
TaintMan: An ART-Compatible Dynamic
Taint Analysis Framework on Unmodified

and Non-Rooted Android Devices
Wei You , Bin Liang , Wenchang Shi , Peng Wang, and Xiangyu Zhang,Member, IEEE

Abstract—Dynamic taint analysis (DTA), as a mainstream information flow tracking technique, has been widely used in mobile

security. On the Android platform, the existing DTA approaches are typically implemented by instrumenting the Dalvik virtual machine

(DVM) interpreter or the Android emulator with taint enforcement code. The most prominent problem of the interpreter-based

approaches is that they cannot work in the new Android RunTime (ART) environment introduced since the 5.0 release. For the

emulator-based approaches, the most prominent problem is that they cannot be deployed on real devices. In addition, almost all the

existing Android DTA approaches only concern the explicit information flow caused by data dependence, while completely ignore the

impact of implicit information flow caused by control dependence. These problems limit their adoption in the latest Android system and

make them ineffective in detecting the state-of-the-art malware whose privacy-breaching behaviors are inactivated in the analyzed

environment (e.g., the emulator) or conducted via implicit information flow. In this paper, we present TaintMan, an ART-compatible

DTA framework that can be deployed on unmodified and non-rooted Android devices. In TaintMan, the taint enforcement code is

statically instrumented into both the target application and the system class libraries to track data flow and common control flow. A

specially designed execution environment reconstruction technique, named reference hijacking, is proposed to force the target

application to reference the instrumented system class libraries. By enforcing on-demand instrumentation and on-demand tracking, the

performance overhead is significantly reduced. We have developed TaintMan and deployed it on two popular stock smartphones (HTC

One S equipped with Android-4.0 and Motorola MOTO G equipped with Android-5.0). The evaluation with malware samples and

real-world applications shows that TaintMan can effectively detect privacy leakage behaviors with an acceptable performance

overhead.

Index Terms—Dynamic taint analysis, information flow control, privacy leakage, static instrumentation, android, dalvik, DVM, ART
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1 INTRODUCTION

ANDROID has become the most widely used mobile oper-
ating system. It dominated the global smartphone mar-

ket with an 87 percent share in 2016 and continues to grow
steadily [1]. Meanwhile, such popularity of Android also
makes it more attractive to adversaries. A security report
from F-Secure highlights that Android accounts for 97 per-
cent of all mobilemalware [2]. Even in the official application
market (i.e., Google Play), there still exist a considerable
number of malware [3].

Among all the malicious activities of Android malware,
the most common one is stealing private information. As
shown in the work of Zhou et al. [4], 744 (59 percent) of the
total 1,260 Android malware samples collected from several
markets have been found to actively collect various private
information on the infected phones. Since mobile users are
increasingly relying on smartphones to store and handle

their personal data, the privacy-breaching malware will
pose a more significant threat to user privacy in the future.

In order to detect privacy leakage, there is a need for an
in-depth inspection of how private information is actually
used by an application. Dynamic taint analysis (DTA) [5], as
a mainstream information flow control technique, is quite
suitable for such a task. It can precisely monitor sensitive
information flow during application execution to examine
whether private data is transmitted out of the device.

On the Android platform, with the evolution of system
runtime and the development of malware technique, three
rational but challenging demands are proposed on the design
and implementation of a DTA framework. First, it requires
the DTA framework to beworkable in the newAndroid Run-
Time (ART) environment introduced since the 5.0 release.
Second, it requires the DTA framework to be deployable on
real devices for capturing evasive behaviors that are inacti-
vated in the analyzed environment (e.g., the emulator). Third,
it requires the DTA framework to be feasible to mitigate the
security threat caused by common implicit information flow.

There are some existing DTA approaches for Android, of
which TaintDroid [6] and DroidScope [7] are the two repre-
sentative ones. TaintDroid provides a realtime system-wide
information-flow tracking by instrumenting the Dalvik
virtual machine (DVM) interpreter. It is the core of many
malware detection systems [8], [9]. DroidScope provides
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virtualization-based malware analysis support by instru-
menting the Android emulator. With DroidScope, analysts
can perform information flow analysis of the whole Android
system running in the emulator.

These existing DTA approaches have proven to be valu-
able in analyzing privacy leakage behaviors in the past few
years. Unfortunately, they do not fully satisfy the aforemen-
tioned three real-world demands. Most prominent problem
of the TaintDroid-like interpreter-based approaches is that
they cannot work in the ART runtime environment. In ART,
the DVM interpreter is replaced with an on-device compiler
suite. Consequently, the interpreter-based approaches
lack their instrumentation target and hence are not applica-
ble anymore. For those DroidScope-like emulator-based
approaches, the most prominent problem is that they cannot
be deployed on real devices. Nowadays, sophisticated mal-
ware samples have begun to employ anti-analysis technique
to evade detection. Especially, they will inactivate their mali-
cious logic if they perceive that they are not executed on
the real device [10]. Consequently, the emulator-based
approaches are ineffective in capturing evasive behaviors of
the state-of-the-art malware. In addition, almost all the exist-
ing Android DTA approaches only concern explicit informa-
tion flow caused by data dependence, while completely
ignore the impact of implicit information flow (IIF) caused
by control dependence. Our prior work [11] has demon-
strated the effectiveness and efficiency of IIF in transmitting
sensitive data. Real-world malware samples are found to
leverage IIF. It is not only a theoretical threat but a reality.

Based on the above discussion, we argue that it is neces-
sary to design and implement a DTA framework for the
ART runtime environment on real smartphone devices to
track data flow and common control flow. In this paper, we
present TaintMan, an ART-compatible DTA framework that
can be conveniently deployed on unmodified and non-
rooted stock Android devices. To mitigate the threat of IIF,
we develop a tracking algorithm based on our prior work
[11] to track a special kind of control dependence called
strict control dependence, which highly resembles the nature
of data dependence and hence is most likely to be leveraged
for attacks. Different from most existing DTA approaches,
TaintMan is implemented via static instrumentation, rather
than dynamic instrumentation. Given a suspicious applica-
tion, analysts can use TaintMan to automatically instrument
its bytecode file(s) with taint enforcement code that achieves
information-flow tracking. The instrumented application is
installed and run on the smartphone directly. During execu-
tion, taint tracking will be performed simultaneously as if it
were a part of the application‘s functionality.

It should be noted that tainted data can be propagated
via both application code and system class code. It is insuffi-
cient to only instrument application code for tracking taint
propagation paths involving system class libraries. In
TaintMan, to address the problem, both the target applica-
tion and the system class libraries are instrumented with
taint enforcement code. By instrumenting system class
libraries, we can provide an instruction-level taint tracking
completely covering the underlying system classes. It is
more precise than the approaches relying on method sum-
maries to model the behaviors of the underlying system
classes [12], [13].

However, making the target application adopt the instru-
mented libraries is not a trivial task. In Android, system class
libraries are placed in a specific system folder that is only
writable for the root user. Without rooting the device, it is
impossible to rewrite or replace the original system class
libraries with their instrumented counterparts. To this end,
we propose reference hijacking, a novel technique to recon-
struct a new execution environment for the target applica-
tion, where the system class libraries can be loaded from a
configurable location instead of the default folder. With this
technique, the reference of the target application to the sys-
tem class libraries can be redirected to their instrumented
counterparts. Eventually, the information flow involving the
underlying system classes can also be effectively tracked.

For a DTA framework to be practical, its performance
overhead should be acceptable. The most existing DTA
approaches always instrument and track all instructions
without discrimination, hence suffer from an unnecessarily
high performance overhead. In TaintMan, we enforce on-
demand instrumentation and on-demand tracking to opti-
mize the performance. First, static analysis is conducted to
identify themethods that can propagate taints acrossmethod
scope. Second, two versions of bytecode are prepared for
each identified method: a non-tracked version and a tracked
version. The version to be executed is determined at runtime
by observing whether the method actually imports taint
from the scope outside the method. As such, the instrumen-
tation and tracking only occur when necessary. In addition,
we store the taint tags in an efficient way so that they can be
conveniently accessed. We also refine the taint propagation
logic for each kind of instruction to allow taint tracking to be
implemented with as little code as possible. These elaborate
designs dramatically reduce the performance overhead.

