
Corrections to “Detecting Bugs by Discovering

Expectations and Their Violations”
Pan Bian , Bin Liang , Yan Zhang, Chaoqun Yang, Wenchang Shi , and Yan Cai

Ç

IN [1], the corresponding author should have been listed as
Bin Liang. The footnote information is corrected below.

REFERENCES

[1] P. Bian, B. Liang, Y. Zhang, C. Yang, W. Shi, and Y. Cai, “Detecting
bugs by discovering expectations and their violations,” IEEE Trans.
Softw. Eng ., vol. 45, no. 10, pp. 984–1001, Oct. 2019.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

� P. Bian, B. Liang, Y. Zhang, C. Yang, and W. Shi are with the School of
Information, Renmin University of China, Beijing 100872, China, and
also with the Key Laboratory of DEKE, Renmin University of China, Bei-
jing 100872, China. E-mail: {bianpan, liangb, annazhang, cqyang,
wenchang}@ruc.edu.cn.

� Y. Cai is with the State Key Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences, Beijing 100080, China.
E-mail: yancai@ios.ac.cn.

Manuscript received 6 Dec. 2019.
(Corresponding author: Bin. Liang.)
Digital Object Identifier no. 10.1109/TSE.2019.2958750

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 1, JANUARY 2020 113

0098-5589� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-0844-4805
https://orcid.org/0000-0003-0844-4805
https://orcid.org/0000-0003-0844-4805
https://orcid.org/0000-0003-0844-4805
https://orcid.org/0000-0003-0844-4805
https://orcid.org/0000-0002-4818-7164
https://orcid.org/0000-0002-4818-7164
https://orcid.org/0000-0002-4818-7164
https://orcid.org/0000-0002-4818-7164
https://orcid.org/0000-0002-4818-7164
https://orcid.org/0000-0002-5160-1223
https://orcid.org/0000-0002-5160-1223
https://orcid.org/0000-0002-5160-1223
https://orcid.org/0000-0002-5160-1223
https://orcid.org/0000-0002-5160-1223
mailto:bianpan@ruc.edu.cn
mailto:liangb@ruc.edu.cn
mailto:annazhang@ruc.edu.cn
mailto:cqyang@ruc.edu.cn
mailto:wenchang@ruc.edu.cn
mailto:yancai@ios.ac.cn

Detecting Bugs by Discovering Expectations
and Their Violations

Pan Bian , Bin Liang , Yan Zhang, Chaoqun Yang, Wenchang Shi, and Yan Cai

Abstract—Code mining has been proven to be a promising approach to inferring implicit programming rules for finding software bugs.

However, existing methods may report large numbers of false positives and false negatives. In this paper, we propose a novel approach

called EAntMiner to improve the effectiveness of code mining. EAntMiner elaborately reduces noises from statements irrelevant to

interesting rules and different implementation forms of the same logic. During preprocessing, we employ program slicing to decompose

the original source repository into independent sub-repositories. In each sub-repository, statements irrelevant to critical operations

(automatically extracted from source code) are excluded and various semantics-equivalent implementations are normalized into a

canonical form as far as possible. Moreover, to tackle the challenge that some bugs are difficult to be detected by mining frequent

patterns as rules, we further developed a kNN-based method to identify them. We have implemented EAntMiner and evaluated it on

four large-scale C systems. EAntMiner successfully detected 105 previously unknown bugs that have been confirmed by

corresponding development communities. A set of comparative evaluations also demonstrate that EAntMiner can effectively improve

the precision of code mining.

Index Terms—Bug detection, code mining, program slicing, instance-based learning

Ç

1 INTRODUCTION

IN recent years various code mining approaches have been
proposed to automatically extract implicit programming

rules from source code repositories [1], [5], [10], [18], [27],
[31], [36], [37] [39], [44], [48], [54], [55], [62]. In particular,
such approaches on bug detection have proven to be effec-
tive [10], [27], [48], [55], [60], [62], and have detected numbers
of real bugs in large-scale systems, such as in the Linux ker-
nel. This further motivates commercial bug detection sys-
tems to incorporate the mining idea. For example, Coverity,
one of the most widely used bug detection tools, leverages
the statistical method to automatically extract programming
rules and detect bugs in some of its checkers (e.g., the
NULL_RETURNS checker [43]).

The code mining approach is based on an insightful
observation: most of the invocations to a specific operation
(e.g., an API) are correct, whereas the defective ones are rel-
atively rare. For example, in the Linux kernel v2.6.39, the
return value of the function alloc skbðÞ is validated before
being passed to the function skb reserveðÞ in most cases (127
out of 128). The only one exception or violation (i.e., without
the validation) is actually a programming bug. To detect

such violations, data mining algorithms are first employed
to extract frequently appeared patterns from source code as
(implicit) programming rules. Next, any violations to these
rules can be treated as potential bugs.

Unfortunately, in practice, detecting bugs with code min-
ing heavily suffers from reporting large numbers of false
positives and false negatives. Many of them result from the
interference of irrelevant statements and semantics-equiva-
lent implementations (both are called noise in this paper).
Mining programming rules requires the source code to be
fully transformed into a database for mining. However, in
practice, a piece of source code may contain irrelevant state-
ments and such statements, if not effectively seperated, will
affect the correctness of the mined rules. On the other hand,
if the irrelevant statements have the similar forms with
those in the rule, some real violations may be missed (see
Section 2.1). Moreover, programmers may adopt different
ways to implement the same logic. If they are not trans-
formed into the same form, the mining and the detection
algorithms may mistake them as different patterns. All
these together affect the mining process. That is, both the
support values and the confidence values (i.e., the two
measures of the interestingness of a mined rule) of the
mined rules may be deviated from what they are deemed to
be. As a result, lots of uninteresting rules may be inferred
but many interesting rules will be neglected.

To solve the above challenges, researchers have pro-
posed several approaches [10], [27]. However, their solu-
tions are insufficient and may further introduce new
problems (see Section 2.2).

In the preliminary version [28] of this paper, we proposed
AntMiner, a divide-and-conquer method to reduce noise by
carefully preprocessing source code. It employs the slicing
technique to decompose thewhole program into independent

� P. Bian, B. Liang, Y. Zhang, C. Yang, andW. Shi are with School of Informa-
tion, Renmin University of China, Beijing 100872, China, and with the Key
Laboratory of DEKE, Renmin University of China, Beijing 100872, China.
E-mail: {bianpan, liangb, annazhang, cqyang, wenchang}@ruc.edu.cn.

� Y. Cai is with the State Key Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences, Beijing 100080, China.
E-mail: yancai@ios.ac.cn.

Manuscript received 29 June 2017; revised 14 Feb. 2018; accepted 26 Feb.
2018. Date of publication 15 Mar. 2018; date of current version 23 Oct. 2019.
(Corresponding author: Pan Bian.)
Recommended for acceptance by K. Sen.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2018.2816639

984 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 10, OCTOBER 2019

0098-5589� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-0844-4805
https://orcid.org/0000-0003-0844-4805
https://orcid.org/0000-0003-0844-4805
https://orcid.org/0000-0003-0844-4805
https://orcid.org/0000-0003-0844-4805
https://orcid.org/0000-0002-4818-7164
https://orcid.org/0000-0002-4818-7164
https://orcid.org/0000-0002-4818-7164
https://orcid.org/0000-0002-4818-7164
https://orcid.org/0000-0002-4818-7164
https://orcid.org/0000-0002-4768-0272
https://orcid.org/0000-0002-4768-0272
https://orcid.org/0000-0002-4768-0272
https://orcid.org/0000-0002-4768-0272
https://orcid.org/0000-0002-4768-0272
mailto:
mailto:

sub-repositories according to a set of critical operations that
often serve as the indispensable elements of the logic of bugs.
AntMiner reduces the impact of above noises by aggressively
removing program statements irrelevant to the critical opera-
tions and carefully normalizing statements into canonical
forms as far as possible. AntMiner takes bug-prone functions
and function return as critical operations, and can detect bugs
caused by inappropriate function calls or incorrect function
return values. A function can be regarded as bug-prone if an
inappropriate invocation to it is likely to cause a program bug
(see its formal definition in Section 3.3.1).

An evaluation on the Linux v2.6.39 shows that AntMiner
can effectively reduce false positives and false negatives in
detecting real bugs caused by misusing bug-prone functions
and returning incorrect values.

