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Hunting Vulnerable Smart Contracts via Graph
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Abstract—Smart contract vulnerabilities have attracted lots
of concerns due to the resultant financial losses. Matching-
based detection methods extrapolating known vulnerabilities to
unknown have proven to be effective in other platforms. However,
directly adopting the technique to smart contracts is obstructed
by two issues, i.e., diversity of bytecode generation resulting from
the rapid evolution of compilers and interference of noise code
easily caused by the homogeneous business logics. To address the
problems, we propose contract bytecode-oriented normalization
and slicing techniques to augment bytecode matching. Specifi-
cally, we conduct data- and instruction-level normalizations to
uniform the bytecode generated by different compilers, and
enforce contract-specific slicing by tracking data- and control-
flows with simulated bytecode executions to prune the noise code
as far as possible. Based on the above techniques, we design
an unsupervised graph embedding algorithm to encode the code
graphs into quantitatively comparable vectors. The potentially
vulnerable smart contracts can be identified by measuring the
similarities between their vectors and known vulnerable ones.
Our evaluations have shown the efficiency (0.47 seconds per
contract on average), effectiveness (160 verified true positives)
and high precision (91.95% for top-ranked). It is worth noting
that, we also identify dozens of honeypot contracts, further
demonstrating the capability of our method.

Index Terms—Vulnerable Smart Contracts, Graph Embedding,
Bytecode Matching

I. INTRODUCTION

ALONG with the proliferation of Ethereum, smart contracts,
programs running on Ethereum and mainly developed

in Solidity, have attracted lots of security concerns. In fact,
smart contract vulnerabilities have caused enormous financial
damages. For example, vulnerabilities in theDAO [1] and
BeautyChain [2] led to more than one billion worth of loss.
Therefore, vulnerability detection for smart contracts becomes
a critical task in recent years.

Matching-based methods have proven to be effective for
detecting vulnerabilities, for example, in desktop and IoT
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require(balances[msg.sender] > amount);

118 SHA3
119 SLOAD
120 DUP2
121 SWAP1
122 GT

105 SHA3
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107 DUP2
108 LT

compiler v0.4.12 compiler v0.4.25

Fig. 1. Diverse bytecode resulting from different versions of the compiler.

applications [3]–[7]. The intuition behind such methods is
to search similar implementations to known vulnerabilities.
Unfortunately, adopting the matching-based technique to smart
contracts is a nontrivial task. Two problems need to be
addressed.

First, studies have shown that only 1% of smart contracts
are open source [8], so a practicable matching-based detection
method should work with the bytecode. However, the rapid
evolution of Solidity compilers has led to dozens of compiler
versions and different versions may generate different bytecode
even for the same source code pieces. The diversity of bytecode
generation can impede bytecode matching. For instance, a
vulnerable implementation can be missed just because it
was compiled with a different version of the compiler and
thus contains a large number of different instructions. We
demonstrate the impact with the bytecode generated by two
versions of the compiler for the statement in Figure 1. The
older version emits 36 instructions for the statement while
the newer produces 33, among which 28 instructions are the
same. We show in Figure 1 two snippets of discrepancies, with
different program counters and SWAP1/GT v.s. LT for the
same comparison operation. Using the bytecode generated by
the newer compiler as the query seed and the one by the older
version as the target, the similarity is only 77.8% for the same
source code.

Second, a vulnerability generally involves very few state-
ments but vulnerable smart contracts, either the seeds or targets,
usually contain many statements that are irrelevant to the
vulnerabilities. Those vulnerability-irrelevant statements, called
noise code, can confuse code matching and thus mitigating
their interference is an urgent task to be solved. Take Figure 2
as an example, in which the two functions suffer from the
same kind of multiplication overflows (highlighted in orange).
In each function, only three lines that perform calculation
and insufficient protection are related to the corresponding
vulnerability. All the others are irrelevant, including the boxed
parts and the omitted sections, neither contributing to the
overflow logic nor trying to ensure the multiplication safety. The
presence of such noise code can prevent us effectively matching
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1 function batchTransfer(address[] receivers, uint
value) public whenNotPaused returns (bool) {

2 uint cnt = receivers.length;
3 uint amount = cnt * value;
4 require(cnt > 0 && cnt <= 20);
5 require(value > 0 &&
6 balances[msg.sender] >= amount);
7 // 5 vulnerability-irrelevant lines are omitted
8 }

(a) BecToken [9].

1 function creditEqually(address[] users, uint
value) public onlyMaster returns (bool) {

2 uint balance = balances[msg.sender];
3 uint total = users.length * value;
4 require(total <= balance);
5 // 12 vulnerability-irrelevant lines are omitted
6 }

(b) Beercoin [10].

require(!paused);

require(msg.sender == beercoinMaster);

noise

corresponding
code

corresponding
code

Fig. 2. Two contracts with the same multiplication overflow vulnerability.

the known vulnerable BecToken with the one in Figure 2b,
leading to missing a potential vulnerability. In fact, the bytecode
matching similarity of only 51.7% cannot confidently report
Beercoin as vulnerable. Apart from this situation, we must
notice that, in practice, many contracts enforce homogeneous
business logics due to limited application scenarios. It inevitably
brings about a lot of similar implementations, such as ether
depositing/withdrawal and token transfers. More specifically,
balance checks (e.g., line 4 in Figure 2b) and operations (e.g.,
addition and subtraction), ether sending via call and some
other common actions will occur frequently and are usually
implemented in the same manner. Consequently, matching-
based analysis of smart contracts is more susceptible to noise
code than traditional applications. When the homogeneous
noise code dominates the functions, the crucial operations
directly related to the vulnerabilities will not receive sufficient
attention in code matching. In other words, vulnerability-free
contracts are very likely to be falsely detected. We will show in
Section IV-C that the noise code can cause a lot of inaccuracies.

To address the issues, we propose smart contract bytecode
oriented normalization and slicing techniques to augment
bytecode matching. Specifically, we carry out normalization to
uniform the diverse bytecode for matching on two aspects, i.e.,
data normalization by labeling the data values with meaningful
tags, and instruction normalization by re-ordering the operands
and ignoring insignificant instructions. Furthermore, to weaken
the interference of noise code, we enforce the contract specific
slicing by simulating the bytecode execution and tracking the
data- and control-flows, to enhance bytecode matching on a
clean code set.