We have developed TaintMan and deployed it on two
popular stock smartphones: HTC One S equipped with
Android-4.0 andMotorolaMOTOG equippedwithAndroid-
5.0. We evaluate TaintManwith three sets of application sam-
ples: 150 malware samples selected from the Android Mal-
ware Genome Project [14], 100 popular applications collected
frommultiplemarkets [15], [16], [17], [18], and 9 proof-of-con-
cepts and 2 real-world malware samples leveraging IIF [11].
The evaluation results show that TaintMan can effectively
detect privacy leakage behaviors. In addition, the perfor-
mance and storage overhead of TaintMan are acceptable for
analysis purposes. The evaluation with a standard bench-
mark shows that TaintMan incurs 42.3 percent performance
overhead for tracking both data dependence and strict control
dependence without optimization and 28.9 percent with opti-
mization. The evaluation with real-world applications shows
that TaintMan has no noticeable interference on the interac-
tive behaviors of applications. The size of the instrumented
applications is about 23 percent larger than the original ones,
and the size of the instrumented system class libraries are
about three times as large as the original ones.

In summary, the main contributions of this paper are the
following:

� We present TaintMan, an ART-compatible dynamic
taint analysis framework that can be conveniently
deployed on stock smartphones without flashing or
rooting devices.
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� We enhance TaintMan with a tracking algorithm to
track a special kind of control dependence, which
highly resembles the nature of data dependence and
hence is most likely to be leveraged for attacks.

� We propose a novel execution environment re-con-
struction technique to force the target application to
reference the instrumented system class libraries. As
a result, taint tracking can completely cover both the
target application code and the system classes at the
instruction level.

� We enforce on-demand instrumentation and on-
demand tracking to avoid unnecessary taint analysis
whenever possible. In addition, we design efficient
taint tag storage and refine taint propagation logic to
implement taint tracking with as little code as possi-
ble. These optimizations dramatically reduce the
performance overhead.

2 BACKGROUND

2.1 Android Application Model

Android applications are mainly developed in Java, and
converted into the customized Dalvik bytecode langauge
format to be stored in bytecode file(s). 1 In the DVM runtime
environment (Android version 4.4 and below), the bytecode
is interpreted by the Dalvik virtual machine at runtime,
with hot traces and functions being just-in-time (JIT) com-
piled into native code for execution. In the ART runtime
environment (Android version 5.0 and above), the bytecode
is completely compiled into native code at install time and
executed directly at runtime without any interpretation.

The lifecycle of an application process is managed by the
Activity Manager Service (AMS). In particular, when start-
ing an application, AMS will create a new process for it by
forking from a special process, called Zygote. The Zygote
process is created during the system boot-strap. It initializes
an execution environment, which will be inherited by all
forked application processes. Especially, the execution envi-
ronment inherited from Zygote will load system classes
from the default system class libraries.

Android provides a default Application class as the entry
point of an application. Developers can specify customized
Application class in the application‘s manifest file. When an
application is about to start, its Application class is instanti-
ated. The class initialization method of the Application class
will be invoked before any component is activated. 2

2.2 Dalvik Bytecode Language

Dalvik bytecode language is register based. All computa-
tions are performed via registers. Dalvik has six kinds of
variables, including local variables, parameters (actual or
formal), return values, exceptions, class fields (static or
instance) and arrays. Values of local variables and parame-
ters are stored in registers and can be directly manipulated.

Return values are moved from the callee‘s registers to the
caller‘s registers after invocation. Exceptions are passed
from the registers at the exception site to the registers in the
exception handler. Values of class fields and array elements
are loaded from and stored to registers before and after use.

The instruction set of Dalvik bytecode language has a
variable length. The length of an instruction is decided
by both the number of its operands and the size of each
operand. Every instruction has certain restrictions on the
maximal index of its operand registers. In the case that
an instruction has to manipulate a register whose index
exceeds the index restriction, it is expected that the register
content get moved from the original register to a lower-
indexed register before operation, and moved from the
lower-indexed result register to the higher-indexed register
after operation.

3 APPROACH OVERVIEW

TaintMan has two major components: an instrumentation
tool that runs on the desktop computer, and a reference
hijacking tool that runs on the smartphone device. The
instrumentation tool, named Instrumentor, is used for stati-
cally instrumenting both the target application and the sys-
tem class libraries. It is implemented on top of Smali/
Baksmali [19], an open-source assembler/disassembler for
the Dalvik bytecode language. The reference hijacking tool is
used for reconstructing a new execution environment for the
target application, forcing it to reference the instrumented
underlying libraries. It is accomplished by a customized
Application class RHApplication and an executable program
file RHZygote. RHApplication is used to store/resume neces-
sary information and reset the current program state of the
application process. RHZygote mimics the function of
Zygote to construct a new execution environment.

Fig. 1a shows the instrumentation procedure of an appli-
cation. First, a reverse engineering tool, Apktool [20], is
employed to decompress the original application package.
Second, by using the Instrumentor tool, the taint enforce-
ment code is added to the original bytecode file(s). Third, the
manifest file is modified to alter the entry class of the target
application, making it point to the reference hijacking proce-
dure. Finally, these modified files along with the remaining
resource files are packed, generating the instrumented appli-
cation. The generated application will be installed on the
device as the substitution of the original counterpart.

Fig. 1b shows the instrumentation procedure of a system
class library. First, the system class library file is exported
from the device. Then, the Instrumentor tool is used to
instrument the original system class library with the taint
enforcement code, generating the instrumented system class
library file. Finally, the instrumented system class library
file is imported into the device and placed in a specific
folder. This folder is set to be readable but non-writable for
normal application processes. As a result, the instrumented
system class library file can be securely shared by all appli-
cations for space saving. 31. By default, every application has a single .dex file. If the applica-

tion code grows beyond the limits of what is allowed in a single .dex file
(e.g., number of classes, number of methods, etc.), the code will be split
over multiple .dex files.

2. We treat the class initialization method (rather than the onCreate()
method) of the Application class as the entry point of an application. It is
always executed before the initialization of any component.

3. We package the instrumented libraries into an assistant applica-
tion as its asset files. When the assistant application is installed on the
device, these libraries will be released to a private folder of the applica-
tion, which is set readable but non-writable for other applications.
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The overall workflow of the Instrumentor tool is shown
in Fig. 2. Given an application or a library, Instrumentor
first performs static analysis to identify the taint-related
methods, as well as computes auxiliary information, such
as control flow graph (CFG), post dominator tree (PDT),
and static single assignment (SSA). Then, the identified
methods are instrumented with the traditional data flow
tracking code (detailed in Section 4.2) and strict control
dependence tracking code generated under the help of the
auxiliary information (detailed in Section 4.3).

When the instrumented application runs on the device,
the customized RHApplication class is instantiated and its
class initialization method is invoked to execute the RHZy-
gote program. As a result, reference hijacking will be
adopted to reconstruct a new execution environment for the
target application, in which the instrumented system class
libraries are referenced instead of the original ones. During
the application execution, the taint enforcement code is exe-
cuted to enforce the taint tracking functionality. Specifically,
when the application accesses private information, taint
tags are attached to the variables storing the private data.
These taint tags are propagated to other variables whose
values are transitively derived from the tainted variables.
When the tainted data are about to go out of the application
scope, a dialog box is shown to inform the analysts about
the source, destination and content of the tainted data.