However,AntMiner still suffers frommissing some return
value bugswhose corresponding programming rules are dif-
ficult to infer with frequent patternmining. Amajor reason is
that the semantics-based normalization method adopted in
AntMiner is not effective enough in normalizing return state-
ments due to their mutable semantics. The semantics of a
return statement is often determined by how the return value
is handled in the callers apart from preceding statements
(i.e., the context for the return statement). In some contexts,
different return statements may have an identical semantics;
but in some other contexts, the same return statement can
have quite differentmeanings. For example, in the Linux ker-
nel, statements “return�ENOMEM;” and “return� EIO;”
are both acceptable to represent a memory allocation error in
many driver functions (e.g., st probeðÞÞ. At the same time,
the return statement “return 0;” indicates no exception
occurs in some functions (e.g., ioat dma self testðÞ), but is
used as an error flag in some other functions (e.g.,
xhci align tdðÞ). This makes the normalization methods
adopted in AntMiner fail to transform many return state-
ments with equivalent semantics into the same form or mis-
takenly transform some inequivalent ones into the same
form. As a direct result, mining frequent patterns to get the
related programming rules does not work well for return
operations, and some interesting return rules may be
neglected (an example will be shown in Section 2.3).

In this paper, we present EAntMiner, an enhancement of
AntMiner, to improve the effectiveness of AntMiner in three
major aspects. (i) It extends the normalization method to
map return values to a canonical abstract form. In this way,
more semantics-equivalent return statements can be trans-
formed into the same form. (ii) It converts the problem of
detecting return value bugs into a non-parametric classifica-
tion problem. The return value of a function is regarded as
its class label. Taking a set of functions that are most similar
to the one under consideration as training samples, an
instance-based learning method (kNN in this paper) is
employed to discover the most common label among them
as the expected label of the target function. If the function
returns an unexpected value, a potential bug will be
reported. In addition, (iii) it takes decisive conditions under
which a function should directly return to more effectively
exclude irrelevant statements. We will further illustrate
decisive conditions in Section 3.3.2. Note that, the decisive
conditions, as well as the bug-prone functions, are automat-
ically extracted with a statistics-based method.

We have implemented EAntMiner as a prototype tool by
integrating the above improvements intoAntMiner. We eval-
uated EAntMiner on the Linux kernel of both versions v2.6.39
and v4.9-rc3, OpenSSL v1.1.0g, FFmpeg v3.4, and Post-
greSQL v10.1. In the preliminary version [28] of this paper,
AntMiner was applied on the Linux v2.6.39, and found 24
previously unknown bugs. All of these bugs can also be
detected by EAntMiner. The Linux v4.9-rc3was the latest ver-
sion at our experiment time. The evaluation on it shows that
EAntMiner detected 69 previously unknown bugs, including
20 misusages of bug-prone functions and 49 incorrect return
values. By contrast, AntMiner missed about 89.8 percent (44
out of 49) of incorrect return value bugs. The evaluation
results show that EAntMiner performs significantly better
than AntMiner in detecting return value bugs. EAntMiner
also detected 12 previously unknown bugs from OpenSSL,
FFmpeg, and PostgreSQL. The result demonstrates that our
method is not specially designed for the Linux kernel, but
can also be applied to find bugs in other large-scale systems.

This paper makes the following main improvements.

� We presented a normalization method based on
value abstraction to transform more semantics-
equivalent return statements into the same form.

� We proposed an instance-based learning method to
overcome the obstacle of mining programming rules
for return operations.

� We implemented a prototype tool EAntMiner and
evaluated it on four large-scale systems to demon-
strate its effectiveness. Dozens of unknown bugs pre-
viously missed were successfully detected.

The rest of this paper is organized as follows. In Section
2, we show a high-level overview of our method with some
motivating examples. We present the design and implemen-
tation of EAntMiner in Section 3, and evaluate it in Section 4.
After discussing the limitation and perspective of future
work in Section 5, we review related work in Section 6.
Finally, Section 7 concludes this paper.

2 MOTIVATING EXAMPLES

In this section, we show four samples from the Linux kernel
to demonstrate the limitations of the general code mining
approaches, including (1) how irrelevant statements and
inconsistent statements can interfere with the mining and
detection processes (Sections 2.1 and 2.2), and (2) how min-
ing association rules as a fixed baseline can miss some
return value bugs (Section 2.3).

2.1 Interference from Irrelevant Statements

We illustrate this problem with an example from the well-
tested Linux kernel source code. In the Linux kernel pro-
grams, there is an implicit programming rule: the return
value of the function snd_pcm_new() should be checked
immediately to make sure that a new snd_pcm instance is
created successfully before being passed to the function
snd pcm set opsðÞ. Fig. 1 shows a piece of program that vio-
lates the rule. That is, right after line 854, the return value
err is not checked.

Applying a frequent pattern mining algorithm (e.g.,
FPclose [17]) on the kernel code, the frequent pattern
ferr ¼ snd pcm newðÞ, if ðerr < 0Þ, snd pcm set opsðÞg can

BIAN ETAL.: DETECTING BUGS BY DISCOVERING EXPECTATIONS AND THEIR VIOLATIONS 985

be extracted. The pattern can be taken as a programming
rule to detect related bugs [27]. Unfortunately, the program
in Fig. 1 actually contains all three elements of the rule (at
lines 853, 867, and 858, respectively). As a result, the pro-
gram will be mistaken as an obedience rather than a viola-
tion of the rule. This false negative is caused by the
conditional statement at line 867 as the statement is irrele-
vant to both functions snd pcm newðÞ (line 853) and
snd pcm set opsðÞ (called at line 858).

Analysis and Our Solution. Approaches based on order-
sensitive data mining algorithms, e.g., frequent subsequence
mining [54], [55], may detect such a bug. However, if the
irrelevant statements “err ¼ fðÞ; if ðerr < 0Þ” appear
between lines 853 and 858 (which is quite possible in prac-
tice), the methods would also fail. Besides, the order-sensi-
tive solutions are not scalable (due to their much higher
time complexity than itemset mining methods [1], [10]) on
extracting programming rules. In order to make them scal-
able to mine rules from large-scale software (e.g., the Linux
kernel, which has tens of millions of lines of code), a larger
minimum support threshold should be set. However, this
would miss rules with relatively small supports.

For the example in Fig. 1, the false negative is actually
caused by the statement (line 867) which is irrelevant to the
rule, confusing the detection process. Hence, the bug can be
detected by actively removing the irrelevant statements
before transforming the program into mining databases. To
achieve this goal, we have to distinguish the statements we
do care about from those we do not care about. Our observa-
tion is that a bug often occurs when some critical operations
are called without satisfying some conditions (or precondi-
tions). Based on this observation, we should only focus on
statements that either directly call a critical operation or
impact the execution of a critical operation. The other state-
ments are considered irrelevant and should be removed.

Given a critical operation, one can adopt the backward
program slicing technique [56] to achieve this goal. For
example, in Fig. 1, assuming that the function snd pcm
set opsðÞ is a critical operation (i.e., acting as a slicing crite-
rion), the conditional statement (line 867) can be then
excluded from the corresponding slice. Hence, the detection
algorithm is able to catch this violation because the

remaining statements do not contain the second element in
the identified rule.

2.2 Interference from Inconsistent Implementations

In the preliminary version [28] of this paper, we explained
how variable names and control structures interfere with
code mining (i.e., Sections 2.2 and 2.3). In this paper, we dis-
cuss the two aspects in this section.

The validation to the sensitive data usually depends on
conditional statements. In general, missing effective valida-
tionsmay result in programming bugs. For example, the pro-
gram shown in Fig. 2a illustrates an effective validation to the
actual parameter of function tty hangupðÞ. However, in the
program shown in Fig. 2b, an incorrect conditional expres-
sion (i.e., “C CLOCALðttyÞ” rather than “!C CLOCALðttyÞ”)
is used in the validation. This introduces a bug. On the other
hand, programmers may use different or even opposite con-
ditional expressions to enforce the same validation. For
example, there are two validations on the return value of the
function dev alloc skbðÞ shown in Figs. 3a and 3b, respec-
tively. Although the two validations employ different
variable names and completely opposite conditional expres-
sions, considering the contexts, both of them effectively guar-
antee that the return value is not NULL before being passed
to the critical operation skb reserveðÞ.

Analysis and Our Solution. Efforts are proposed to replace
variables with their data types [27], and simplymake the sim-
ilar expressions identical, e.g., replacing “! ¼ ”with “ ¼¼ ” in
the control points without considering the semantics of
related control structures [10]. However, program statements
with different semantics may bemistakenly transformed into
the same form, because these normalization methods ignore

Fig. 1. A violation to the pattern ferr ¼ snd pcm newðÞ, if ðerr < 0Þ,
snd pcm set ops ðÞg, lacking a necessary check of the return value of
function snd pcm newðÞ.

Fig. 2. Two validation samples to the actual parameter of function
tty hangupðÞ.

Fig. 3. Two effective validations for the return value of function
dev alloc skb ðÞ.

986 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 10, OCTOBER 2019

the semantics of program statements. Therefore, these meth-
ods are ineffective to process the above samples; otherwise
wemaymiss the bug in Fig. 2b.