Following the principle of matching based techniques, we
can then encode both the seed and target contracts into
quantitative and measurable forms of vectors. Note that, other
than the bytecode instructions, the structural information plays
an important role in contract oriented matching. A simple
example in Figure 3 can illustrate the importance of structural
information in matching, in which exchanging the order of two
statements (Figure 3b) can fix the reentrancy vulnerability [11]
in Figure 3a. To effectively introduce the structural information

1 function withdraw(uint amount) public {
2 if(amount>0 && balances[msg.sender]>=amount) {
3 msg.sender.call.value(amount)();
4 balances[msg.sender] -= amount;
5 } }

(a) A typical contract with a reentrancy flaw.

1 function withdraw(uint amount) public {
2 if(amount>0 && balances[msg.sender]>=amount) {
3 balances[msg.sender] -= amount;
4 msg.sender.call.value(amount)();
5 } }

(b) Simple fix of the above vulnerable function.

exchanging
the order

Fig. 3. Two functions with the same statements in different orders.

and avoid feature engineering as done in existing studies [5], [6],
we design an end-to-end graph embedding algorithm to encode
the slice-based control flow graphs into vectors and measure
the vector similarities for bytecode matching. We leverage the
measurement results to report potentially vulnerable contracts
if their vectors are highly similar to those known vulnerable
ones.

We implement a prototype and evaluate it on over two million
closed-source smart contracts and about 32.5k open source
contracts. The results show that our method can effectively hunt
hundreds of vulnerabilities using just a few known vulnerable
contracts as the seeds with high performance and precision. In
total, we detect 160 exploitable vulnerabilities that are verified
one by one with specially developed attack payloads in a
private blockchain environment. We have also demonstrated
the necessity of normalization and slicing and the effectiveness
of considering the structural information. Our comparative
analysis shows that our method generally outperforms state-of-
the-art detectors.

It is also worth noting that we identify 23 honeypot
contracts [12] during an early stage of auditing because those
honeypots were disguised as vulnerable to lure the attackers.
Using the uncovered honeypot contracts as seeds, we further
discover 33 other honeypots via the same matching method.
Their harmfulness is manually verified as well.

This paper makes the following major contributions.
• To the best of our knowledge, we are the first to introduce

the graph embedding approach in smart contract bytecode
matching to finding unknown vulnerabilities. We propose
normalization and slicing to address two contracts specific
problems.

• We implement a prototype and evaluate it on real-world
contracts. The experiments show its scalability (0.47
seconds per contract), high precision (91.95% for top-
ranked) and effectiveness (160 true positives and higher
accuracy in comparative analysis).

• We also use the method to successfully detect dozens of
honeypot contracts, further illustrating the capability of
our method.

The rest of this paper is organized as follows. Section II
briefly describes some background and five kinds of vulnera-
bilities we aim to detect. Section III elaborates the approach
details and Section IV presents the evaluation results. We
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discuss limitations and future directions in Section V and
related work in Section VI. Section VII concludes the paper.

II. BACKGROUND

In this section, we provide a concise background of our
work including the data processing mechanism of the Ethereum
Virtual Machine (EVM) and smart contract vulnerabilities we
focus on in this paper.

A. EVM Basics

Smart contracts are compiled into bytecode and executed in
EVM. During an execution, EVM maintains a runtime stack, a
transient memory and a persistent storage. Typically, upon an
invocation, inputs are loaded to the stack and EVM executes
the instructions to operate the data residing the stack, memory
and storage.

The stack acts as the registers in a typical x86 machine
and most instructions can only operate data in the stack. For
example, an ADD instruction pops two elements from the stack,
computes their sum and pushes the result back to the stack.
The memory maintains volatile data at run time, usually those
with size larger than 32 bytes. SHA3 computes the hash value
for a chunk of data in the memory. MLOAD and MSTORE are
used to interact between the stack and the memory. Data in the
stack or the memory are discarded as an execution terminates.
The storage hosts data that are saved in the blockchain and can
span their life across different executions. In other words, the
states of a contract (e.g., the balance) and the global variables
(i.e., the field variables in a contract) are kept in the storage.
Instructions SLOAD and SSTORE exchange data between the
stack and the storage. Apart from the memory chunks, the
typical and also maximum size of an data element in the stack
and the storage is 256-bit.

In addition to the above data regions and operations, a
smart contract may terminate abnormally if certain condition
is not satisfied. In such cases, EVM reverts the storage with
instructions like REVERT. When an execution ends normally
at RETURN, all changes are preserved.

B. Smart Contract Vulnerabilities

Next we will present five kinds of smart contract vulnerabil-
ities we are interested in. All these vulnerabilities result from
inappropriate handling of dirty and untrusted data, which have
been reported to cause tremendous losses [1], [2], [13].

Integer overflow. The function is Figure 2a transfers the
caller’s balance to multiple recipients. Line 6 ensures the caller
possesses sufficient amount of tokens. However, a preceding
multiplication at line 3 suffers from an integer overflow. An
attack providing two receivers and a value of 2255 can emit
an overflow and then an amount of zero, which passes the
requirement check at line 6. Eventually, the sender pays nothing
but the recipients gain astronomical tokens.

Reentrancy. Figure 3a presents an example withdrawal
function that involves a reentrancy vulnerability. The function
first checks whether the caller’s account has enough balance to
withdraw, transfers the ethers and then deducts his balance. A

malicious contract can exploit the vulnerability by providing a
fallback function that iteratively invokes the withdraw function.
According to the smart contract semantics, the fallback function
is triggered by ether transfer via call at line 3. Only after the
fallback function completes, can the subtraction at line 4 takes
place. By this means, the attacker can exhaust the ethers held
by the contract and gain more than his deposit.

Bad randomness. We illustrate the bad randomness vul-
nerability with a function in a lottery contract shown in
Figure 4. A player is required to pay at least one ether and
then depending on a hash value of the execution time, he has
a chance to gain 1.9 ethers. Timestamp is used as a seed for
generating random numbers, i.e., the hash value. However, an
adversary understanding the logic of the contract can simulate
the behaviors and thus participate in the game at the right time,
making himself win for every play. We think those blockchain
data that can be observed and simulated by adversaries (e.g.,
timestamp) are bad randomness sources.

1 function play() public payable {
2 require(msg.value >= 1 ether);
3 if (keccak256(timestamp) % 2 == 0) {
4 msg.sender.transfer(1.9 ether);
5 }
6 }

Fig. 4. Example for bad randomness.

Unprotected ownership is also known as the access control
problem in DASP [13]. It corresponds to a condition in which
privileged functions for changing the ownership of a smart
contract is accessible to common users. Consequently, any user
can become the owner and perform privileged operations, e.g.,
burning new tokens or destructing the contract. Below is an
example from DASP [13].