4 DESIGN AND IMPLEMENTATION

TaintMan provides an effective and efficient application-
wide, instruction-level, variable-granularity dynamic taint
analysis for Android applications. This section illustrates the
detailed design and implementation issues of TaintMan,
including: (1) how to store taint tags; (2) how to implement
taint tracking for data dependence and strict control depen-
dence; (3) how to enforce on-demand instrumentation and
on-demand tracking optimization; and (4) how to

reconstruct the execution environment for referencing to the
instrumented underlying libraries.

4.1 Taint Tag Storage

TaintMan provides a 32-bit vector for each Dalvik variable to
encode taint tag, allowing at most 32 different taint mark-
ings. Instead of directly modifying the internal runtime data struc-
ture to allocate extra space for taint tags, TaintMan requests taint
storage by declaring extra variables in the bytecode. Great efforts
need to be taken to ensure that the taint variables can be
accessed directly within the application context, and to
ensure that the allocation of taint variables would not violate
the semantic restrictions of the Dalvik bytecode language.

4.1.1 Local Variables and Formal Parameters

In Dalvik, both local variables and formal parameters are
stored in the registers allocated on an internal stack. When a
method is invoked, a new stack frame is created for its regis-
ters. Particularly, a method‘s k formal parameters are
always located in the last k registers of the stack frame. In
order to store the taint tags for each local variable and for-
mal parameter in the stack frame, we should expand the
stack frame to twice as large as its original size by doubling
the number of the method‘s requested registers. Besides, an
extra register is allocated, which will be used as a temporary
register during taint propagation. Note that the expansion
of the stack frame only impacts the number of local registers
and has no impact on the number of parameters. The taint
tags of parameters are stored in the expanded stack frame
as normal local registers. Consequently, the method proto-
type remains unchanged.

Fig. 3 illustrates how taint tags are stored for local varia-
bles and formal parameters. Given a method requesting
two registers for a single local variable and a single formal
parameter, the original stack frame of the method is shown
in Fig. 3a. After increasing the number of the requested
registers, the expanded stack frame stores five registers, as
shown in Fig. 3b. Formal parameter para0 stored in register

Fig. 2. Workflow of the Instrumentor tool.

Fig. 1. Instrumentation of an application and a system class library. The instrumentation process is performed on the desktop computer.

Fig. 3. Taint tag storage for local variables and formal parameters.
Shadow registers are presented as grayed boxes.
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v1 of the original stack frame will be stored in register v4 of
the expanded stack frame. This may lead to application
crash when it accesses para0 via its original register index.
To solve this problem, the value of register v4 is moved to
register v1. The final stack frame is arranged as shown in
Fig. 3c. The original registers are placed at the top of the
frame, followed by an extra temporary register, and the
taint tags of the original registers are stored in the shadow
registers placed at the bottom of the stack frame.

4.1.2 Actual Parameters, Return Value and Exception

Actual parameters are also passed via the internal stack.
Before invoking a method, the caller places the actual
parameters on the top area of its stack frame, which is over-
lapped with the callee‘s stack frame, so that they will
become the callee‘s formal parameters. A natural idea is to
allocate taint tag storage in the overlapped area. However,
this requires declaring additional parameters in the method
prototype, which may result in extensive modifications of
the original application instructions. In TaintMan, we take a
different approach: place the taint tags of the caller‘s actual
parameters in a global taint tag list. In this way, we keep the
method prototype unchanged, which is very useful for not
breaking features like reflection. The return value (if exe-
cuted normally) and the thrown exception (if executed
abnormally) of a method are stored in special internal varia-
bles maintained by the runtime. We also place their taint
tags in the global taint tag list.

In order to support recursive method invocations, the
taint tag list should be reusable at each call site and return
site. To this end, at the entry of the callee, the taint tags of
actual parameters are taken from the taint tag list and stored
in the formal parameters‘ shadow registers. When the flow
returns to the caller, the taint tag of the return value or the
thrown exception is taken from the taint tag list and stored
in the corresponding shadow register. As such, the taint tag
list can be reused for the subsequent method invocations.

In a multi-threaded program, there may be more than
one thread invoking the same method at the same time. As
a result, the taint tag list may be simultaneously read or
written by multiple threads. To ensure data consistency, the
taint tag list should be thread-specific. In Java, each thread
corresponds to a Thread instance and can be correlated with
a ThreadLocal object to store thread-specific data. An intui-
tive way is to store the taint tag list for each thread in a
ThreadLocal object. However, it is not very efficient, since
accessing ThreadLocal storage involves method invocations
and hash mappings. To this end, we store the taint tag list
for each thread in an instance field additionally inserted
into the Thread class, in which the access only requires a
simple field operation.

4.1.3 Class Fields

Taint tag storage is allocated for each class field (static or
instance) by inserting a shadow field into the class. There is a
caveat that the Android runtime has some restrictions on the
structure of certain system classes. Specifically, the runtime
restricts that the value field of the String class should be
placed at a fixed offset of the class structure and the wrapper
classes (e.g., Integer) should have only one instance field.

Inserting shadow fields into these classes may violate the
restrictions, resulting in abnormal termination of the applica-
tion. In order not to violate the field offset restrictions,
shadow fields should be placed after all of the original fields.
Since the class fields are arranged according to the alphabet
order of field name, this can be achieved by prefixing the
names of the shadow fields with the composition of the last
element in the alphabet set (e.g., “zzz_”). To avoid violating
the field number restrictions for wrapper classes, we create a
new class named TMObject that contains the shadow field,
and make it the super class of the wrapper classes. In this
way, the wrapper classes can inherit the shadow field from
TMObjectwithout increasing the field number.

4.1.4 Arrays

We store only one taint tag per array to minimize storage
overhead. In Dalvik, array is a built-in class. We cannot add
an additional shadow filed to the array class, nor can we
make the array class inherit from an extra super class con-
taining shadow fields. To this end, we maintain a taint hash
map between array objects and taint tags. A hash item is cre-
ated only when an array is actually tainted. In Java, String is
a frequently used class. The data of a String object is stored
as a character array referenced by its value field. We define
the taint of a String object as the taint of the character array
referenced by its value field.

4.2 Tracking Data Dependence

TaintMan adopts the classic taint propagation logic for
tracking data dependence: given an instruction, the taint
value of its destination operand is set to the union of the
taint values associated with its source operand(s). TaintMan
implements taint propagation logic by adding taint enforcement
code into the target bytecode file itself, rather than into the run-
time interpreter or emulator. The instrumented taint enforce-
ment code is written as Dalvik instructions. In general, the
fewer taint enforcement instructions are used, the less over-
head is incurred. Hence, it is expected to use as few instruc-
tions as possible to implement the taint propagation logic.
The taint propagation logic for an instruction can be further
refined to more specific ones with consideration of the rela-
tionship among operands. Generally, the refined taint prop-
agation logic requires fewer taint enforcement instructions
than the original one.

The taint propagation logic for tracking data dependence
is shown in Table 1. In the table, tðvÞ is the taint map return-
ing the taint tag of variable v. For concise representation, we
group the instructions with similar operational semantics
into a single abstract instruction. Since the original imple-
mentation of TaintMan [21], we further refine the taint prop-
agation logic for each kind of instruction and elaborately
design appropriate taint enforcement code for the refined
logic. In the rest of this section, we take the binary operation
instruction and the field access instruction as examples to
illustrate how to implement taint propagation logic for
tracking data dependence.

4.2.1 Taint Propagation for Binary Operation

The operational semantic of the binary operation instruction
binary-op vA; vB; vC is vA  vB � vC , meaning to perform the
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specified binary operation on the two source registers vB
and vC , and store the result in the destination register vA.
The coarse taint propagation logic of the instruction is
tðvAÞ ¼ tðvBÞ [ tðvCÞ, which can be refined as shown in
Rule D4 of Table 1. In particular, when the instruction takes
the same register as its source and destination operands
(i.e., A ¼ B ¼ C), no taint propagation is needed. By refin-
ing taint propagation logic in different conditions, we can
simplify the taint propagation operation as much as
possible.