A better solution is to incorporate the semantic informa-
tion into the canonical form of a program statement. In our
approach, a variable is given a new canonical name that can
reflect where its value comes from; and the control structure
is rearranged to ensure that the predicate, whichmust be sat-
isfied before executing a critical operation, is explicitly speci-
fied in its conditional expression. For example, in Fig. 3,
because both variables newskb and skb keep the return value
of the function dev alloc skbðÞ, they are renamed as
FN-dev alloc skb-0. Additionally, for the program in Fig. 3b,
the conditional expression “!skb” (line 2175) can be reversed
to “skb” to explicitly specify that the variable skb has been
checked against null before being passed to the function
skb reserveðÞ. On the other hand, the conditional expressions
in Figs. 2 and 3a remain their original forms. In this way, the
bug in Fig. 2b can then be detected, and no false positives are
reported for the programs in Fig. 3.

2.3 Interference from Variant Semantics

We observed that many functions take return values as a
payload to pass the execution result to the callers. Subtle
bugs can arise if the return value is incorrect. For example, in
the Linux kernel, the function dma map singleðÞ maps a
piece of processor virtual memory to a DMA address such
that it can be accessed by peripheral drivers. The mapping
errors are checked by testing the returned address against
the function dma mapping errorðÞ, which returns a non-zero
value if the mapping fails. As shown in Fig. 4, the function

ioat dma self testðÞ attempts to map memory (line 340).
It returns zero if there are errors during the mapping
process (see line 343). However, in this scenario, a return
value zero means no error. Its callers (e.g., the function
ioat3 dma self testðÞ) cannot realize the mapping error
and will perform unexpected and dangerous behaviors,
e.g., forcing the Intel I=OAT driver to startup even if the
self-test fails, which may result in unpredictable bugs on
future access to the device.

Analysis and Our Solution. To detect the bug in Fig. 4, tra-
ditional static methods [14], [23], [24] require users to pro-
vide the return rule to indicate that: function ioat dma
self testðÞ should return a non-zero value if the return value of
dma mapping errorðÞ is not zero. This becomes very difficult
or even impossible as it requires a large amount of human
effort. In the preliminary version [28] of this paper, Ant-
Miner attempts to detect this kind of bugs by mining return
rules. A return rule is represented as P ¼> f“return v”g,
which means a function should return v on paths that con-
tain a certain frequent pattern P . Though this method can
find some real bugs from large-scale systems, it may miss
many bugs due to the inability to mine some kinds of inter-
esting rules. For example, the frequent pattern P1 ¼ fdma ¼
dma map singleðÞ, error ¼ dma mapping errorðÞ; ifðerrorÞg
appears in 188 functions in the Linux v4.9-rc3. The functions
that contain the pattern P1 can return “0”, “-EIO”,
“-EINVAL”, “-ENODEV”, “-1”, “-ENOMEM”, “-EAGAIN”,
etc. Among them, “�ENOMEM” is the most frequently
used return value, and the number of functions returning it
is 77. From these data, the confidence of the return rule
P1 ¼> f“return� ENOMEM”g is about 41 percent, which
is much smaller than the minimum confidence 85 percent
[28]. Besides, the number of functions that return
“-ENOMEM”, “-EINVAL”, “� ENODEV”, “-EIO”, “-1”,
“-EAGAIN” is 147. Even if we can normalize them all to
“! ¼ 0” with the abstracting method presented in Section
3.5, the confidence of the rule P1 ¼> f“return ! ¼ 0”g is
about 78 percent, which is not large enough yet. Therefore,
AntMiner is unable to mine a desired return rule, and thus
cannot detect the bug in Fig. 4.

The underlying reason is that the same return value can be
interpreted as different or even opposite meanings in differ-
ent functions. For example, the return value “0” indicates
no error in function ioat dma self testðÞ; but, oppositely, it
means error in function xhci align tdðÞ, which also contains
pattern P1. Using a universal rule may falsely report
xhci align tdðÞ as a bug. Or more seriously, as discussed
above, the rule would not be mined if the functions that take
“0” as error and no error are fifty-fifty. Fortunately, in practi-
cal systems, the more similar two functions are (e.g., per-
forming similar operations and defined in the same file or
adjacent files), the more likely they will use the same return
value to represent the same semantics. To this end, we can
infer the expected return value from a set of functions that
are most similar to the one under detection. And the real
return value is considered to be incorrect if it mismatches the
expected one. For example, 19 out of the top 20 functions that
are most similar with the function ioat dma self testðÞ
return non-zero valueswhen aDMAmapping operation fails.
Therefore, we have a high confidence ð19=20Þ that the func-
tion ioat dma self testðÞ expects a non-zero return value on

Fig. 4. An example that returns incorrect value.

BIAN ETAL.: DETECTING BUGS BY DISCOVERING EXPECTATIONS AND THEIR VIOLATIONS 987

the DMA mapping error path. As the real return value (i.e.,
zero) is different with the expected one, the function
ioat dma self testðÞ is taken as a potential bug.

3 EANTMINER APPROACH

3.1 Overview

Compared with most traditional code mining approaches,
EAntMiner does not directly handle the whole source code
of the target system. Instead, it decomposes the source
repository into a set of independent sub-repositories on pre-
processing. The code mining is then independently per-
formed on these sub-repositories.

Fig. 5 shows an overview of EAntMiner. First, the source
code is parsed into parse trees, and a program dependence
graph (PDG) is generated for each function definition (Sec-
tion 3.2). Second, it extracts critical operations from the
source code itself without any human involvement (Section
3.3). Third, according to the critical operations, the program
slicing technique is employed to generate a series of sub-
repositories (Section 3.4). A sub-repository consists of the
program slices associated with a specific critical operation.
Fourth, program statements are normalized, and every sub-
repository is converted to an itemset database (Section 3.5).
Finally, EAntMiner iterates over itemset databases to detect
abnormal itemsets. On databases of bug-prone functions, a
frequent sub-itemset mining algorithm is employed to mine
frequent patterns and generate programming rules, and vio-
lations to the extracted rules are taken as potential bugs
(Section 3.6.1). Whereas, on databases of decisive condi-
tions, EAntMiner lets the k nearest neighbors of an itemset
under consideration to decide whether the corresponding
return value is correct or not (Section 3.6.2).

3.2 Parsing Source Code

EAntMiner uses a modified GCC compiler [42] frontend to
parse source code. The source code is parsed and repre-
sented in GIMPLE, which is a language-independent, tree-
based representation. It should be noted that complex
expressions are split into a three-address code in GIMPLE.

The rest of this subsection reviews preliminary knowledge,
mainly about the PDG. Readers who are familiar with it
may skip the rest of this subsection.

A PDG is computed for each function definition by using
an improved algorithm proposed by Ferrante et al. [15]. In a
PDG, a vertex represents a GIMPLE statement, and an edge
represents the dependency information between two ver-
texes. A PDG consists of a control dependence subgraph (CDS)
and a data dependence subgraph (DDS):

� The CDS describes the control dependencies among
statements. In the CDS, if a statement s2 is control
dependent on a conditional statement s1, there is a
control dependence edge from s1 to s2 labeled with
either T or F , indicating that s2 is executed on the
True or False branch of s1, respectively. They are
denoted as hs1; s2; T i or hs1; s2; F i, respectively. A
statement sn is indirectly control dependent on s1 if
there is a path from s1 to sn on the CDS. For example,
in Fig. 4, the statement at line 342 is directly control
dependent on the conditional statement at line 341,
and is indirectly control dependent on the condi-
tional statement at line 319.

� The DDS describes the data dependencies among
statements. A statement s2 is data dependent on a state-
ment s1 if there is a variable x defined in s1, used at s2,
and exists an executable path from s1 to s2 along
which there is no intervening definitions of x. In the
DDS, there is a data dependence edge from s1 to s2
labeled with x to indicate the dependence relation-
ship, denoted as hs1; s2; xi. In our implementation, a
variable is regarded to be defined at a statement if it is
explicitly assigned to a value or it is passed to a func-
tion by reference. For example, in Fig. 1, both varia-
bles err and pcm are defined at line 853, and variable
pcm is used at line 858. Thus, the data dependence
edge h853; 858; pcmi is added in the DDS.

3.3 Extracting Critical Operations

Bugs or vulnerabilities often stem from incorrectly invok-
ing some critical operations. An operation can be regarded
as critical if misusing it tends to cause a program bug. In
practice, either passing an illegal parameter to a bug-prone
function or returning an incorrect value under a decisive con-
dition can result in serious bugs. In the preliminary version
[28] of this paper, we proposed a statistics-based method
to automatically extract bug-prone functions from the
source code itself. Based on this method, AntMiner can
automatically collect potential bug-prone functions, with-
out requiring any prior knowledge of the target system. In
a previous evaluation, it found thousands of bug-prone
functions from the Linux kernel in about 30 minutes [28],
which saves a great deal of human efforts. In this paper,
we generalize this method to further automatically extract
decisive conditions.