1 function initContract() public {owner = msg.sender;}

Mishandled exceptions. Typically, a callee function in
another contract may raise an exception, revert the state of
the callee contract and then return false indicating a failing
execution [11]. However, the exception may not be propagated
to the caller. Without explicitly checking the return value
before further operations can lead to unexpected behaviors.
The example code below implements ether transfer via send
and carries out balance subtraction before the action, so as
to avoid reentrancy attacks. Unfortunately, without checking
whether the transfer action has been conducted properly or not,
the contract owner may observe inconsistent balances.

1 balances[msg.sender] -= _amount;
2 msg.sender.send(_amount);

III. METHODOLOGY

We propose an approach to detecting smart contracts
vulnerabilities. The high level idea is to extract patterns from
smart contracts and inspect whether any unknown patterns
can match vulnerable patterns.

Figure 5 presents the overflow of our method. For a given
smart contract, either unknown or with known vulnerabilities,
we preprocess the bytecode and build the control flow graph
(CFG), based on which we pinpoint the slice criteria and
extract the corresponding slices on top of bytecode execution
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Fig. 5. A high-level overview of our method.

simulation. Then we normalize the slices and later employ a
graph embedding network to vectorize the slice-oriented control
flow graphs. At last, we test if vectors denoting the slices from
target contracts can match any vectors for vulnerable slices
by measuring the pair-wised similarities and report potentially
vulnerable contracts with high similarities. We will detail these
steps in below sections.

A. Preprocessing and Slicing

The smart contract bytecode does not directly carry operand
information along with the instructions. Instead, all instructions,
except the PUSH family, obtain their operands from the runtime
stack. Without the associated stack, we cannot know the
destination of a JUMP instruction or if either operand of an
ADD instruction originates from the input. As done in many
other methods [11], [14], we simulate the bytecode execution
and construct the CFGs. Along with the simulation, we track
the data- and control-flows and perform slicing according to
specialized slice criteria.

1) Slice Criteria: Look back the vulnerabilities of interest in
Section II. We think that all data from outside of smart contracts,
including those on the blockchain (e.g., timestamp and user
balances), have a chance to be controlled by adversaries.
Improper operations on such data are prone to exploitations.
Therefore, we extract the instruction sequences correlated to
such data as potentially vulnerable behaviors.

Specifically, we decide the following four types of slice
criteria. First, we care the transaction data provided by the users
with an invocation. The instructions such as CALLDATALOAD,
CALLER, CALLVALUE load transaction data from the input
for later operations. Second, block data that can be retrieved
from the blockchain by BLOCKHASH, TIMESTAMP and other
instructions are taken into account. Third, we think the storage
data denoting the internal state of smart contracts play an
important role. Instruction SLOAD fetches data from the storage.
Last, the return value of an external call can also be affected
by adversaries, leading to unexpected behaviors, and thus we
take the correlated instructions like CALL into account.

2) Slicing: Employing a simulated execution to track the
data- and control flows and understand the dependence between
instructions, we leverage classic slicing algorithms [15] to

extract slices starting from the instructions that introduce the
aforementioned four kinds of data into the runtime stack. In
particular, we traverse every reachable path to collect correlated
instructions. It is worth noting that our slicing procedure differs
from classic slicing algorithms in two aspects.

First, we include in slices the instructions denoting abnormal
terminations, e.g., REVERT and INVALID, which, as we
mentioned earlier, discard all changes in current execution
but do not take any operands. Such instructions are important
as they may indicate a failing assertion that indeed guarantees
the safety of the execution. Without data dependent on the data
DI of interesting, they are put into a slice if the specific path
reaching such an instruction leaves data derived from DI in
any data regions, e.g., the stack.

Second, though a bytecode instruction usually does not carry
any explicit data, we associate the data operands with the
opcode to form a node in slices. Operands carry important
information in differentiating the scenarios an instruction works
in. For example, ADD computes the result of two input integers
in one slice but calculates the memory offset in the other slice.
The instruction opcode ADD itself cannot tell much about the
scenarios but the associated operands give us an opportunity
of distinguish them. Eventually, a node in slices consists of
the opcode and the data in the form of ADD(op1 , op2 ). Note
that unknown data like the input are represented by abstract
symbols.

3) Example: In Figure 6, we present the slice for amount
in Figure 3a. We eliminate irrelevant instructions including
MSTORE, SHA3 and SLOAD and obtain a concise sequence
with all instructions operating data derived from the slice
criterion, significantly reducing the interference of noise code.

140 CALLDATALOAD
141 PUSH2 00a5
144 JUMP
· · · · · ·

165 JUMPDEST
166 PUSH1 00
168 DUP2
169 GT
170 DUP1
171 ISZERO
172 PUSH2 00da
175 JUMPI

· · · · · ·
207 DUP2
208 SWAP1
209 MSTORE
210 PUSH1 40
212 SWAP1
213 SHA3
214 SLOAD
215 DUP2
216 SWAP1
217 GT
· · · · · ·

168 DUP2(*)
169 GT(*,00)
170 DUP1(*)
171 ISZERO(*)
175 JUMPI(00da,*)
215 DUP2(*)
216 SWAP1(*)
217 GT(*,*)

slicing
slice criterion

Fig. 6. An example slice (right) for CALLDATALOAD in an instruction
sequence (left).

B. Normalization

Slicing eliminates irrelevant instructions, but as we men-
tioned previously, different compilers can result in discrepan-
cies, obstructing bytecode matching. In this section, we will
present two normalization techniques that uniform the slices
for similar source code pieces as far as possible.

1) Data Normalization: We have attached the data with
corresponding opcodes to form the nodes in slices. However, it
is not enough to decide if an instruction in two slices actually
perform very similar actions or not by inspecting only the
values. Coarse-grained value types adopted by many previous
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works [6], [16], [17] are neither sufficient as all values in smart
contract bytecode can be viewed as 256-bit integers.

We present a fine-grained data tagging mechanism. More
specifically, we tag the data introduced by the slice criteria
and propagate the labels. Furthermore, when we propagate
the tags from operands to the result, we use a new label to
represent the operation. Table I shows part of the instructions
and the corresponding tags for their results, i.e., the data
inserted to the stack. For an instruction with operands (e.g.,
ADD), we concatenate the specified tag with the operands tags.
For example, assuming two operands of ADD are tagged with
calldata and blk_data separately, the resulting data will possess
a tag of “arith_res | calldata | blk_data”. As a result, the slices
can carry more useful information for differentiating scenarios
and associating similar usages.

TABLE I
A PORTION OF INSTRUCTIONS AND THE CORRESPONDING TAGS FOR THEIR

OUTPUTS.