In the case that the binary-op instruction takes different
registers as its operands (i.e., A 6¼ B 6¼ C), the refined taint
propagation logic is still tðvAÞ ¼ tðvBÞ [ tðvCÞ. This propa-
gation logic is primarily implemented by adding the bit-
wise-OR instruction or-int vA

0; vB0; vC 0 before the binary-op
instruction. Here, vA

0, vB
0 and vC

0 stand for the shadow
registers of vA, vB and vC respectively. Note that the or-int
instruction requires all of its operand registers are indexed
less than 256. If a certain shadow register is indexed higher
than or equal to 256, a lower-indexed register needs to be
selected as a substitute. The value of the shadow register
should be moved forward to and back from the substitute
register before and after the taint propagation.

According to different cases of the indexes of shadow
registers, the taint propagation logic tðvAÞ ¼ tðvBÞ [ tðvCÞ
can be implemented by different compositions of taint
enforcement instructions, as shown in Table 2. Take Case 8
as an example. In this case, the shadow registers vA

0, vB0 and
vC
0 are all indexed higher than or equal to 256, while the

temporary register vT and the destination operand vA of the
binary-op instruction are indexed less than 256. We select vT
and vA as the substitute registers for vB

0 and vC
0 respec-

tively, and reuse vA as the substitute register for vA
0. Since

the current values of vT and vA have no effect on the subse-
quent instructions after the instrumentation point, there is
no need to save and restore their values. The taint enforce-
ment instructions for Case 8 are composed of four taint
enforcement instructions, which occupy 17 bytes.

4.2.2 Taint Propagation for Field Operation

The operational semantic of the field access instruction iput-
op vA; vB; f is vB:f  vA, meaning to store the value of the
source register vA to the instance field f of the specified
object in the destination register vB. The coarse taint propa-
gation logic of the instruction is tðvB:fÞ ¼ tðvAÞ, which can
be refined as shown in Rule D8 of Table 1. In particular,

TABLE 1
Taint Propagation Logic for Tracking Data Dependence

Rule Instruction Semantics Coarse Taint
Propagation Logic

Condition Refined Taint
Propagation Logic

Description

D1 const-op vA, c vA  c tðvAÞ ¼ 0 N/A tðvAÞ ¼ 0 Clear vA taint

D2 move-op vA; vB vA  vB tðvAÞ ¼ tðvBÞ A = B N/A Do nothing
A 6¼ B tðvAÞ ¼ tðvBÞ Set vA taint to vB taint

D3 unary-op vA; vB vA  �vB tðvAÞ ¼ tðvBÞ A = B N/A Do nothing
A 6¼ B tðvAÞ ¼ tðvBÞ Set vA taint to vB taint

D4 binary-op vA; vB; vC vA  vB � vC tðvAÞ ¼ tðvBÞ [ tðvCÞ

A = B = C N/A Do nothing
B ¼ C&&A 6¼ B tðvAÞ ¼ tðvBÞ Set vA taint to vB taint
A ¼ B&&A 6¼ C tðvAÞj ¼ tðvCÞ Combine VC taint to vA taint
A ¼ C&&A 6¼ B tðvAÞj ¼ tðvBÞ Combine vB taint to vA taint
A 6¼ B 6¼ C tðvAÞ ¼ tðvBÞ [ tðvCÞ Set vA taint to vB taint [ vC taint

D5 sget-op vA, f vA  f tðvAÞ ¼ tðfÞ N/A tðvAÞ ¼ tðfÞ Set vA taint to field f taint

D6 sput-op vA, f f  vA tðfÞ ¼ tðvAÞ N/A tðfÞ ¼ tðvAÞ Set field f taint to vA taint

D7 iget-op vA; vB, f vA  vB:f tðvAÞ ¼ tðvBÞ [ tðvB:fÞ A = B tðvAÞj ¼ tðvB:fÞ Combine vB:f taint to vA taint
A 6¼ B tðvAÞ ¼ tðvBÞ [ tðvB:fÞ Set vA taint to object vB taint [

field vB:f taint

D8 iput-op vA; vB, f vB:f  vA tðvB:fÞ ¼ tðvAÞ A = B N/A Do nothing
A 6¼ B tðvB:fÞ ¼ tðvAÞ Set field vB:f taint to vA taint

D9 aget-op vA; vB; vC vA  vB½vC � tðvAÞ ¼ tðvB½��Þ [ tðvCÞ
A ¼ B&&A 6¼ C tðvAÞj ¼ tðvCÞ Combine index vC taint to vA taint
A ¼ C&&A 6¼ B tðvAÞj ¼ tðvB½��Þ Combine array vB½�� taint to vA taint

A 6¼ B 6¼ C tðvAÞ ¼ tðvB½��Þ [ tðvCÞ Set vA taint to array vB½�� taint [
index vC taint

D10 aput-op vA; vB; vC vB½vC �  vA tðvB½��Þj ¼ tðvAÞ N/A tðvB½��Þj ¼ tðvAÞ Combine vA taint to array vB½�� taint
D11 return-op vA r vA tðrÞ ¼ tðvAÞ N/A tðrÞ ¼ tðvAÞ Set return value r taint to vA taint

D12 move-result-op vA vA  r tðvAÞ ¼ tðrÞ N/A tðvAÞ ¼ tðrÞ Set vA taint to return value r taint

D13 invoke-op �vapar;m �vfpar  �vapar tð�vfparÞ ¼ tð�vaparÞ N/A tð�vfparÞ ¼ tð�vaparÞ Set formal param taints to actual
param taints

D14 throw-op vA e vA tðeÞ ¼ tðvAÞ N/A tðeÞ ¼ tðvAÞ Set exception e taint to vA taint

D15 move-exception-op vA vA  e tðvAÞ ¼ tðeÞ N/A tðvAÞ ¼ tðeÞ Set vA taint to exception e taint

Register variables are denoted as vX , with X as the register index. Class static fields are denoted as f . Class instance fields are denoted as vY :f , where vY is an
instance object reference. Array variables are denoted as vZ ½��, where vZ is an array object reference. vfpar and vapar respectively stand for the formal parameter vec-
tor and the actual parameter vector. r is the return value and e is the thrown exception. c and m stand for a constant and a method respectively. tðvÞ is the taint
map returning the taint tag of variable v.
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when the instruction takes the same register as its source
and destination operands (i.e., A ¼ B), no taint propagation
is needed, since the taint to be attached to the instance field
is implicated in the taint of the identified object.

In the case that the iput-op instruction takes different
registers as its operands (i.e., A 6¼ B), the refined taint prop-
agation logic is still tðvB:fÞ ¼ tðvAÞ. This propagation logic
is primarily implemented by adding the field setting
instruction iput vA

0; vB; f 0 before the iput-op instruction.
Here, vA

0 and f 0 respectively stand for the shadow register
of vA and the shadow field of f . Note that the iput instruc-
tion requires all of its operand registers are indexed less
than 16. Table 3 shows the implementation of the taint prop-
agation logic tðvB:fÞ ¼ tðvAÞ with consideration of the
indexes of shadow registers. Take Case 3 as an example,
where the shadow register vA

0 and the temporary register
vT are indexed higher than or equal to 16. We select vA as
the substitute register for vA

0. Since vA may be used after the
instrumentation point, we need to save and resume its value
before and after the taint propagation. The taint enforce-
ment instructions for Case 3 are composed of four taint
enforcement instructions, which occupy 12 bytes.

4.3 Tracking Strict Control Dependence

Compared with the explicit information flow, the implicit
information flow is more difficult to track. In general, it is
intractable to perform sound and complete tracking of IIF
[5]. In TaintMan, we mitigate the threat of IIF by developing
a tracking algorithm based on our prior work [11] (a short
paper). The algorithm tracks a special kind of control
dependence called strict control dependence, whose nature
highly resembles that of data dependence and hence is most

likely to be leveraged for attacks. The basic idea of the SCD
tracking algorithm is to selectively taint a predicate if it has
strong correlation with sensitive information. All assign-
ments guarded by such a tainted predicate are tainted. For
better efficiency, we adopt a lazy tainting policy, which
postpones the tainting of control dependence to the post-
dominator of a control structure.