3.3.1 Extracting Bug-Prone Functions

As explained in the introduction, a function is considered to
be bug-prone if an inappropriate invocation to it tends to
cause a program bug when executing the function. For-
mally, we define bug-prone functions as follows:

Fig. 5. An overview of EAntMiner.

988 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 10, OCTOBER 2019

Definition 1. Given a function f and a set of constraints c on the
inputs of f , if (1) the execution of function f exhibits no pro-
gram bugs iff all constraints in c are satisfied, and (2) the con-
straint set c is non-empty, then f is bug-prone.

That is, a bug-prone function will certainly result in a
program bug if any of its inputs (e.g., one of its actual
parameters) fails to satisfy the preconditions (i.e., the con-
straint set c in the above definition). For example, the func-
tion strcpyðdest buffer; src bufferÞ is a bug-prone one
because it requires that the size of dest buffer (i.e., the desti-
nation buffer) be large enough so as to hold characters in
src buffer (i.e., the source buffer); and a buffer overflow
will be caused if a call instance of strcpyðÞ violates the above
constraint. In practice, the call to a bug-prone function often
acts as the key element of a programming rule. In fact, in
the Common Weakness Enumeration (CWE, a list of soft-
ware weaknesses)1, the sinks of many weaknesses are calls
to some security-sensitive functions.

In real programs, some functions are less likely to get
involved in bugs than functions like strcpyðÞ. For example,
the function isdigitðÞ (a function in C language to check
whether a character is a decimal digit) has no special require-
ments for its parameter. The mined rules for it will be often
insignificant for detecting bugs. Compared with functions
like isdigitðÞ, we are more interested in bug-prone functions
such as strcpyðÞ. However, many bug-prone functions are
not well-known like strcpyðÞ. In many cases, they may even
be undocumented. Therefore, it is necessary to develop a
method that can automatically identify bug-prone functions.

In practice, a bug-prone function call usually produces an
error when one or more of its parameters hold illegal values.
We refer to such parameters as sensitive parameters. In a
practical system, to make sure that the system works cor-
rectly, these sensitive parameters are often validated to ensure
that constraints on them are satisfied before being passed to
the bug-prone function. In real-world programming, a valida-
tion to a sensitive parameter is generally implemented as a
conditional comparison. To this end, our approach to identi-
fying bug-prone functions is based on the intuition: before a
bug-prone function is called, one or more of its parameters
should be directly or indirectly checked by a conditional state-
ment; and the function should not be executed if the check
fails. In other words, the conditional statement is in control of
the execution of the function call statement.

A parameter p of function fðÞ is protected by a condi-
tional statement cs if (1) the function call statement is
directly or indirectly control dependent on cs and (2) p is
checked by cs. A protected-counter for p (each parameter
with a protected-counter) counts how many times p is pro-
tected before calling function fðÞ. Assuming that function
fðÞ is called for T times and the protected-counter of p is t.
If the protected-ratio t=T is larger than a predefined threshold
� (e.g., 70 percent in this paper), function fðÞ is then consid-
ered as a bug-prone function on parameter p.

For example, in Fig. 3b, the call to skb reserveðÞ at line
2184 is control dependent on the conditional statement at
line 2175, which checks the first actual parameter of
skb reserveðÞ (i.e., skb). Therefore, skb reserveðÞ is taken as a

bug-prone function candidate and the protected-counter of
its first parameter is increased by one. After scanning the
whole kernel code, we find that the function skb reserveðÞ is
called 503 times in total, among which 491 times its first
parameter is checked by some conditional statements, and
thus the corresponding protected-ratio is around 97.61 per-
cent. Consequently, with a high belief, the function
skb reserveðÞ is identified as a bug-prone function with
respect to its first parameter.

3.3.2 Extracting Decisive Conditions

In practical programs, a function will end the execution flow
and probably return some values to its callers when certain
conditions occur. For example, when kzallocðÞ returns a
NULL pointer, a function will return a specific value (e.g.,
“-ENOMEM”) to inform its callers of the memory allocation
failure. We refer to such conditions as decisive conditions.
The return value is often determined (e.g., equal to zero, not
equal to zero, or equal to “�ENOMEM”) on the branch that
a decisive condition occurs. In practice, not all conditions
are decisive ones. For example, in Fig. 4, on the true branch
of the conditional statement at line 319, the execution flow
jumps out of the function ioat dma self testðÞ and a specific
value (i.e., “�ENOMEM”) is returned. Therefore, the corre-
sponding condition “src ¼¼ 0” is a decisive one. Whereas,
there are multiple paths on the false branch of the same con-
ditional statement, and the return values on these paths are
not always the same. As a result, the corresponding condi-
tion “src ! ¼ 0” is not a decisive one.

Every condition can be normalized by renaming varia-
bles with canonical names (similar to Section 3.5). If a vari-
able keeps the return value of a function fðÞ, “f” is used to
build the canonical name, prefixed with “FN �” and suf-
fixed with “ 0”. In other cases, a variable will be renamed
with its data type. For example, the variable src keeps the
return value of function kzallocðÞ and its canonical name is
“FN-kzalloc 0”. As a result, the conditions “src ¼¼ 0” and
“src ! ¼ 0” are normalized to “FN-kzalloc 0 ¼¼ 0” and
“FN-kzalloc 0 ! ¼ 0”, respectively.

In practice, if the return values on the two branches of a
conditional statement are the same, the conditional test will
have little impact on the execution result, and thus the condi-
tional statement is unlikely to contain decisive conditions.
Moreover, according to the concept of decisive conditions,
on the branch that a decisive condition evaluates to true (that
is, the decisive condition occurs), a program should return as
early as possible. Generally, there should be no other deci-
sive conditions on that branch. Based on these insights, we
adopt a three-stage method to identify decisive conditions.
First, we compute a return constraint (short for constraint on
return value) for each conditional branch to indicate possible
return values on the branch. Second, we mark conditional
statements whose both branches have the same return con-
straint. Finally, a condition cond is taken as a decisive condi-
tion candidate if there are no unmarked conditional
statements on the branchwhere cond evaluates to true.

For example, in Fig. 6, on branch #1, variable err is nega-
tive (see the assertion at line 6), the return constraint is “<
0”. Similarly, the return constraints of branches #2 and #3
are “ ¼¼ 0 jj ¼¼ 1” and “ ¼¼ 1”, respectively. And the
return constraints of branches #4�6 are the same, i.e.,1. CommonWeakness Enumeration, http://cwe.mitre.org

BIAN ETAL.: DETECTING BUGS BY DISCOVERING EXPECTATIONS AND THEIR VIOLATIONS 989

http://cwe.mitre.org

“ ¼¼ 0”. Because the return constraints of branches #5 and
#6 are the same, the conditional statement at line 15 is
unlikely to contain a decisive condition and is marked. On
branches #1, #3 and #4, there is no unmarked conditional
statements. Therefore, the corresponding conditions are
taken as decisive condition candidates. Whereas, because
there is an unmarked conditional statement (at line 11) on
branch #2, the condition “FN-register dev 0 >¼ 0” cannot
be taken as a decisive one.

Assuming that a condition cond appears in T functions,
and in t functions cond is identified as a decisive condition
candidate. If the decisive-ratio t=T is larger than a given
threshold � (e.g., 70 percent in this paper), condition cond is
then regarded as a decisive one. For example, in the Linux
v4.9-rc3, in 234 out of 279 functions, the condition
“FN-dma mapping error 0 ! ¼ 0” is identified as a decisive
condition candidate. Its decisive-ratio is about 83.9 percent,
which is larger than 70 percent. Therefore, the condition is
taken as a decisive one.

3.4 Slicing Source Code

The original definition of program slicing was proposed by
Weiser [56]. By introducing the notion of PDG, Ottenstein
et al. [33] converted the slicing problem into a reachability
problem in a dependence graph representation of the pro-
gram. Based on their study, several algorithms are proposed
for effective slices computing [15], [22]. Based on these algo-
rithms, a program slice consists of all statements which may

affect the values at some points of interest (i.e., slicing crite-
rion) or determine whether it should be executed.

Identifying Slicing Criteria. To compute program slices for
a critical operation, the corresponding slicing criteria should
be identified at first. For a bug-prone function, vertexes that
call this function in the PDG can be directly taken as slicing
criteria. For a decisive condition, vertexes containing it are
taken as slicing criteria, and the return constraint for each of
them is also computed. For example, in Fig. 3b, the function
skb reserveðÞ is bug-prone on its first parameter and is
called at line 2184. Therefore, h2184; fskbgi is taken as a slic-
ing criterion, where variable skb is the interesting parameter.
For another example, in Fig. 4, the conditional statement at
line 341 contains the decisive condition “FN-dma
mapping error 0 ! ¼ 0”, and the return value on the true
branch of the conditional statement is 0. Therefore,
h341; fdev; dma srcgi is taken as a slicing criterion, and the
return constraint of it is “¼¼ 0”.