Instructions Tags
CALLDATALOAD, CALLDATACOPY calldata
CALLER, ORIGIN tx_data
BLOCKHASH, TIMESTAMP blk_data
SLOAD sto_data
CALL call_ret
ADD, MUL arith_res
NOT, AND, OR bit_res
LT, GT, SLT, EQ cmp_res
MLOAD mem_data
PUSH literal

2) Instruction Normalization: Re-ordering the normalized
tags alphabetically is commonly used in normalizations [16],
which helps reduce the differences between operations on
the same data. For example, in any case we should consider
ADD(calldata, literal) and ADD(literal, calldata) indeed
do the same thing. We adjust the order of tags for one
operand. However, to preserve the utility, we only re-order
the operands for arithmetic/bit operations ADD, MUL, AND,
OR and XOR and comparison instructions EQ, LT, GT, SLT
and SGT. The former, plus EQ, have no side effect after
changing the positions of operands. The remaining comparison
instructions can be replaced with opposite opcode if re-ordering
occurs. For example, we make ADD(calldata, literal) for
both instructions in the above example and generate a new
notation GT (calldata, literal) for LT (literal, calldata).

In addition, slices may contain instructions that only move or
duplicate data in the stack, e.g., DUP1 and SWAP1 in Figure 6
. The DUP and SWAP families have 16 variants, i.e., DUP1 ∼
DUP16 and SWAP1 ∼ SWAP16. Depending on the compilers,
same source code may be transformed to sequences with
different DUP/SWAP instructions. Moreover, they are usually
used with comparison instructions to construct an equivalent
behavior, e.g., “SWAP, GT” v.s. “LT”. Since such instructions,
together with POP, are loosely correlated with the behaviors
described in source code, we believe they are insignificant
in code matching and thus ignore all DUP, SWAP and POP
instructions from the slices.

3) Example: We show in Figure 7 an example to demonstrate
the effectiveness of the proposed normalization. The first slice

168 DUP2(*)
169 GT(*,00)
170 DUP1(*)
171 ISZERO(*)
175 JUMPI(00da,*)
215 DUP2(*)
216 SWAP1(*)
217 GT(*,*)

By compiler v0.4.12

170 DUP2(*)
171 GT(*,00)
172 DUP1(*)
173 ISZERO(*)
176 JUMPI(c4,*)
194 DUP2(*)
195 LT(*,*)

By compiler v0.4.25

GT(calldata, literal)
ISZERO(calldata | cmp_res)
JUMPI(literal, calldata | cmp_res)
LT(calldata, sto_data)

normalizing

Fig. 7. An example showing that normalization eliminates the diversity
resulting from different compilers for the same piece of code.

Algorithm 1: Slice Vectorization.
Input: Contract C = {G1, G2, · · · }; Embedding size S
Output: Embedding vector VGi ∈ RS for each Gi

1 Randomly initialize VGi for each Gi ∈ C;
2 foreach Gi ∈ C do
3 SGn = SubGraph(n,Gi) for each n ∈ Ni;
4 end
5 foreach Gi ∈ C do
6 J(λ, P ) = − log

∑
n∈Ni

Pr (SGn|VGi);
7 λ = λ− α · ∂J

∂λ
;

8 P = P − α · ∂J
∂P

;
9 end

10 foreach Gi ∈ C do
11 J(VGi) = − log

∑
n∈Ni

Pr (SGn|VGi);
12 VGi = VGi − α · ∂J

∂VGi
;

13 end

is the one in Figure 6 and the second one is extracted from
bytecode generated by compiler v0.4.25. With the normalization
techniques, we obtain the same tagged slice, which helps us
quickly recognize the same behaviors within the two original
slices and thus facilitates the code matching.

C. Graph Embedding

We have obtained uniform slices and aim to embed them
into a vector space for similarity measurement. In order to
capture more structural information, we convert each slice into
a control flow graph and refer to graph2vec [18] for end-to-end
graph embedding, instead of vectorizing each node and then
aggregating the node vectors into a graph vector as done by
Gemini [5]. graph2vec is an unsupervised graph embedding
technique which learns the representations of whole graphs.
The main idea is to treat the rooted subgraph around a node in
a graph as a word and the graph as a document. The learning
target is to maximize the likelihood of a rooted subgraph
extracted from a graph to be occurring in the graph. By
following a document embedding process, graph2vec iteratively
learns the corresponding graph’s representation. Theoretically,
graph2vec can capture more subtle structural information than
linear substructure based graph embedding techniques [19].

In this study, viewing each instruction as a node and a slice
as the graph, algorithm 1 depicts how the slices {Gi} are
embedded into vectors {VGi} per smart contract C. The key
of the algorithm is to update the embeddings of the rooted
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subgraphs and the whole graph, such that the learned vector
of a slice should be close to its rooted subgraph vectors but
far away from other ones as far as possible.

In the algorithm, a rooted subgraph consists of an instruction
in the slice and its neighbors, and its corresponding embedding
is computed with eq. 1,

SubGraph(n,Gi) = tanh (vn + P
∑

vm
m∈Neib(n,Gi)

) (1)

in which P is the parameter matrix and Neib(n,Gi) denotes
the neighbor nodes of n ∈ Ni. Ni is the set of all nodes in
Gi. A function λ maps the combination of an instruction n
and its associated data labels to an S-dimensional vector vn.

The likelihood of a rooted subgraph SGn to be occurring
in a slice Gi is computed with eq. 2.

Pr (SGn|VGi) =
exp (VGi

· SGn)∑
w∈NC

exp (VGi · SGw)
(2)

Here, we denote all nodes in all slices as NC .
Both λ and P are trained in the second stage (lines 5∼9). We

then keep them fixed and iteratively train the slices’ embeddings
(lines 10∼13). The learning rate α is empirically set to 0.001
as done in [18]. Finally, we obtain the S-dimensional (64-
dimensional in this study) vector representations for the slices,
which can effectively maintain the structural information of
the slices.

D. Vulnerable Smart Contract Detection

After graph embedding, for every slice, either extracted from
a target contract or reflecting a known vulnerability, a corre-
sponding vector is generated. For a given vulnerable contract,
among its candidate slices, we mark only the slice that best
embodies the logic of the relevant vulnerability as vulnerable.
We use Vt to indicate a vector for a target slice and Vk for
a vulnerable one. As same as done in other matching-based
studies [4]–[6], [20], we then calculate the cosine distance
between each Vt and every Vk to measure their similarity.
The larger the value, the higher the similarity between the
two slices. We rank the results based on the similarities and
eliminate those pairs with relatively low similarities based on
a threshold. Section IV-B2 will show how we choose a proper
threshold. Those pairs with greater similarities are reported and
the involved target slices are marked potentially vulnerable.
The corresponding target contracts are further manually audited
to confirm the existence of vulnerabilities.