4.3.1 Identifying SCD Branches

A statement s is strictly control dependent on a predicate p
with vp the predicate variable, if the execution of s can pre-
cisely infer the value of vp. The branch leading to the exe-
cution of s is called the SCD branch. Consider the example
in Fig. 4a. If the assignment statement at line 03 is exe-
cuted, the attacker can precisely infer the value of the pred-
icate variable secret in predicate at line 02 is 1. Thus, there
is an SCD between the assignment statement and the if
statement. The true branch of the if statement is the SCD
branch. As a counter example, consider the code snippet in
Fig. 4b. There is control dependence between the assign-
ment statement at line 03 and the if statement at line 02.
However, from the execution of the assignment statement,
we can only infer that the predicate variable secret is larger
than 1. Little information is revealed. Thus, this control
dependence is not SCD.

The first step of SCD tracking is to identify SCD
branches through static analysis. Currently, our analysis
only concentrates on SCDs caused by equivalence testing.
It first considers the common conditional structures. For an
if structure, if it is an equivalence test (i.e., ==), the true
branch is an SCD branch; or if it is a non-equivalence pred-
icate (i.e., !=), the false branch is an SCD branch. For a
switch structure, if a branch can be reached from only one
case value, it is an SCD branch. We also handle other IIF-
inducing control structures (e.g., exception-prone instruc-
tions and polymorphic method invocations) by explicitly
converting them into either the if structure or the switch
structure, depending on the number of their branches. The
explicit if or switch statements are further instrumented to
track SCD.

TABLE 2
Enforcement of tðvAÞ ¼ tðvBÞ [ tðvCÞ in Different Cases

Case Condition Taint Enforcement
Instructions (TEIs)

TEIs
Count

TEIs
Bytes

1
A0 < 256 && B0 < 256

&& C0 < 256
or-int vA

0; vB 0; vC 0 1 4

2
A0 < 256 && B0 � 256

&& C0 < 256
move/from16 vA

0; vB 0

or-int vA
0; vA 0; vC 0

2 8

3
A0 < 256 && B0 < 256

&& C0 � 256
move/from16 vA

0; vC 0

or-int vA
0; vA 0; vB 0

2 8

4
A0 � 256 && B0 < 256

&& C0 < 256
or-int vA; vB 0; vC 0

move/16 vA 0; vA
2 9

5 A0 < 256 && B0 � 256
&& C0 � 256

move/from16 vA 0; vB 0

move/from16 vA; vC
0

or-int vA
0; vA 0; vA

3 12

6 A0 � 256 && B0 � 256
&& C0 < 256

move/from16 vA; vB
0

or-int vA; vA; vC
0

move/16 vA
0; vA

3 13

7 A0 � 256 && B0 < 256
&& C0 � 256

move/from16 vA; vC 0

or-int vA; vA; vB 0

move/16 vA 0; vA
3 13

8 A0 � 256 && B0 � 256
&& C0 � 256 && T < 256

move/from16 vT ; vB
0

move/from16 vA; vC
0

or-int vA; vT ; vA
move/16 vA

0; vA

4 17

9 A0 � 256 && B0 � 256
&& C0 � 256 && T � 256

move/from16 vA; vB
0

move/16 vT ; vC
move/from16 vC; vC 0

or-int vA; vA; vC
move/16 vA

0; vA
move/from16 vC; vT

6 22

TABLE 3
Enforcement of tðvB:fÞ ¼ tðvAÞ in Different Cases

Case Condition Taint Enforcement
Instructions (TEIs)

TEIs
Count

TEIs
Bytes

1 A0 < 16 iput vA
0; vB; f 0 1 3

2 A0 � 16 && T < 16 move/from16 vT ; vA 0

iput vT ; vB; f 0
2 6

3 A0 � 16 && T � 16

move/from16 vT ; vA
move/from16 vA; vA 0

iput vA; vB; f 0

move/from16 vA; vT

4 12

Fig. 4. Example of SCD and non-SCD.
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4.3.2 Lazy Tainting Policy

For better performance, we propose a lazy tainting policy,
instead of on-the-fly tainting. The lazy tainting policy is
implemented with the information of CFG, PDT and SSA
computed during the static analysis phase. More specifi-
cally, we leverage CFG and PDT to determine the effective
scope of a control structure, and leverage SSA to understand
the assignments of variables in different branches. In SSA
representation, each assignment of a variable generates a
new version for the variable. If a variable has different
assignments in different branches, a F function is added at
the merge node (i.e., the immediate post-dominator), which
lists the versions of the variable along each branch.

The rules for lazy strict control dependence tainting are
shown in Fig. 5. When encountering a predicate statement,
the taint of the predicate variable is stored in a temporary
variable (Rule C1). At each immediate post-dominator, the
algorithm examines each variable that is assigned in an SCD
branch to check whether its value is distinctive from other
branches. If so, it will propagate the taint of the current con-
trol structure to the identified variable (Rule C2).There is a
special consideration for the lazy tainting policy. An SCD
branch may contain some assignment statements whose val-
ues may immediately escape the branch (e.g., assignments to
global variables). When encountering these statements in an
SCD branch, we propagate taints immediately (Rule C3).

4.4 Optimization

To reduce performance overhead, we enforce on-demand
instrumentation (before execution) and on-demand tracking
(at runtime) to avoid unnecessary taint analysis whenever
possible. In such a two-staged optimization solution, we
first preliminarily identify the potential taint-related meth-
ods in a light-weight fashion, then make a precise tracking
decision depending on the taint situation at runtime. It ena-
bles us to achieve the same optimization goal as [22] with-
out heavy and complex global static data flow analysis.

4.4.1 On-Demand Instrumentation

With regard to taint analysis, methods can be divided into
three categories: source-related APIs that can introduce new
taints into the application, sink-related APIs that can trans-
mit taints out of the application, and other methods that can
only propagate taints within the application. A method
needs to be instrumented only if it may exist in an execution
path from a source-related API to a sink-related API. For
programs written in a Java-like feature-rich language, it is
very difficult, if not impossible, to identify all possible
source-to-sink paths. To this end, we propose a conservative

approach based on the observation: a method may exist in a
source-to-sink path, only if it could import tainted data
from and export tainted data to the outside of the method.

In Android, data importation and exportation of a
method have to be conducted by passing parameters or exe-
cuting special Dalvik instructions. We analyze the Dalvik
bytecode language to learn the effect of instructions on data.
The analysis result is shown in Table 4. According to their
effects on data, the Dalvik instructions can be categorized
into three types: (1) data-propagation instructions (DPIs)
that propagate data within the method; (2) data-importation
instructions (DIIs) that import data from the outside of the
method; and (3) data-exportation instructions (DEIs) that
export data to the outside of the method.4

Note that in addition to normal data flow, taints can also
be propagated through exceptional data flow. The throw-op
instruction exports data as an exception object to the excep-
tion handler, and the move-exception-op instruction imports
data as an exception object from the exception site. The
exception site and the exception handler may locate across
the method boundary, and hence we treat throw-op instruc-
tion as an DEI and move-exception-op as an DII.

Based on the above analysis, we believe that a method
needs to be instrumented only if it satisfies the following
two conditions: (1) It has parameter(s) or contains at least
one DII; and (2) It contains at least one DEI. A light-weight
static analysis is performed before the instrumentation to
identify the methods satisfying both of the above condi-
tions. Only the identified methods are instrumented.

4.4.2 On-Demand Tracking

Even if a method could propagate taints across the method
scope (thus needs to be instrumented), it will not always
propagate taints on each execution instance. Indeed, only
when a method actually imports taints at runtime, can it
actually propagate taints. It means that an instrumented
method does not need to be tracked until the first time it
imports taints from the outside. Based on this idea, we pro-
pose the on-demand tracking technique to reduce the

Fig. 5. Rules for lazy strict control dependencee tainting. jxij denotes the
value of variable x of version i in SSA representation.