Slicing for Every Criterion. In classical program slicing
algorithm [33], the PDG is traversed backward from a slic-
ing criterion, and the encountered vertexes are marked. All
the marked vertexes constitute the program slice of the slic-
ing criterion.

However, the above classical program slicing cannot be
directly used by EAntMiner. The reason is that, the classical
program slicing cannot excludes some noise statements
from the obtained slice. For example, in Fig. 7, taking
h8; fxgi (the bug-prone function sensitive op1ðÞ is called at
line 8 with actual parameter x) as a slicing criterion, the con-
ditional statement at line 6 (i.e., “if ðlen > MAX LENÞ”)
remains in the obtained slice. This is because the function
call is control dependent on it. But this conditional state-
ment does validate the input to the call to sensitive op2ðyÞ
(line 9) rather than that to sensitive op1ðÞ. If the statement is
reserved in the slice, it may be incorrectly taken as a check-
ing for sensitive op1ðxÞ by the mining algorithm.

In essence, this issue is caused by the fact that the semantic
relationship between two statements may still be weak even
if there is a control dependence edge between them. To
address this issue, we design a more aggressive slicing algo-
rithm. Our algorithm also backward traverses the PDGpaths
starting from the statement invoking the bug-prone function
(e.g., sensitive op1ðÞ), andmarks the encountered statements
to compute the program slice. The difference is that a condi-
tional statement is not marked if it is not homologous to the
statement of the slicing criterion. Two statements s1 and s2
are homologous if either (1) s1 and s2 are data dependent on
the same statement s3, or (2) s1 (or s2) is data dependent on
statement s3, and s2 (or s1) and s3 are homologous. In this

Fig. 6. An example for identifying decisive conditions and normalizing
return statements.

Fig. 7. A noise example that may remain in the slice.

990 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 10, OCTOBER 2019

way, the conditional statement that has only control depen-
dence relationship with the slicing criterion is not taken as a
potential validation to the function and, hence, is not added
into the slice. For example, in Fig. 7, the conditional state-
ment at line 6 (i.e., “if ðlen > MAX LENÞ”) is homologous
to the statement at line 9, but not the statement at line 8. As a
result, statement 6 is marked for the slicing criterion h9; fygi,
but is notmarked for h8; fxgi.

Constructing Sub-repositories. There is a program slice for
each invocation instance of a critical operation. All the pro-
gram slices for a specific critical operation make up an inde-
pendent sub-repository for it.

In the preliminary version [28] of this paper, to exclude
statements that are irrelevant to a return statement, the
program points where the return values are actually deter-
mined are taken as slicing criteria. On slicing for a crite-
rion, all conditional statements that the slicing criterion is
control dependent on are marked. But some reserved con-
ditional statements may be irrelevant to each other, and
they will interfere with code mining, resulting in false neg-
atives and false positives. In this paper, conditional state-
ments that contain a decisive condition are taken as slicing
criteria. A decisive condition is highly related to return
statements but has relatively more specific semantics. This
improvement enables EAntMiner being able to reduce
more irrelevant statements.

3.5 Normalizing and Hashing Statements

Every sub-repository is converted to an itemset database.
Every statement is converted to a string and hashed to a
number using the PJW hash function [3]. The hash numbers
of the statements in a program slice will constitute an item-
set (a bag of numbers). Before hashing, statements are nor-
malized by the following four methods:

A. Renaming Variables. In practice, names of variables in
similar contexts may vary greatly. To reduce the differences
in naming, variables in every statement are given new
canonical names. Specifically, (1) for each variable that
either accepts a re?>turn value of a function or is taken as a
reference parameter of a function is renamed as the function
name plus a suffix. ‘0’ is used as a suffix for the former case,
and an integer i is used for the latter case where the integer
i indicates that the variable is taken as the i-th parameter of
the function. (2) In other cases, each variable is renamed as
its data type. For example, in Fig. 8, in the statement at line 3
(i.e., “if ða < bÞ”), variable a keeps the return value of fooðÞ
(called at line 1), and variable b is a reference parameter of
fooðÞ. Thus, variable a is renamed as “foo-0”, while variable
b is renamed as “foo-1” (b is the first parameter of fooðÞ).
Because the value of variable c in “d ¼ cþ a; ” is not
assigned by a function, it is renamed as its data type, i.e.,
“int”.

B. Rewriting Expressions. Expressions in different forms
may represent the same semantics. For example, “aþ b” is
equivalent to “bþ a” in semantics. It is not practical to nor-
malize all kinds of semantics-equivalent expressions. In this
paper, considering the significance of conditional state-
ments and assignment statements for identifying program-
ming rules, we mainly concern with the normalization of
them. Thanks to the GIMPLE representation, this work can
be focused on normalizing binary expressions. For a binary
expression “v1 op v2”:

� If the operator op has a commutative property (i.e.,
“þ ”; “ � ”; “&”; “j”; “ ¼¼ ”; “! ¼ ”) and the data
type name of operand v1 is lexicographically after that
of v2, the expression is transformed into “v2 op v1”. For
example, for an expression “intþ char”, because
“iint” is lexicographically after “cchar”, the resulting
expression is “charþ int”.

� If the operator op is a non-commutative relational
operator (i.e., “>”; “<”; “>¼ ”, and “<¼ ”) and
the canonical name of operand v1 is lexicographically
after that of v2, the positions of the two operands are
exchanged, and the operator op is synchronously
changed to op’ (i.e., the complement operation of op)
to preserve the semantic. For example, the expression
“int >¼ char” is rewritten as “char <¼ int”.

C. Rearranging Control Structures. The same program logic
may be implemented in different control structures. For
example, programs in Figs. 3a and 3b are different in form,
but they both follow the constraint that “the first parameter
of skb reserveðÞ should not be NULL”. To reduce the differ-
ences in form, the control structures are rearranged as fol-
lows: if a critical operation is called only when a predicate pp
evaluates to false, it is negated to pp0 (e.g., the negation of
“a > b” is “a <¼ b”); accordingly, the two branches of the
control structure are exchanged such that the critical opera-
tion is called only when predicate pp0 evaluates to true. In this
way, the validation modes about critical operations are uni-
fied without alerting the original validation logic. For exam-
ple, in Fig. 3b, the critical operation skb reserveðÞ is executed
only when the predicate (line 2175) evaluates to false. The
related control structure is rearranged, as shown in Fig. 9.

By doing so, all conditional predicates, which determine
whether the bug-prone operation is executed or not, will be
normalized to a standard form as far as possible, making
the mining algorithm more likely to be able to extract poten-
tial frequent programming patterns.

D. Abstracting return values. In practice, some different
return values may have the same implications from a high-
level point of view. For example, in Fig. 6, the function
start deviceðÞ returns a negative value on registration error
and returns “1” when the launch operation fails. However,

Fig. 8. An example for illustrating statements normalizing.

Fig. 9. Rearranged program of the one in Fig. 3b.

BIAN ETAL.: DETECTING BUGS BY DISCOVERING EXPECTATIONS AND THEIR VIOLATIONS 991

both the negative value and “1” are interpreted as errors
and are handled in the same way (see lines 24 � 27) in the
function dev entryðÞ, a caller of start deviceðÞ. Therefore,
when the register operation fails, it is also acceptable to
return “1”, without leading to any bugs.

We abstract return values according to themanner they are
checked in the callers to transform semantics-equivalent ones
into the same form as far as possible. For example, in Fig. 6,
the conditional statement “if ðerrÞ” (at line 24) checks the
return value of function start deviceðÞ. The return values in
function start deviceðÞ can thus be abstracted as “! ¼ 0” or
“¼¼ 0”. The return constraint of branch #1 is “< 0”, under
which “! ¼ 0” is always satisfied. Therefore, “< 0” can be
abstracted as “! ¼ 0”. Similarly, the return value on branches
4 � 6 equals to “0”, and they can be normalized to “¼¼ 0”.
Whereas, the return constraint of branch #3 is “¼¼ 1 jj ¼¼ 0”,
under which neither “! ¼ 0” nor “¼¼ 0” can always be satis-
fied. In this case, the return constraints cannot be further
abstracted andwill keep their original forms.

Note that a function may be called multiple times, and its
return values may be checked in different ways, e.g., “if
ðrv ! ¼ 0Þ” or “if ðrv < 0Þ”. In this case, a negative return
value will be normalized to a couple of different forms,
such as “! ¼ 0” and “< 0”.

As discussed in Section 3.4, a return constraint is com-
puted for each slicing criterion of decisive conditions. The
return constraint is abstracted with the above method. The
program slice of a slicing criterion is transformed into an
itemset, say X; the corresponding abstracted return values
are also stored in the database along with the itemset X,
denoted as rvsðXÞ.