IV. EVALUATION

In this section, we will evaluate our method with smart con-
tracts deployed on Ethereum. We will first describe experiment
setup and then present the results, following which we discuss
the comparative analysis and show some case studies. At last,
we talk about the honeypot contracts that were uncovered by
our method.

A. Experiment Setup

We implement a prototype system in C++ and Python. Our
evaluation is carried out on an Ubuntu 16.04 (x64) machine
with Intel Core CPUs (3.20 GHz × 4) and 8 GB memory.

TABLE II
DATASETS INFORMATION FOR EVALUATION.

Dataset #Contracts Description
Dataset I 2,297,058 Smart contracts in bytecode
Dataset II 32,499 Open-source smart contracts
Dataset III 24 Known vulnerable contracts from CVE

We construct three datasets from different sources, as shown
in Table II. Dataset I contains over two million smart contracts
we extracted from the Ethereum blockchain by Mist [21]. All
those contracts are in the form of bytecode, whereas Dataset
II includes the open-source smart contracts we collected from
Etherscan [22]. We built the last one, Dataset III, by screening
out the representative and suitable ones from CVE hosted
vulnerable smart contracts. More specifically, among the 24,
there are 10 about integer overflow, 4 for reentrancy, 6 for
bad randomness, 2 for unprotected ownership and the rest for
mishandled exceptions.

B. Experiment Results

1) Performance: Our method embodies two major stages,
data preparation and vulnerability detection. The former one
consists of program slicing, normalization and graph embed-
ding. Since slicing and normalization are interleaved during
the bytecode analysis, we treat them as a whole for evaluating
the performance.

TABLE III
PERFORMANCE FOR 2,297,058 CLOSED-SOURCE SMART CONTRACTS IN

DATASET I.

Stage Total (s) Avg. (s) Std.
Slicing/Norm. 204,739 0.089 0.531

Data Preparation Embedding 849,710 0.370 0.187
Total 1,054,449 0.459 0.561

Vulnerability Detection 28,654 0.012 0.013

In Table III, we list the total and average time cost for each
procedure on Dataset I. The last column (Std.) shows the
standard deviations. We can see that due to the large size of
Dataset I, preparing the data takes more than twelve days.
However, for each single smart contracts, the time cost is only
about 0.46 seconds. With the prepared data, we leverage the
critical slices from the smart contracts in Dataset III to detect
vulnerable contracts in Dataset I by calculating the similarities
between each target contract and known vulnerable ones. For
each one in Dataset I, the average time cost is as low as
0.012 seconds, showing that the similarity calculation based
on vectors is highly efficient. In summary, the average time for
one target smart contract is about 0.47 seconds, demonstrating
high performance for large-scale vulnerability detection based
on bytecode matching.
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2) Accuracy: In this section, we will present the accuracy
aspect of vulnerability detection by inspecting the false positive
(FP) rate and false negative (FN) rate. Before that, we tune the
parameters with experiments on a subset of the smart contracts.

Parameter tuning. We first tune the similarity threshold
value. We select 3,000 smart contracts from Dataset II for
vulnerability detection and use the vulnerable ones in Dataset
III as the seeds for matching. We conduct the detection and
count the false alarms. Besides, we sampled 300 target contracts
for manual auditing, the results of which are considered for
the false negative rates.

TABLE IV
RESULTS FOR DIFFERENT SIMILARITY THRESHOLDS.

Threshold FP Rate FN Rate
100% 0% 71.43%
95% 13.51% 42.86%
90% 14.29% 14.29%
85% 56.10% 14.29%
80% 74.10% 14.29%

We obtain the results for several typical threshold values
(80% ∼ 100% with a step of 5%) and show them in Table IV.
When the threshold is decreased from 90% to 85%, the FP
rate increases drastically while the FN rate does not change.
However, if we increase the threshold from 90% to 95%, the
FP rate shows slight decrement but the FN rate is substantially
changed. To trade off FP and FN, we pick 90% for all
subsequent experiments.

TABLE V
RESULTS FOR DIFFERENT EMBEDDING SIZES. THE LAST ROW SHOWS THE

NUMBER OF EXPLOITABLE CONTRACTS OVER THE TOTAL REPORTED
NUMBER, I.E., TP/TOTAL.

S=32 S=64 S=128 S=256
Time Cost (s) 995.57 1,342.66 2,056.74 4,425.29

Detection Results 1/23 4/4 1/8 4/10

We also investigate the effect of different embedding size
S. We randomly select 1,000 smart contracts from Dataset
II and carry out experiments with different S. Table V lists
the results. Because on average, smart contracts in Dataset II
are relatively more complicated than those in Dataset I, they
cost more time compared with that in Table III. In addition to
the time cost, we present the number of smart contracts with
exploitable vulnerabilities over the number of all reported ones.
In other words, the fractions denote the precision under each
setting. In order to balance the efficiency and accuracy, we
choose 64 as the embedding size.

Detection Results. With the above parameters, the prototype
system reports 1,220 vulnerable contracts as candidates. The
numbers of contracts corresponding to integer overflow, reen-
trancy, bad randomness, unprotected ownership and mishandled
exceptions are 732, 129, 23, 182 and 154, respectively. We
deploy these smart contracts in a private blockchain to verify
the results. Unfortunately, without the source code, it is highly
time-consuming and unreliable to manually inspect low-level
bytecode [23], which requires us to speculate the behaviors
of the instructions and infer the vulnerability occurrences.
Therefore, instead of examining all reported issues, we inspect

TABLE VI
DETECTION RESULTS FOR DATASET I AND DATASET II ON THE ASPECT OF

DIFFERENT VULNERABILITIES, INTEGER OVERFLOW (IO), REENTRANCY
(RE), BAD RANDOMNESS (BR), UNEXPECTED OWNERSHIP (UO) AND

MISHANDLED EXCEPTION (ME).

Dataset IO RE BR UO ME Total
Dataset I 732 129 23 182 154 1,220

Dataset II 104/112 23/23 10/10 11/13 4/6 152/164
(92.9%) (100%) (100%) (84.6%) (66.7%) (92.7%)

the ones with top ten similarities and observe eight successful
exploitations.

Our evaluation on Dataset II reports 164 vulnerable smart
contracts, 152 among which are verified to be exploitable, 104,
23, 10, 11 and 4 for the aforementioned vulnerability types
separately. We successfully verify all of them in a blockchain.