TABLE 4
Effect of Dalvik Instructions on Data

Instruction Semantics Effects on Data Type

const-op vA; c vA  c Reset data DPI
move-op vA; vB vA  vB Propagate within method DPI
unary-op vA; vB vA  � vB Propagate within method DPI
binary-up vA; vB; vC vA  vB � vC Propagate within method DPI
sget-op vA; f vA  f Import from static field DII
iget-op vA; vB; f vA  vB:f Import from instance field DII
aget-opvA; vB; vC vA  vB½vC � Import from array DII
move-result-op vA vA  r Import from return value DII
move-exception-op vA vA  e Import from exception site DII
sput-op vA; f f  vA Export to static field DEI
iput-op vA; vB; f vB:f  vA Export to instance field DEI
aput-op vA; vB; vC vB½vC �  vA Export to array DEI
return-op vA r vA Export to return value DEI
invoke-op �vapar;m �vfpar  �vapar Export to callee DEI
throw-op vA e vA Export to exception handler DEI

4. DIIs and DEIs can be treated as method-local sources and sinks
proposed in [23]. In TaintMain, we focus on their effect on data propa-
gation for optimization purpose.
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runtime overhead. For each instrumented method, there are
two versions of its bytecode: a non-tracked version and a
tracked version. When invoking a method, its non-tracked
version is executed by default. The control will transfer to
the tracked version when any taint is actually imported.

The non-tracked version and the tracked version coexist
in the instrumented method.5 In the non-tracked version,
only DIIs are monitored. Specifically, a conditional transfer
instruction is added after each DII to transfer the control to
the tracked version in the case that the imported data is
tainted. The conditional transfer instruction uses a symbolic
address (i.e., label) as its target address to avoid the complex
offset computation. In the tracked version, all DPIs, DEIs and
DIIs are monitored with taint enforcement code. For ease of
transfer from the non-tracked version, we introduce a label
after each DII. The execution logic of the original method still
remains unchanged, even if the control transfers from the
non-tracked version to the tracked version.

Take the system class method Logger$Stream.endIndent()
as an example. This method is to get a value from a static
field f , perform a binary operation, and put the result back
to the static field f . As shown in Fig. 6, the original method
bytecode contains sget-op, binary-op, sput-op and return-void
instructions. After instrumentation, there are two versions
of the method bytecode. In the non-tracked version, only
the sget-op instruction is monitored by a conditional control
transfer instruction (at Offset 0x0008). In the tracked ver-
sion, all the sget-op, binary-op, and sput-op instructions are
monitored with taint enforcement code. Besides, a label
(before Offset 0x001d) is introduced after the sget-op instruc-
tion. At runtime, when the sget-op vA; f instruction imports
taints from the static field f , the control will transfer from
Offset 0x0008 in the non-tracked version to Offset 0x001d in
the tracked version.

4.5 Reference Hijacking

The goal of reference hijacking is to take control over the ref-
erence of the target application to the underlying system
class libraries, so that it can be redirected to the instru-
mented alternatives.6 It is mainly achieved via a special
environment reconstruction procedure. By modifying the
application startup process, additional operations are intro-
duced to drive the application to restart with new environ-
ment variables (e.g., the library path). After restarting, the
target application will be executed in a new execution envi-
ronment, in which the instrumented system class libraries
are referenced instead of the original ones.

Fig. 7 depicts the startup process of an application. First,
a startComponent request is sent to AMS with the informa-
tion about the target application and the target component
(Step 1). AMS then creates a new process for the target
application by sending a startProcess request to Zygote (Step
2), making it fork a child process (Step 3). The forked pro-
cess inherits the execution environment from Zygote and
starts an application thread (Step 4), which will send an atta-
chApplication request to AMS (Step 5). As response, the
information about the target application and the target com-
ponent is sent to the forked process via two synchronous
messages (Step 6), which will be handled in sequence. Next,
the target application is instantiated (Step 7) to execute the
class initialization method (Step 8) and the onCreate()
method (Step 9) of the Application class. Finally, the target
component is launched (Step 10).7

Fig. 6. Instrumentation of method Logger$Stream.endIndent() for
enforcing on-demand tracking. Taint tags of register vX and field f are
denoted as vX

0 and f 0 respectively.

Fig. 7. Sequence diagram of the application startup process. Additional
steps introduced by the environment reset procedure are outlined with a
dashed rectangle.

5. The tracked version is placed next to the non-tracked version. To
ensure the instrumented method has a single entry and a single exit,
we wrap it with an operation at the start to check the taint of parame-
ters, and an operation at the end to update the taint of the return value.

6. System libraries are the core of the runtime environment, which
can be fully taken control of by reference hijacking. In addition to sys-
tem libraries, the runtime environment includes the OS kernel and sys-
tem services, which are beyond the control of reference hijacking.

7. The onCreate() method of an Activity, a Service or a Broadcast
Receiver is called after the onCreate() method of the Application class.
For a Content Provider, its onCreate() method is called before the
onCreate() method of the Application class, but after the class initializa-
tion method of the Application class.
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In practice, manufacturers often modify some aspects of
Android. However, as a fundamental feature of Android,
the application startup process is most likely to remain
unchanged. According to our empirical evaluation on a
variety of devices from prevalent manufacturers (e.g., Sam-
sung, LG, Motorola, HUAWEI, etc.) and most popular cus-
tom ROMs (e.g., CyanogenMod, MIUI, etc.), we found that
none of their customizations modify the application startup
process.

The environment reconstruction procedure is invoked
between Step 8 and Step 9. After Step 8, the customized
Application class RHApplication is instantiated to perform
Step a and Step b. Step a: store the target component infor-
mation. The target component information will be dis-
carded when the execution environment is reset. Thus, we
store it in a temporary file. Step b: execute the RHZygote
program file. It is done by making a native exec() call to
completely replace the current process with the RHZygote
program. As such, the current program state of the target
application is reset. Particularly, the reference of the target
application to the original system class libraries is cut off.
The RHZygote program performs Step c to Step e to prepare
a new execution environment. Step c: set environment vari-
ables. Specifically, the BOOTCLASSPATH environment vari-
able is set to specify the instrumented system class libraries
as the default class paths. Step d: start a new runtime
instance. The new runtime instance will load system class
libraries from the paths specified by the aforementioned
environment variable. Step e: restart an application thread.
The restarted application thread will interact with AMS to
reload the target application and instantiate its RHApplica-
tion class for a second time (Step f to Step h). At this time,
RHApplication performs Step i to obtain the information of
the target component from the temporary file. Finally, the
target application will finish the initialization at Step 9 and
launch the target component for execution at Step 10.

5 EVALUATION

We have developed TaintMan and successfully deployed it
on two prevalent devices. One is HTC One S (Android 4.0.4,
Dalvik). The other is Motorola Moto G (Android 5.0.2,
ART).

5.1 Effectiveness Evaluation

The effectiveness evaluation is performed with three sets of
applications. The first set is malware samples selected from
the Android Malware Genome Project dataset [14]. This
malware dataset contains 49 malware families, of which 26
are known to steal user‘s private information [4]. To seek a
trade-off between the test coverage and the test effort, we
randomly select 20 samples from each malware family (if it
has), generating 150 malware samples. The second set is
real-world applications collected from the official Android
market (i.e., Google Play [15]), the HTC vendor‘s market
(HTC Store [16]), and two third-party markets (App China
[17] and Slide Me [18]). From each market, we select 25
recently released free applications from the global popular-
ity list, generating 100 application samples. The third set
contains nine proof-of-concepts (PoCs) from our prior work
[11] and two real-world malware samples that leverage IIF.