Note that, AntMiner [28] normalizes program statements
by properly renaming variables, rewriting expressions, and
rearranging control structures. However, these strategies
cannot effectively normalize return statements. In this
paper, by incorporating inter-procedural information to
abstract return values, EAntMiner normalizes return state-
ments into canonical forms as far as possible.

3.6 Detecting Violations

EAntMiner employs different detection methods to identify
inappropriate invocations of bug-prone functions and incor-
rect return values. On the database of a bug-prone function,
as done in AntMiner, EAntMiner first extracts association
rules from it, and then reports itemsets that violate the
extracted rules as potential bugs. On detecting return value
bugs, EAntMiner adopts a method different to that in Ant-
Miner. EAntMiner iterates over each itemset in the database
of a decisive condition. It selects a set of itemsets (called
neighbors) that are highly similar to the one under consider-
ation. An itemset is taken as an outlier if it has different
(abstracted) return values with its neighbors, and the corre-
sponding function potentially contains a return value bug.

3.6.1 Detecting Misusages of Bug-Prone Functions

EAntMiner adopts the data mining algorithm FPclose [17] to
discover closed frequent sub-itemsets from the itemset data-
base of a bug-prone function. We first present the back-
ground of association rules to ease our presentation in the
next two paragraphs.

The support of a sub-itemset P is the number of itemsets
in a database that contain all items in P , denoted as support
(P). A sub-itemset is frequent if its support is larger than or
equal to a specified threshold (known as min_support). A fre-
quent sub-itemset A is closed if there is no frequent sub-
itemset B where B is a proper subset of A and
supportðAÞ ¼ supportðBÞ.

Given a threshold min_confidence, an association rule
is defined to be the form A ¼> B, where A and B are
two closed frequent sub-itemsets, and supportðBÞ�
supportðAÞ � 100 percent (i.e., the confidence of the rule,
denoted as confidenceðA ¼> BÞ) is larger than or equal to
min_confidence. The association rule A ¼> B indicates: if
an itemset in the database contains all items in A, it should
also contain all items in B with a probability of
confidenceðA ¼> BÞ. And a violation to the rule is an item-
set that contains all the items in A but not all the items in B.

A trivial method to detect the violations is to enumerate
all itemsets in the database and examine which is a superset
of A but not of B. However, given a database with a large
number of itemsets, this method might be time-consuming.
To speed up violation detecting, we slightly modified
FPclose such that when it discovers a closed frequent sub-
itemset X, the itemsets that support X are also recorded,
denoted as supporterðXÞ. By doing so, the set of violations
to an association rule A ¼> B can be obtained via
supporterðAÞ � supporterðBÞ.

Ranking potential bugs. Violations are ranked before report-
ing them to the users. In our experience, a violation that
misses conditional statements is more likely to be a bug than
those that miss function call statements. Besides, the fewer
statements a violation misses, the more likely it is a bug.
Hence, all violations are first arranged into three categories:
missing conditional statements, missing function call state-
ments, and the others. Among these three categories, viola-
tions in the first category are ranked with a highest priority,
followed by violations from the second category, and viola-
tions from the third category have a lowest priority. Within
each category, a violation that misses fewer statements is
ranked with a higher priority; and if any two violations miss
the same number of statements, they are ranked by the confi-
dences of their violated rules (i.e., violations with higher con-
fidences are rankedwith higher priority).

3.6.2 Detecting Incorrect Return Values

EAntMiner leverages the k Nearest Neighbors algorithm
ðkNNÞ to identify abnormal return values on the itemset
database for a decisive condition. kNN is an instance-based
learning method for classification. For an instance, the
expected label is the most frequently appeared one among
the k neighbors that are most similar to it. The k instances
are selected according to their similarities with the one
under consideration from high to low.

For an itemset X in the database of a decisive condition,
the corresponding abstracted return values rvsðXÞ can be
viewed as class labels of it. An itemset is taken as a potential
bug if it is mislabeled; that is, its class labels are different
with the expected ones. The expected labels are obtained by
kNN. In this way, the incorrect return value identification
problem is converted to a classification problem. The k near-
est neighbors of an itemset X are itemsets in the database

992 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 10, OCTOBER 2019

that has highest similarities with X, denoted as k neigsðXÞ.
The similarity between two itemsets A and B ðA 6¼ BÞ is
computed by

sim A;Bð Þ ¼ 0:9 � J A; Bð Þ þ 0:1 � simfile; (1)

where JðA; BÞ is the Jaccard similarity coefficient between
the two itemsets A and B, and simfile is the similarity
between the file paths in which the functions corresponding
to A and B are defined. JðA; BÞ actually reflects the degree
of similarities between the corresponding program slices,
and contributes most to the final similarity. Whereas, simfile

is used for fine-tuning the similarity such that functions
defined adjacently will have slightly higher similarities and
can be preferentially selected.

The average similarity betweenX and its k\text{-}nearest
neighbors is computed by

av gsim X;kð Þ ¼ 1

k

Xk

j

sim X; Xj

� �
(2)

whereXj is one of the k neighbors ofX.
An itemset X is said to be labeled with rv if rv belongs to

rvsðXÞ. Let supportðrvÞ indicate the number of itemsets
among the k nearest neighbors of the itemset X that are
labeled with rv. And confidenceðrvÞ ¼ supportðrvÞ=k will
indicate how much we believe the itemset X should also be
labeled with rv. The itemset X is probably mislabeled if
confidenceðrvÞ is not less than a predefined threshold
min confidence but rv does not belong to rvsðXÞ. And X is
taken as a potential bug with confidence confidenceðXÞ ¼
confidenceðrvÞ.

In kNN, if the parameter k is 1, only the nearest neighbor
will be considered. However, a common practice in informa-
tion retrieval [7] suggests to use a few nearest neighbors. A
larger k can guarantee that the classification result is more
convincible. However, more neighbors do not always lead to
better results. Along with the increasing number of neigh-
bors, the average similarity between X and its neighbors
decreases. As a result, the classification result may become
less reliable. Because the sizes of different databases may
vary greatly, a fixed k for all databases is less than ideal. For
this reason, we compute an appropriate k according to the
database size. We introduce three parameters that need to be
specified by users:w,min k, andmax k. The value of param-
eter w is from 0 to 1 (e.g., 0:2), andmin k andmax k are two
integers. Let N be the number of itemsets in a database D. If
w � N is less thanmin k, we set k tomin k; ifw � N is larger
thanmax k, we set k ¼ max k; otherwise, k ¼ w � N .

Ranking potential bugs. The confidenceðXÞ implies to what
extent we believe X is a real bug, while avg simðX; kÞ
implies how reliable the detecting result is. EAntMiner
assigns a score to every potential bug. The score for X can
be computed by

score Xð Þ ¼ confidence Xð Þ � avg sim X; kð Þ: (3)

The detected potential bugs are ranked by their scores in a
descend order.

In the preliminary version [28] of this paper, to detect
return value bugs, AntMiner first mines closed frequent pat-
terns as done in Section 3.6.1. And it then infers the

association rules like P ¼> f“return v; ”g, where P is a
closed frequent pattern, and “return v;” is the most fre-
quently appeared return statement among itemsets that
contain the pattern P . An itemset that contains P but the
corresponding return value is not v is regarded as a poten-
tial bug. However, as discussed in Section 2.3, this method
is susceptible to semantics inequivalent but form identical
return statements, and thus may miss some interesting
rules, resulting in false negatives. In essence, the more simi-
lar two itemsets are, the more likely they will obey the same
return rule. However, itemsets that contain the same pattern
may be very different from each other. In this paper, EAnt-
Miner uses the instance-based method to address the above
issues as explained in this subsection.

4 EVALUATION

4.1 Experiment Setup

We implemented EAntMiner on the top of the GCC com-
piler [42] (V4.5.0) and mainly evaluated it on two versions
of Linux kernel: v2.6.39 and v4.9-rc3. The preliminary ver-
sion [28] of this method, AntMiner, is evaluated on the
Linux v2.6.39. The Linux v4.9-rc3 is the latest version on
evaluating EAntMiner. In our experiments, both EAntMiner
and AntMiner ran on a machine with a Core i5-2520M,
2.5 GHZ Intel processor and 4 GB memory. The source code
for X86 were scanned: 8,042 C files in the Linux v2.6.39, and
15,027 C files in the Linux v4.9-rc3.

The Linux kernel is one of large-scale systems that have
been well analyzed by dozens of bug detection tools includ-
ing [14], [20], [25], [26], [27], [31], [46], [47], [65]. Such a
large-scale and well-analyzed system may still contain both
kinds of bugs that can be easily detected and bugs that are
extremely difficult to be detected. Hence, on such a system,
the effectiveness of a bug analysis approach can be shown.