We show the results in Table VI. For Dataset II, we also
list the number of exploitable contracts and the total number
for each vulnerability type. The overall verified precision is
91.95% (= 8+152

10+164 ).
Before CVE stopped accepting smart contract vulnerabil-

ities, we have been granted three CVE IDs for the reported
vulnerabilities, CVE-2018-17882, CVE-2018-19460 and CVE-
2018-19852.

C. Comparative Analysis

For better demonstrating the effectiveness of our approach,
we conducted a series of comparative analysis, including
comparisons with a Bag-of-Feature based method, with state-of-
the-art bug-finders and with weakened version of our method,
e.g., eliminating slicing or normalization. Due to the fact
that the source code can greatly help analysts audit reported
vulnerabilities, we perform the experiments on the smart
contracts in Dataset II.

Comparison with a structure-ignorant method. Without
considering the structural information, we can treat each
instruction as a dimension of features and embed the slices in
a way of Bag-of-Features (BoF). We implement a BoF based
detection by replacing the graph embedding stage with a BoF-
embedding and mapping the number of instructions to their
specific dimensions. Later, we can carry out the same similarity
measurement on those vectors.

��

��
� � �� � �

	�
�


� � �� �� �

�� ��

Fig. 8. Results of a structure-ignorant BoF method.

We present in Figure 8 the results of the above BoF based
detection on Dataset II. For all kinds of vulnerabilities, the
BoF method reports fewer true positives (TP) and for the last
two types, it exhibits much higher FP rate.

We investigate the cause and find that the BoF method
considers the features from slices independent of each other.
However, our graph-embedding based method can capture the
relations between the features, and thus better describe the
characteristics of the slices, achieving higher accuracy.
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Comparison with state-of-the-art detectors. We also com-
pare our approach with four state-of-the-art tools, Oyente [11],
Mythril [24], Manticore [25] and Securify v2.0 [26]. Here,
we concentrate only on the most harmful vulnerabilities, i.e.,
integer overflow and reentrancy, and show the comparison
results in Table VII.

TABLE VII
COMPARISON RESULTS WITH STATE-OF-THE-ART DETECTORS.

Oyente Mythril Manticore Securify Our Tool
RE IO RE IO RE RE IO RE

#Reports 172 53 122 16 22 23 112 23
#FPs 154 7 116 0 0 0 8 0

FP Rate 89.5% 70.3% 0% 0% 5.93%

We compare with Oyente on detecting reentrancy vulner-
abilities. For smart contracts in Dataset II, Oyente reports
172 reentrancy vulnerabilities in total, taking about 60 hours.
Our manual verification shows that only 18 contracts are truly
vulnerable. Namely, the FP rate is 89.53%, much higher than
our method.

1 function refund() stopInEmergency {
2 if (getState() != State.Refunding) throw;
3 address investor = msg.sender;
4 if (balances[investor] == 0) throw;
5 uint amount = balances[investor];
6 delete balances[investor];
7 if (!(investor.call.value(amount)())) throw;
8 Refunded(investor, amount);
9 }

Fig. 9. PreICOProxy [27] where Oyente falsely reports a reentrancy.

We present one FP by Oyente in Figure 9. Instead of
decreasing the amount from corresponding account, this smart
contract directly deletes the account from its record (line
6) before withdrawing the balance at line 7. A reentrant
invocation is thus prevented at line 4, leading to no reentrancy
problems. Oyente does not recognize the behaviors for line
6 and incorrectly reports a vulnerability. Many other FPs are
emitted by Oyente for similar reasons, indicating the difficulty
of manually summarizing precise rules. On the contrary, our
approach recognizes vulnerability patterns from vulnerable
smart contracts and guarantees the presence of vulnerabilities
in the extracted patterns, leading to lower FP rate.

We compare with Mythril on integer overflow and reen-
trancy. For smart contracts in Dataset II, Mythril detects 53
integer overflow vulnerabilities and 122 reentrancy problems,
among which 7 and 116 are FPs, respectively. Our method
exhibits higher precision and recall. This comparison further
demonstrates the incompleteness of collecting detection rules
by human beings.

Manticore [25] employs some heavyweight analysis tech-
niques, e.g., dynamic symbolic execution. Analyzing smart
contracts with Manticore is an expensive task. Our experience
has shown that Manticore cannot complete the analysis or
produce any valuable results for more than 70% of the vul-
nerable contracts within 90 minutes. To avoid non-terminable
evaluations, we set a timeout of 90 minutes per contract, as
done in [25]. Due to its high time overhead and the severity of

false negatives, we evaluate Manticore on the 135 potentially
vulnerable smart contracts reported by our tools, including
112 integer overflows and 23 reentrancy. Manticore misses
88 (84.6%) confirmed integer overflows and one reentrancy.
Securify v2.0 does not detect integer overflows and thus we
can only evaluate it on the 23 vulnerable smart contracts with
reentrancy vulnerabilities. It shows no FPs or FNs.

Manticore works poorly in detecting integer overflows that
often involve subtle logics and Securify v2.0 does not detect this
type of vulnerability, though they both have good performance
for reentrancy vulnerabilities with clear logic. We argue that
there is lack of enough prior knowledge, i.e., detection rules, for
the integer overflow. In fact, extracting and inferring complete
knowledge for subtle vulnerabilities is a very difficult mission,
if not impossible. In this study, the known vulnerabilities are
directly employed as detection signatures. As a result, we can
get valued results more quickly and avoid tedious manual work.

Comparison with underpowered approaches. Our method
is powered with normalization and slicing. Below, we will
eliminate either capability to evaluate their necessity for
precise vulnerability detection. As shown in the first column
in Table VIII, except the full solution (N/S), we build three
underpowered tools with the following capabilities: (1) enabling
normalization only (N-only), (2) enabling slicing only (S-only)
and (3) disabling both techniques (No-N/S).

TABLE VIII
COMPARISON RESULTS WITH UNDERPOWERED APPROACHES (N/S FOR THE
FULL-POWERED APPROACH AND NUMBERS FOR TP RATE IN EACH CELL).

IO RE BR UO ME

N/S 104/112 23/23 10/10 11/13 4/6
(92.9%) (100%) (100%) (84.6%) (66.7%)

N-only 78/137 16/24 9/29 10/34 3/11
(56.9%) (66.7%) (31.0%) (29.4%) (27.3%)

S-only 76/84 22/25 3/3 2/2 3/8
(90.5%) (88.0%) (100%) (100%) (37.5%)

No-N/S 0/14560 0/2278 0/12059 0/9384 0/230

We conduct the experiments and show the results in
Table VIII. For No-N/S, due to the large number of reported
contracts, we only audit the top 20 smart contracts and count
the vulnerable. From the results, we can see that our method
with normalization and slicing (N/S) outperforms all the other
three approaches. N-only does not apply slicing techniques and
thus takes the noise into account, producing a lot of FPs. S-
Only, on the other hand, does not resolve the differences caused
by compilers, leaving a number of FNs. Directly analyzing
the bytecode without any preprocessing, No-N/S reports too
many FPs and burdens the analysts. Therefore, we can claim
that, normalization and slicing adopted in our approach can
effectively lower the impact of compiler diversity and noise
code and emit higher accuracy for matching based vulnerability
detection.