As a comparison, we also deploy TaintDroid on the emula-
tor. For each tested target, we execute it in both TaintMan
and TaintDroid. We should note that both TaintMan and
TaintDroid do not distinguish benign privacy leakage (i.e.,
necessary for normal functionalities) from malicious pri-
vacy leakage, and treat any privacy leakage as suspicious.

5.1.1 Privacy Leakage Detection in Malware Samples

TaintMan report that all of the 150 malware samples leak
user‘s private information. Among them, 84 samples are
found to leak more than one kind of private infromation.
IMEI+PN is the most common combination of private in-
formation leaked by the malware samples. We use Taint-
Droid to confirm the detection results of TaintMan, and
found that none of them is false alarm. We should highlight
the detection of three malware samples from the Droid-
KungFu3 family. The privacy-breaching behavior of these
samples will not be triggered in the emulator. Specifically,
they obtain the IMEI string of the infected device, and
decide whether to send it to a remote server by judging
whether the IMEI string is all 0’s (which means it is running
in an emulator). Fortunately, when the three samples are
analyzed by TaintMan deployed in the real device, their
malicious behaviors are triggered and can be detected. We
list the detailed detection result in the supplemental mate-
rial, MalwareDetection.pdf.

5.1.2 Privacy Leakage Detection in Real-World Apps

Among all the 100 real-world applications, 51 are found to
leak at least one kind of private information, of which 47 are
detected by both TaintMan and TaintDroid. The rest four
applications are detected only by TaintMan and cannot be
executed in the TaintDroid environment. We manually ana-
lyzed the four applications and found they indeed access
private information (i.e., invoking the corresponding APIs)
and send them to a remote server (which are captured by
Tcpdump [24]). Take one of them, Write on Pictures, as an
example. As shown in Fig. 8a, we can see that the applica-
tion actually leaks the IMEI number of the victim‘s device to
a remote server. The potentially malicious behavior is suc-
cessfully detected by TaintMan. We should highlight that
besides the four applications that cannot run on TaintDroid,
there are two applications that can run on TaintDroid only
when the JIT compilation mode is disabled. It is probably
caused by the incompatibility due to modification of the
underlying system. The issue is shared by the existing
dynamic instrumentation approaches [7], [8]. We list the
detailed detection result in the supplemental material,
ApplicationDetection.pdf.

5.1.3 Implicit Information Flow Detection

The nine PoCs of our prior work [11] have been developed
based on a (potentially malicious) game application FMajor
[25]. During execution, FMajor obtains the host device‘s
phone number, propagates it via explicit information flow
(e.g., assignments), and finally sends it out via Internet. We
modify the procedure of phone number transmitting, insert-
ing an additional transformation step. This step employs a
certain IIF form to transform each character of the phone
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number string. After the transformation step, the trans-
formed string will hold the same value as the original phone
number string, although it is not achieved by data depen-
dence but rather IIF. TaintMan can detect the privacy leak-
age behaviors of all these PoCs. Fig. 8b shows a screenshot
of the detection. As a comparison, TaintDroid cannot detect
these PoCs, since it ignores the implicit information flow.
We also evaluate TaintMan with two real-world malware
samples from the DroidKungFu3 and AnserverBot family that
leverage IIF.8 TaintMan can successfully detect the privacy
leakage behaviors.

5.2 Performance Evaluation

5.2.1 Evaluation with Standard Benchmark

We use CaffeineMark [26] to evaluate the performance over-
head of TaintMan. CaffeineMark is a famous benchmark,
which uses a series of tests to measure the performance of
Java programs and represents it as scores. These scores
roughly correlate with the number of instructions executed
per second. For concise illustration, here we only present
the performance evaluation on the Motorola Moto G.

First, we evaluate the performance improvement by the
refined taint logic. In this evaluation, we disable on-demand
instrumentation and on-demand tracking optimizations,
and measure the instrumentation impact of the binary-op
instructions and the iput-op instructions individually. We
use the Loop test of CaffeineMark as a metric, which contains
binary-op and iput-op instructions in around 2,048 iterations.
Before refining, all binary-op and iput-op instructions are
instrumented as in the worst case (i.e., Case 9 of Table 2 and
Case 3 of Table 3). The performance improvements are 11
percent for binary-op instructions (11,704 before refining ver-
sus 12,992 after refining) and 6 percent for iput-op instruc-
tions (22,141 before refining versus 23,470 after refining).

Then, we evaluate the performance improvement by opti-
mizations. The evaluation result is shown in Fig. 9. We can
see that the overall performance overhead incurred by data
dependence and strict control dependence tracking is 42.3
percent (13,689 before instrumentation versus 7,898 after

instrumentation without optimization). The on-demand
instrumentation alone improves the performance by 9 percent
(7,898 before enforcing on-demand instrumentation versus
8,641 after enforcing). The combination of on-demand instru-
mentation and on-demand tracking improves the perfor-
mance by 23 percent (7,898 without optimization versus 9,737
with optimizations). After optimization, the performance
overhead is acceptable for analysis purpose.

5.2.2 Evaluation with Real-World Applications

We choose 10 real-world applications of different categories
to evaluate the impact of TaintMan on the interactive appli-
cations. We use application load time delay, Activity launch
time delay and user input response delay as metrics. The
result shows TaintMan incurs 980 ms application load time
delay, 320 ms Activity launch time and 170 ms user input
response delay. That means TaintMan has no noticeable
interference on the interactive behaviors of applications.

We also evaluate the space overhead of TaintMan. We
measure the sizes of the 10 real-world applications and the
sizes of system class libraries of HTC One S and Motorola
MOTO G before and after instrumentation respectively. The
result shows that the instrumentation process only increases
the application size by 23 percent (4.0 MB avg. versus 4.9
MB avg.). In addition, the instrumentation process

Fig. 9. Performance evaluation with CaffeineMark.

Fig. 8. TaintMan can successfully detect privacy leakage via explicit information flow and implicit information flow.

8. The DroidKungFu3malware sample (MD5: 1d908963aa08e2651908
17f88bb3ae3c) leverages IIF to encode the ICCID string. The AnserverBot
malware sample (MD5: c7d856feaab717913889e175105873cd) leverages
IIF to encode the IMEI string.
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approximately triples the total size of system class libraries
(15.8 MB versus 42.7 MB for HTC One S, 50.7 MB versus
127.3 MB for Motorola MOTO G). Since system class librar-
ies are shared by all instrumented applications and the size
increment is relatively small compared with the large pool
of applications, we argue the size overhead is acceptable.

6 DISCUSSION

Compatibility with ART. The instrumentation of TaintMan is
conducted at the bytecode level. The way we allocate taint
tag storage and enforce taint propagation logic ensures the
instrumented code to be valid as if it were generated nor-
mally from Java source code. For example, the allocation of
tag taint for field f is equivalent to defining a new field f 0 in
the class. The tracking code for field access instruction on
field f is equivalent to executing another field access
instruction on field f 0. For on-demand tracking, the two ver-
sions of bytecode act as two branches of the operation
checking whether any parameter is tainted. They are
wrapped to have a single entry and a single exit, just like a
normal method (see Fig. 6). Such instrumentation is trans-
parent to the underlying mechanism (e.g., optimizations) of
the ART compiler and will not be affected even if the ART
compiler is updated in the future.

Instrumentation at Bytecode Level. Dynamic taint analysis
can be implemented at different levels, including source-
level, runtime-level, library-level and bytecode-level [27]. In
TaintMan, we choose to implement the instrumentation at
the bytecode level. The reasons are as follows. First, for a
majority of real-world applications, we can only get their
bytecode, hence cannot implement the instrumentation at
the source level that requires source code. Second, we
expect TaintMan to be easily deployable on real devices,
hence cannot implement the instrumentation at the runtime
level that requires modifying or rooting devices. Third, sen-
sitive data can be propagated via system libraries as well as
the target application code, hence it would be insufficient if
we only implement the instrumentation at the library level.