To illustrate the fact that our apporach is not special for
the Linux kernel, we also evaluatedEAntMiner on three other
large-scale popular C systems in different fields: OpenSSL
v1.1.0g, FFmpeg v3.4, and PostgreSQL v10.1. OpenSSL is an
implementation of TLS and SSL protocols. FFmpeg is a
framework to play and convert videos and audios and Post-
greSQL is one of the most widely used open source data-
bases. Many bug detection oriented methods select them as
the target of evaluations [23], [24], [27], [35], [62].

On detecting bugs caused by misusages of bug-prone
functions, three parameters need to be specified: �; min
support; andmin confidence. The parameter � is used to
identify bug-prone functions. The precision (i.e., the likeli-
hood of an extracted function to be bug-prone) is higher if
we set a larger value for �. However, with a larger value of
�, some real bug-prone functions may be missed, resulting
in false negatives. Similarly, with larger values of min_sup-
port and min confidence, we gain lower false positive rate
but higher false negative rate. By default, we set � to 70 per-
cent, min support to 10, and min_confidence to 85 percent,
respectively.

On detecting bugs caused by incorrect return values, five
parameters need to be specified: �; min confidece; w;
min k and max k. The former two parameters have the
same meaning with those in detecting bugs for bug-prone
functions, and we set them to 70 percent and 85 percent,

BIAN ETAL.: DETECTING BUGS BY DISCOVERING EXPECTATIONS AND THEIR VIOLATIONS 993

respectively. Higher values for w, min k and max k will
produce fewer false positives but more false negatives. By
default, we set w to 0.2,min k to 5, andmax k to 20.

In essence, the above parameters allow users to control
false positive rate and false negative rate. Users can tune
them during reviewing the reports. In practice, users can
empirically determine reasonable parameter settings by
performing a sampling analysis to the results.

4.2 Experiments on the Linux Kernel

We first evaluated the effectiveness of the statistics-based
method to automatically extract critical operations (Section
4.2.1). Then, we evaluated the ability of EAntMiner on
detecting real bugs (Section 4.2.2). Finally, we conducted a
comparative analysis to demonstrate the improvements
compared to the preliminary work [28] and highlight the
benefits of reducing noise interferences (Section 4.2.3).

4.2.1 Extracting Critical Operations

Overall. Table 1 shows the statistics of EAntMiner on extract-
ing critical operations on both versions of Linux Kernel,
including the number of functions called more than 10 times
and the number of bug-prone ones, the number of condi-
tions that appear more than 10 times and the number of
decisive ones, the total number of critical operations, and
the taken time. From Table 1, EAntMiner extracted 5,885 crit-
ical operations from the Linux v4.9-rc3 in about 140 minutes
including 3,328 bug-prone functions and 2,557 decisive con-
ditions; and it extracted 3,365 critical operations from the
Linux v2.6.39 in about 80 minutes.

In the Linux v4.9-rc3, there are 9,758 functions and 8,112
conditions appear more than 10 times. We performed a sys-
tematic sampling analysis to estimate the recall and precision
of our method. The sampling starts from a random point in
the sample space, and selects one at the interval of every i
samples, where i ¼ 25 is known as the sampling interval.

Recall. We systematically selected 390 functions from all
the 9,758 functions, and 325 conditions from all the 8,112 con-
ditions. We manually reviewed these functions and condi-
tions. A function is marked with “critical” if its parameters
should be protected to avoid bugs, and a condition is marked
with “critical” if the program should return once it occurs. To
avoid human bias, the protected-ratios and decisive-ratios
were invisible during reviewing. Finally, 98 functions and
101 conditions were markedwith “critical”. Among them, 84
functions and 87 conditions were identified by EAntMiner.
As a result, the recall of our method to identify bug-prone
functions and decisive conditions is about 85.9 percent.

Precision. We also systematically selected 133 samples
from the extracted 3,328 bug-prone functions, and 103 sam-
ples from the extracted 2,557 decisive conditions. After a

manual analysis, 86 functions and 85 conditions were con-
firmed to be real critical operations. The average precision
of our method is 72.5 percent. Particularly, it achieves a pre-
cision of 82.5 percent in identifying decisive conditions. We
further studied the reason why bug-free functions are mis-
classified as bug-prone ones by our method. We found that
the most common reason is that the parameters of a function
are validated at the beginning of the function itself, but are
checked again in many callers for the sake of safety. For
example, function brelseðÞ decrements the reference count
of a buffer_header structure. Before calling it, its parameter is
checked against NULL in most cases (87.5 percent: 706 out
of 807). Naturally, EAntMiner marked it as “bug-prone”.
However, at the beginning of the function brelseðÞ, the
parameter is validated and the decrement operation will
not be performed if it is illegal. Therefore, function brelseðÞ
will not cause any bug even if it takes a null parameter.

Threat to Validity. We note that the manual classification
of functions and conditions is somewhat subjective. Human
mistakes may affect the accuracy of the obtained recall and
precision. Despite that, the result of the sampling analysis
shows that our method can reduce a large amount of func-
tions and conditions that we are not interested in at the cost
of missing a small number of interesting ones (about 14.1
percent). For example, the number of functions that act as
slicing criteria in our evaluation on the Linux v4.9-rc3
decreases from 9,758 to 3,328. Non-critical operations are
often weakly related to bugs as discussed in Section 3.3.
Many false positives can thus be reduced by distinguishing
critical operations from non-critical ones.

4.2.2 Detecting Bugs

On the Linux v4.9-rc3, EAntMiner ran about 245 minutes to
generate mining databases for the 5,885 critical operations
and detect violations from them. It detected 7,532 violations.
On the Linux v2.6.39, EAntMiner ran about 120 minutes in
total, and detected 4,246 violations.

Similar to all other static analysis tools, e.g., [14], [27],
violations reported by EAntMiner also need to be inspected
manually. As presented in Section 3.6, violations are sorted
in a descending order by the likelihood of being real bugs.
Users can inspect them in order, and stop the inspection
task when the false positive rate is too high, e.g., no new
real bugs are identified within 20 violations.

The Linux v2.6.39 was released in May 2011. The prelimi-
lary tool AntMiner was mainly evaluated on it [28]. In this
paper, we took it as a baseline to verify whether EAntMiner
can cover the ability of AntMiner in detecting bugs. Ant-
Miner detected 24 previously unknown bugs, including 18
misusages of bug-prone functions and 6 incorrect return
values. These bugs are listed in Table 2, marked with IDs
1�24. We examined the detecting result of EAntMiner, and
found that all of these 24 bugs are detected. It indicates that
the enhanced approach, EAntMiner, incorporates the bug
detection ability of AntMiner.

One of us spent about 20 hours to inspect the detection
results on the Linux v4.9-rc3. The cost of manual work is
acceptable on large-scale systems like the Linux kernel,
which have more than 10 million lines of code. Eventually,
we found that 96 violations are suspected bugs, including 33
potential misusages of bug-prone functions and 63 potential

TABLE 1
Statistics of EAntMiner on Extracting Critical Operations

kernel version Functions Conditions Total Time (m)

#All #Bug-prone #All #Decisive

v2.6.39 6,314 1,984 4,616 1,381 3,365 80
v4.9-rc3 9,758 3,325 8,112 2,557 5,882 140

994 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 10, OCTOBER 2019

TABLE 2
Previously Unknown Bugs in the Linux kernel Detected by Our Tools

ID Bugzilla ID Function Critical Operation Kernel Version EAntMiner AntMiner AntMiner— Cov

1 44431 st_int_recv() skb_reserve() v2.6.39 @ @ • @
2 44441 ldisc_open() register_netdevice() v2.6.39 @ @ @ •

3 44461 sfb_dump() nla_nest_end() v2.6.39 @ @ @ @
4 44471 tmiofb_probe() ioremap() v2.6.39 @ @ @ •

5 44491 setup_isurf() pnp_port_start() v2.6.39 @ @ • •

6 44541 lx_pcm_create() snd_pcm_set_ops() v2.6.39 @ @ • •

7 44551 poseidon_audio_init() snd_pcm_set_ops() v2.6.39 @ @ @ •

8 44561 pcf50633_probe() platform_device_add() v2.6.39 @ @ • @
9 44571 dcbnl_ieee_set() nla_parse_nested() v2.6.39 @ @ • •

10 44621 cgroupstats_user_cmd() nla_data() v2.6.39 @ @ • •

11 44671 ocfs2_create_refcount_tree() ocfs2_set_new_buffer_uptodate() v2.6.39 @ @ • •

12 44681 ocfs2_create_xattr_block() ocfs2_set_new_buffer_uptodate() v2.6.39 @ @ • •

13 44691 lkdtm_debugfs_read() free_pages() v2.6.39 @ @ • •

14 49851 ipw_packet_received_skb() skb_reserve() v2.6.39 @ @ • @
15 49861 wl1271_debugfs_update_stats() wl1271_ps_elp_sleep() v2.6.39 @ @ • •