D. Case Studies

Below we will present three cases, one open source, one
closed-source and the last illustrating the effect of considering
the structural information.
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Case 1: BattleToken. Figure 10 shows a vulnerable smart
contract, BattleToken [28], which implements an Ethereum-
based game. The batchTransfer function allows the caller to
distribute his balance to a set of recipients. The developers
employ a safeSub function to ensure the subtraction from
the caller’s account (line 2), reverting for insufficient balance.
Similarly, safeAdd is used to guarantee the safety of addition
for each recipient at line 5.

1 function batchTransfer(address[] to, uint value)
public {

2 balances[msg.sender] = safeSub(
3 balances[msg.sender], to.length * value);
4 for (uint i = 0; i < to.length; i++) {
5 balances[to[i]] = safeAdd(balances[to[i]],
6 value);
7 }
8 }

Fig. 10. Contract BattleToken [28] (CVE-2018-17882).

However, the developers perform an unprotected multiplica-
tion to.length * value at line 3 to calculate the total amount
the caller needs to pay, which is prone to an integer overflow
exploitation. Attackers can construct a very large value and
make a very small number for the multiplication, leading
to little decrement of the sender but huge increment of the
recipients.

We discover this vulnerable smart contract using the well-
known BecToken [9] as the seed with the similarity of 95.5%.
However, at the source code level, the two contracts do not
look the same. Neither do they look highly similar at the
bytecode level. In fact, their similarity at the instruction level
is only 71.3%, much lower than the adopted similarity threshold.
Fortunately, the parameter value in both contracts undergoes
similar processing and thus comparing the corresponding slices
helps the matching with a high similarity.

We validate the vulnerability in Remix [29] and it has been
confirmed by the developers and CVE (CVE-2018-17882).

Case 2: A closed-source contract. In this section, we
show how the closed-source candidates are manually inspected
through an easy-understanding example.

We flag a contract [30] potentially vulnerable. To verify the
correctness, we first need to figure out the invocation interface
of the vulnerable function. By comparing the fingerprint with
other contracts, we luckily find that it should be called in the
same way as the batchTransfer function in Figure 10. Then
we explore how the suspicious vulnerability can be exploited.
In this example, the identified slice is very similar to the
one from BecToken [9], so we make an attempt in the same
manner. At last, we need to confirm the success of exploitation.
Again, we find that this contract holds the interface of function
balanceOf(address), through which we could check the crafted
balance and verify the vulnerability.

However, in most cases, the above steps can rarely be ful-
filled, which significantly hinders manual inspection. Therefore,
in the evaluation, we mainly focus on the results for open source
smart contracts in Dataset II.

Case 3: Impact of structure. The two functions in Figure 3
have the same statements with different orders, causing one
vulnerable to reentrancy but the other safe. An order-ignorant

method cannot capture the difference between the two contracts
due to the fact that they have the same instructions, and will
emit a false alarm.

We compute the similarities between the slices for amount in
the two functions, 100% for the BoF method in Section IV-C
and 74.8% for our graph embedding method, respectively.
The results clearly show that the vectors generated by graph
embedding can well represent the structural characteristics
of the two slices, significantly reducing the similarity and
suppressing the FP.

E. Honeypot Contracts

At the early stage of our study, we found a special type
of smart contracts that camouflage vulnerable contracts. Our
further validation shows that such smart contracts generally
provide the source code, contain some obvious vulnerability
patterns like reentrancy and attract the attackers to deposit and
then exploit the vulnerabilities. The attackers expect to acquire
a lot of ethers but indeed leave their money in the contracts
without any chance of getting back. Such smart contracts are
called the honeypot contracts [31].

1 mapping (string => uint) parameters;
2 function claim_reward(uint uid, bytes32

passcode) ... {
3 require(msg.value >= parameters["price"]);
4 require(is_passcode_correct(uid, passcode));
5 uint final_reward = get_reward(uid) + msg.value;
6 if (final_reward > parameters["price_pool"])
7 final_reward = parameters["price_pool"];
8 require(msg.sender.call.value(final_reward)());
9 parameters["price_pool"] -= final_reward;

10 /* delete the user */
11 }

Fig. 11. Contract HODLerParadise [32].

Figure 11 presents a honeypot contract that are marked as
potentially vulnerable with SMART [33] as the seed. Looking at
the source code, we are very sure that there exists a reentrancy
bug and so do the attackers. Hence, the attackers pay an amount
of ethers to participate in the game (omitted in the code) and
later pay some fee for getting reward and quiting the game.
Line 8 transfers the bonus to the caller and line 9 does the
subtraction. Everything looks the same as a typical reentrancy
vulnerability.

However, when we try to verify it in Remix [29], we fail to
steal money from the owner. The key problem lies in lines 6
and 7, which adjust the bonus pool. While looking the same,
the second ‘o’ in price_pool is actually a Greek letter that
spells “omicron”1. Because mapping for price_pool does not
exist in parameters, anyone who wants to claim the reward
gets nothing from the function. But in the meantime, it steals
ethers from the attacker for every reentrancy attack.

When we audited the potentially vulnerable contracts at the
early stage, we totally discovered 23 honeypot contracts.

Further honeypot detection. We also use the prototype
system to detect honeypot contracts using four representative

1Here we use different fonts to distinguish the Greek letter ‘o’ and English
letter ‘o’.
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1 contract SmallRoulette {
2 uint private secretNumber;
3 uint public lastPlayed;
4 uint public betPrice = 0.1 ether;
5 struct Game { address player; uint number; }
6 function play(uint number) payable public {
7 require(msg.value >= betPrice && number <= 5);
8 Game game;
9 game.player = msg.sender;

10 if (number == secretNumber) {
11 msg.sender.transfer(this.balance);
12 } // other code omitted
13 }
14 }

overwriting

Fig. 12. Simplified contract SmallRoulette [34].

honeypot contracts discovered previously as the seeds. Finally,
we find 33 suspicious honeypot contracts and all are verified
to be true honeypots. Below we present an example that has
99.0% of similarity with one seed honeypot.

