzing smart
contracts for vulnerability detection,” in Proc. 33rd ACM/IEEE Int.
Conf. Automated Softw. Eng., Sep. 2018, pp. 259–269.

[46] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky,
N. Rinetzky, M. Sagiv, and Y. Zohar, “Online detection of effec-
tively callback free objects with applications to smart contracts,”
Proc. ACM Program. Lang., vol. 2, no. POPL, Dec. 2017.

[47] A. Kolluri, I. Nikolic, I. Sergey, A. Hobor, and P. Saxena, “Ex-
ploiting the laws of order in smart contracts,” in Proc. 28th ACM
SIGSOFT Int. Symp. Softw. Testing and Analysis, Jul. 2019, pp. 363–
373.

[48] T. Chen, Y. Zhang, Z. Li, X. Luo, T. Wang, R. Cao, X. Xiao,
and X. Zhang, “TokenScope: Automatically detecting inconsistent
behaviors of cryptocurrency tokens in ethereum,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Nov. 2019, pp. 1503–1520.

Jianjun Huang received the Ph.D. degree in
Computer Science from Purdue University. He
is currently an assistant professor at School
of Information, Renmin University of China.
His research interests focus on program analy-
sis, vulnerability detection, mobile security and
blockchain security.

Jiasheng Jiang received the B.S. degree in
Information Security from Renmin University
of China. He is currently a graduate stu-
dent at School of Information, Renmin Univer-
sity of China. His research interests focus on
blockchain security.

Wei You received the Ph.D. degree in Com-
puter Science from School of Information, Ren-
min University of China. He is currently an asso-
ciate professor at School of Information, Renmin
University of China. His research interests focus
on program analysis, mobile security and Web
security.

Bin Liang received the Ph.D. degree in Com-
puter Science from Institute of Software, Chi-
nese Academy of Sciences. He is currently a
professor at School of Information, Renmin Uni-
versity of China. His research interests focus on
program analysis, vulnerability detection, mobile
security and AI security.