Handling Dynamically Loaded Code. Android provides the
dynamic loading mechanism to allow applications to load
the Dalvik bytecode at runtime. TaintMan-like static-instru-
mentation-based DTA approaches fall short in handling
dynamically loaded code. To mitigate, we wrap the
dynamic loading APIs, such as DexFile.openDexFile(), to
allow the analysts to obtain the original bytecode file to be
loaded and specify an instrumented counterpart (generated
off-line) as the substitute of the original bytecode file. In the
future, we plan to port the instrumentation process into
smartphone device, so that the dynamically loaded code
can be instrumented on-the-fly.

Handling Integrity Checking. When an application is
instrumented, its integrity is inevitably destroyed. Some
applications may validate the integrity of their packages at
runtime. For such applications, extra efforts need to be
taken to bypass the integrity checking. In theory, complex
anti-reverse-engineering would make the integrity checking
robust against bypassing. However, our preliminary study
on the integrity checking mechanism of real-world applica-
tions shows that the most common ways to validating the
integrity of an application are examining its signature by

querying from the Package Manager Service (PMS) via
inter-process communication (IPC) calls, and examining the
checksums of some critical files (e.g., the digest file MANI-
FEST.MF) by invoking the corresponding framework APIs.
Since reference hijacking allows us to take full control over
the reference of the target application to the underlying sys-
tem libraries, we can redirect these IPC calls and APIs, so
that a forged value will be returned as if the operations
were carried on the original application package. As such,
we can bypass the integrity checking.

Combining Reference Hijacking with Boxify. Reference
hijacking requires to repackage the target application, hence
suffers from issues with re-signing applications. An ideal
way to avoid the problem is to combine reference hijacking
with a very recent work, Boxify [28]. Boxify leverages the
isolated process feature of Android to make the target appli-
cation run in a monitored sandbox. The reference hijacking
technique can be introduced in the isolated process to con-
struct a new sandbox environment for the monitored appli-
cation, making it run on top of security-enhanced
underlying system libraries. We believe that the combina-
tion of reference hijacking and Boxify can extend the capa-
bility of both of them, and will create a wonderful solution
for securing Android applications. We have begun to
research how to leverage Boxify to further improve the
practicability of the reference hijacking technique.

Extensibility to End Users. TaintMan is originally
designed for analysts to track the sensitive information
flow in Android applications. It overcomes a lot of prob-
lems that have affected wide-spread deployment. With
some additional efforts, it could be extended to be more
friendly to end users. For example, we can port the instru-
mentation component of TaintMan to the smartphone
device to get rid of the off-line instrumentation step, as
done in [29]. We can further extend TaintMan to declassify
sensitive data automatically, rather than simply raising
alarms, as done in [30].

Soundness of Implicit Information Flow Tracking. The lazy
tainting policy for IIF tracking improves not only perfor-
mance, but also precision. Consider the code snippet
“public = 0; if (secret != 0) public = 1;”. Variable public is ini-
tialized to 0. At runtime, if the false branch is taken (i.e.,
secret == 0), publicwill not be assigned. As a result, the taint
of predicate variable secret will not be directly propagated
to public. If we adopt the on-the-fly tainting policy, the
dependence of public on secret could not be captured due to
the execution omission. This issue can be addressed if we
adopt the lazy tainting policy. By postponing tainting to the
post-dominator of a control structure, we can have clear
information about the assignments of variables in different
branches via observing their F function. In the aforemen-
tioned example, variable public is attached with aF function
listing two versions: one indicates that public takes a new
value along the true branch, and the other indicates that
public remains the same with its initialized value along the
false branch. Given the assignment information, we can pre-
cisely propagate the taint of secret to public even if no
assignment is executed at the false branch.

Currently, our IIF tracking algorithm only focuses on
strict control dependence caused by equivalence testing
(i.e., ‘==’ or ‘!=’), which is the common case we found in
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in-the-wild malware. We do not take into account the
domain of a variable, which could also induce strict control
dependence. Consider the code snippet “if (secret >1) pub-
lic = 1;”. If variable secret can only ever have the values �2,
0 and 3 (for whatever reasons), then the value of variable
public (i.e., 1) precisely determine the value of secret (i.e., 3).
Identifying such strict control dependence requires the help
of constraint solvers at the cost of performance overhead.

So far, our IIF tracking algorithm only tracks the inner-
most strict control dependence. To support tracking nested
strict control dependence, a stack of implicit flow labels
should be maintained: the taint label is pushed into the
stack when encountering a predicate statement and popped
out when encountering the post-dominator. This would
have a high performance impact. Since we have not yet
found Android malware leveraging nested strict control
dependence, we only track the innermost strict control
dependence for performance consideration.

7 RELATED WORK

On the Android platform, many approaches have been pro-
posed based on DTA. TaintDroid [6] and DroidScope [7] are
the two representative works. TaintDroid provides a real-
time system-wide information-flow tracking by instrument-
ing the Dalvik virtual machine interpreter, making it
generate taint enforcement code for the executed instruc-
tions at runtime. Many malware detection systems (e.g.,
AppFence [8] and DroidBox [9]) are derived from Taint-
Droid. Since the latest Android system introduces ART as a
substitute of the DVM runtime, the interpreter-instrumenta-
tion-based solutions are not applicable anymore. Droid-
Scope instruments the Android emulator, rather than
modifying the Dalvik interpreter. Although compatible
with ART, it is limited in analyzing applications in the emu-
lator, not in real devices.

Some state-of-the-art DTA approaches have paid atten-
tion to the ART runtime. DroidForce [31] uses instrumenta-
tion to enforce policies including data flow on unmodified
phones. It only tracks inter-component flows dynamically
and relies on statically pre-computed data flow tables for
intra-component tracking. ARTist [23] and TaintART [32]
add the taint enforcement code by modifying the optimiz-
ing backend used by the ART compiler for code generation.
Their instrumentations are performed on the device, which
requires rooting to deploy the instrumented ART compiler.

Recent years, attentions are paid to the deployability of
security analysis approaches. Some attempts are made to
enforce application-wide security features without flashing
or rooting devices. For example, Aurasium [33] enforces a
fine-grained permission policy. The global offset table
(GOT) of the target application process is rewritten, such
that calls to critical libc functions can be intercepted and val-
idated. Boxify [28] proposes a novel technique to enforce
privilege separation policies. Untrusted applications are
securely encapsulated in an isolated sandbox, such that
inter-process communications and system calls of the
untrusted applications can be mediated. Although these
two approaches do not require modification of the underly-
ing system, their capabilities are limited to enforcing func-
tion-call-level protection policies.

Styp-Rekowsky et al. [34] proposed a technique similar to
reference hijacking. Their approach diverts the control flow
towards the security monitor by modifying references to
security-relevant methods in the Dalvik virtual machine,
which does not require restarting the complete execution
environment. This approach would incur minimal runtime
overhead if the amount of security-relevant methods is
small. For dynamic taint analysis, there are a considerable
number of system methods needed to be tracked. Diverting
all these method calls would take longer time than restart-
ing the complete execution environment.

8 CONCLUSION

In this paper, we present TaintMan, an ART-compatible
dynamic taint analysis framework that can be conveniently
deployed on unmodified and non-rooted Android devices.
With TaintMan, taint enforcement code is statically instru-
mented into both the target application and the system class
libraries to track data flow and common control flow. A spe-
cially designed execution environment reconstruction proce-
dure is introduced to force the target application to reference
the instrumented system libraries. To improve the perfor-
mance, we perform several optimizations. Specifically, we
enforce on-demand instrumentation and on-demand track-
ing to avoid unnecessary taint analysis whenever possible.
In addition, we design efficient taint tag storage and refine
taint propagation logic to implement taint tracking with as
little code as possible. We evaluate TaintMan with malware
samples and real-world applications. The evaluation result
shows that TaintMan can effectively detect privacy leakage
behaviors. In addition, the performance overhead of Taint-
Man is acceptable for analysis purposes. We believe that
TaintMan is a practical DTA framework applicable for the
latest Android system on real devices.
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