Figure 12 shows the simplified contract, which implements
a gamble game. The participants get reward if providing a
number same as the secret number. Attackers may retrieve
the secret number from the blockchain storage space and then
make a quick profit. However, it is indeed a honeypot. Solidity
compilers before v0.5.0 allow the code to use an uninitialized
pointer, e.g., game at line 8. But at run time, this pointer
points to the 0-th slot of the contract’s storage. That means, a
modification at line 9 overwrites secretNumber with the caller’s
address that is always a huge number. Remember that line 10
enforces a small number. As a consequence, no one can satisfy
the condition at line 10 and all participants, either benign or
malicious, lose their money.

V. DISCUSSION

Vulnerability Types. Although in this paper we only detect
five types of vulnerabilities, our method is capable of detecting
many other types of vulnerabilities resulting from improper
operations on external data. But we must admit that, some types
are beyond our capacity, like the greedy contracts introduced by
Nikolić et al. [35]. A greedy contract accepts ethers but has no
way to release ethers in the whole contract. This characteristic
cannot be described by a single slice from one function. In
future, we will explore approaches to representing the whole
contract in appropriate vectors and extend the matching based
method to more kinds of vulnerabilities.

False Positives. Our validation shows some false positives
that are quite similar to the seed slice, but in fact they exhibit
completely different functionality. For example, at the bytecode
level, some random number calculations share nearly the same
instruction sequence as storage writes, confusing the tool. To
suppress such FPs, we may increase the degree of differentiation
between the slices by providing more fine-grained data attribute
types.

Verification. In this paper, we verify the dangerous contracts
by deploying them on a private blockchain, providing an
environment similar to the real blockchain and observing the
results of exploitation. In the future, we will expand our work
with some automated methods to make the verification process
more reliable and efficient.

Performance Deterioration. As a learning-based method,
the performance of the proposed method may be downgraded
over time. For example, due to the evolution of the code
patterns or compilers, current vulnerable code patterns (i.e.,
the vulnerable slices) may not be effective enough to catch
future vulnerable code fragments. However, we believe this
issue can be addressed by continuously tracking the vulnerable
contracts and the patterns, with which we can make the
proposed technique work well. In fact, slicing and embedding
new contracts to generate matching vectors is an easy job.

VI. RELATED WORK

In this section, we will discuss research efforts related to
our work and mainly focus on two aspects, matching based
methods and smart contract oriented approaches.

Matching based methods. Matching-based approaches have
proven to be effective in program analysis and are widely used
to detect vulnerabilities.

Yamaguchi et al. extract features such as variable declarations
and function calls from the abstract syntax tree and embed
those features to represent corresponding functions [3], [4].
Kim et al. proposed VUDDY [36], fingerprinting the string
length and hash value of a normalized function body and
utilizing the fingerprints to detect vulnerable code clones.
discovRE [7] searches similar functions from a binary code
base using a bunch of extracted numeric and structural features.
Genius [6] extracts a set of predefined basic-block level features,
e.g., number of string constants and numeric constants, to
denote attributed control flow graphs (ACFGs), and generate
a codebook for further encoding the ACFGs and detecting
vulnerabilities via similarity matching. Gemini [5] leverages
the same raw features to build ACFGs but employs a graph
embedding network for encoding. While determining a proper
set of features can be nontrivial, our method, in contrast, utilizes
an unsupervised graph embedding network for automatic
extraction and encoding.

Liu et al. [37] present αDiff that extracts intra-function
features using a deep neural network without any expert
knowledge and performs binary code similarity detection with
inter-function and inter-module features. Zuo et al. [20] co-opt
the natural language process techniques for code similarity
comparison, by treating instructions as words and basic blocks
as statement and mining the internal relations between them.
Ding et al. propose Asm2Vec [38], which directly learns
the relations and vector representations based on assembly
code, without any prior knowledge required. Compared with
these solutions taking the whole function body into account,
our method eliminates the noise as far as possible before
vector embedding to concentrate on more vulnerability-relevant
operations.

Smart contract specific methods. Symbolic execution is
widely adopted in smart contract analysis [39]. Oyente [11]
traverses all possible paths symbolically to detect vulnerabilities
including reentrancy. Maian [35] focuses on vulnerabilities
across multiple execution paths. Osiris [40] detects integer
operation bugs through symbolic execution and taint analysis.
teEther [41] and sCompile [42] utilize symbolic execution
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to explore paths with critical operations. Manticore [25] and
Mythril [24] are two other tools that employ symbolic execution
techniques for vulnerability detection. With manually gathered
detection rules, the above symbolic execution techniques
inevitably emit high FP/FN rate, as we have shown in
Section IV-C.

Apart from symbolic execution, other techniques are also
applied to enforce the safety of smart contracts. Securify [14]
extracts semantic information from the bytecode and checks
if any safety properties are violated. Vandal [43] inspects if
a given smart contract violates predefined specifications after
decompiling the bytecode to an intermediate representation.
Zeus [44] translates the Solidity source code into LLVM
bitcode and leverages the LLVM framework for abstract
interpretation and symbolic model checking. VeriSmart [45]
and VerX [46] employ formal verification to ensure the safety
properties. ContractFuzzer [47] applies fuzzing techniques to
test the smart contracts and uses predefined rules to detect
vulnerabilities. ReGuard [48] converts smart contracts to
semantically equivalent C++ programs and leverages fuzzing to
detect vulnerabilities. These approaches also require to obtain
proper rules or specifications, while our method automatically
extracts the vulnerability patterns from slices and matches them
with target contracts for detection.

There are also some works concentrating on honeypot
contract analysis. Sanjuas presents a couple of honeypot
contracts he came across, and explains the traps [31]. Torres
et al. sum up several kinds of honeypots and build a tool
based on some abstract features [12]. In contrast, our method
can systematically detect vulnerable and honeypot contracts
without summarizing any features.

VII. CONCLUSION

Vulnerable smart contracts on Ethereum may cause financial
losses, making it a critical task to detect vulnerabilities in
smart contracts. Matching-based detection by extrapolating
known vulnerabilities to unknown has proven to be effective,
but directly adopting the technique to smart contract analysis is
obstructed by diversity of bytecode generation and interference
of noise code. In this paper, we present contract bytecode ori-
ented normalization and slicing techniques to address the above
issues. Moreover, we design an unsupervised graph embedding
algorithm to vectorize the code graphs of normalized slices
and measure the vector similarities for bytecode matching and
vulnerability detection. Our evaluations show that the method
can effectively and accurately identify a considerable number
of vulnerable contracts and dozens of honeypot contracts,
outperforming state-of-the-art detectors.
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