16 49871 omninet_read_bulk_callback() tty_flip_buffer_push() v2.6.39 @ @ • •

17 49911 moxa_new_dcdstate() tty_hangup() v2.6.39 @ @ • •

18 49921 btree_write_block() logfs_put_write_page() v2.6.39 @ @ @ @
19 96741 atl2_probe() FN-pci_set_consistent_dma_mask_0 ! ¼ 0 v2.6.39 @ @ NA NA
20 98551 mptfc_probe() FN-__alloc_workqueue_key_0 ¼ ¼ 0 v2.6.39 @ @ NA NA
21 98561 mkiss_open() FN-register_netdev_0 ! ¼ 0 v2.6.39 @ @ NA NA
22 98611 r592_probe() FN-request_irq_0 ! ¼ 0 v2.6.39 @ @ NA NA
23 98621 sd_probe() FN-device_add_0 ! ¼ 0 v2.6.39 @ @ NA NA
24 99011 myri10ge_probe() FN-dma_alloc_coherent_0 ¼ ¼ 0 v2.6.39 @ @ NA NA
25 195491 snvs_rtc_probe() devm_clk_get() v4.9-rc3 @ @ • •

26 195495 lwtunnel_fill_encap() nla_nest_end() v4.9-rc3 @ @ @ @
27 195501 mt7601u_mcu_msg_alloc() skb_reserve() v4.9-rc3 @ @ @ @
28 195503 tipc_nl_node_get_monitor() nlmsg_free() v4.9-rc3 @ @ @ @
29 195505 team_nl_send_port_list_get() nlmsg_free() v4.9-rc3 @ @ • •

30 195507 team_nl_send_options_get() nlmsg_free() v4.9-rc3 @ @ • •

31 195509 isp1704_charger_probe() devm_gpio_request_one() v4.9-rc3 @ @ • •

32 195511 send_fw_pass_open_req() __skb_put() v4.9-rc3 @ @ @ @
33 195513 s5k83a_start() wake_up_process() v4.9-rc3 @ @ • •

34 195515 pc300_pci_init_one() request_irq() v4.9-rc3 @ @ • @
35 195517 apci3xxx_auto_attach() request_irq() v4.9-rc3 @ @ • •

36 195527 WILC_WFI_mon_xmit() netif_rx() v4.9-rc3 @ @ @ •

37 195529 qlcnic_sriov_virtid_fn() pci_read_config_word() v4.9-rc3 @ @ @ •

38 195533 intel_soc_pmic_i2c_probe() regmap_add_irq_chip() v4.9-rc3 @ @ • •

39 195535 gemini_rtc_probe() devm_request_irq() v4.9-rc3 @ @ • •

40 195543 if_spi_probe() destroy_workqueue() v4.9-rc3 @ @ @ •

41 195545 rndis_wlan_bind() destroy_workqueue() v4.9-rc3 @ @ @ •

42 195547 r420_cp_errata_init() radeon_ring_unlock_commit() v4.9-rc3 @ @ @ @
43 195549 r420_cp_errata_fini() radeon_ring_unlock_commit() v4.9-rc3 @ @ @ @
44 195551 radeon_test_create_and_emit_fence() radeon_ring_unlock_commit() v4.9-rc3 @ @ • @
45 188441 nbd_init() FN-alloc_disk_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
46 188451 lbs_cmd_802_11_sleep_params() FN-__lbs_cmd_0 ! ¼ 0 v4.9-rc3 @ • NA NA
47 188521 skcipher_recvmsg_async() FN-kcalloc_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
48 188531 mtip_block_initialize() FN-ida_pre_get_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
49 188561 wm831x_clkout_is_prepared() FN-wm831x_reg_read_0 < 0 v4.9-rc3 @ @ NA NA
50 188591 ioat_dma_self_test() FN-dma_mapping_error_0 ! ¼ 0 v4.9-rc3 @ • NA NA
51 188601 ioat_xor_val_self_test() FN-dma_mapping_error_0 ! ¼ 0 v4.9-rc3 @ • NA NA
52 188611 extcon_sync() FN-get_zeroed_page_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
53 188621 kfd_wait_on_events() FN-copy_from_user_0 ! ¼ 0 v4.9-rc3 @ @ NA NA
54 188631 vc4_cl_lookup_bos() FN-drm_malloc_ab_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
55 188641 cm3232_reg_init() FN-i2c_smbus_write_byte_data_0 < 0 v4.9-rc3 @ • NA NA
56 188651 sram_reserve_regions() FN-devm_kstrdup_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
57 188661 bnxt_hwrm_stat_ctx_alloc() FN-_hwrm_send_message_0 ! ¼ 0 v4.9-rc3 @ • NA NA
58 188691 sci_request_irq() FN-kasprintf_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
59 188701 xhci_mtk_probe() FN-platform_get_irq_0 < 0 v4.9-rc3 @ • NA NA
60 188711 wusb_dev_sec_add() FN-krealloc_0 ¼ ¼ 0 v4.9-rc3 @ @ NA NA
61 188721 xenstored_local_init() FN-get_zeroed_page_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
62 188731 btrfs_uuid_tree_iterate() FN-btrfs_alloc_path_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
63 188751 caif_sktinit_module() FN-sock_register_0 ! ¼ 0 v4.9-rc3 @ • NA NA
64 188761 load_asic() FN-load_asic_generic_0 < 0 v4.9-rc3 @ • NA NA
65 188771 lan78xx_probe() FN-usb_alloc_urb_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
66 188781 br_sysfs_addbr() FN-kobject_create_and_add_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
67 188791 lanai_dev_open() FN-ioremap_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
68 188801 bdisp_debugfs_create() FN-debugfs_create_dir_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
69 188811 lstcon_group_info() FN-copy_to_user_0 ! ¼ 0 v4.9-rc3 @ • NA NA
70 188821 c4iw_rdev_open() FN-__get_free_pages_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
71 188831 ocrdma_mbx_create_ah_tbl() FN-dma_alloc_coherent_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
72 188841 typhoon_init_one() FN-register_netdev_0 < 0 v4.9-rc3 @ • NA NA
73 188871 ad7150_write_event_config() FN-i2c_smbus_read_byte_data_0 < 0 v4.9-rc3 @ • NA NA
74 188881 dcbnl_cee_fill() FN-nla_nest_start_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
75 188891 public_key_verify_signature() FN-kmalloc_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
76 188901 cpuidle_add_state_sysfs() FN-kzalloc_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
77 188911 qxl_release_alloc() FN-kmalloc_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA

BIAN ETAL.: DETECTING BUGS BY DISCOVERING EXPECTATIONS AND THEIR VIOLATIONS 995

incorrect return values. We reported them to the kernel Bug-
zilla (the kernel development community).2 Because both
association rules and k\text{-}nearest neighbors can suggest
the best way to fix a bug, we also wrote patches for the sus-
pected bugs, and committed them to the Linux kernel main-
tainers.3 Up to now, 69 of the patches, including 20 for
misusages of bug-prone functions and 49 for incorrect return
values, have been accepted andmerged into the Linux kernel
mainline (see bugs 25�93 in Table 2). Among the rest 27 vio-
lations, only six are directly identified as false positives by
kernel developers, and the others have received no response
from the Linux kernel maintainers and thus their statuses are
unknown. Table 3 summarizes the 96 bugs.

4.2.3 Comparative Analysis

We further applied other four approaches AntMiner, Ant-
Miner—, Cov and Coccinelle4 on the Linux kernel v2.6.39 and
v4.9-rc3 to see whether they can detect the previously
unknown bugs found by EAntMiner.AntMiner is the prelimi-
nary version of our method. AntMiner—, as suggested by its
name, is based on AntMiner but without program slicing
and statement normalization. We also applied a widely used
static analysis tool on the Linux kernel. But according to the
user agreement, we cannot name it in the comparison. We
refer to it as Cov. AntMiner— and Cov do not support the
detection of return value bugs. As shown in Table 2, we use
the symbol @ and • to indicate whether a bug is detected or
not by the corresponding approach. Besides, we use “NA” to
indicate the case that an approach is not applicable to detect
a bug. Table 4 counts the number of real bugs detected by
each tool. Finally, we compared EAntMinerwith Coccinelle, a
static analysis tool that detects bugs according to user-speci-
fied matching patterns, to show whether rules mined by
EAntMiner can be used to improve the bug-detection ability
of pattern-based static analysis tools.

EAntMiner versus AntMiner. EAntMiner detected 69 pre-
viously unknown bugs from the Linux v4.9-rc3. AntMiner
also detected the 20 misusages of bug-prone functions. How-
ever, it missed 44 return value bugs. For example, AntMiner

failed to detect the bug (ID: 50) shown in Fig. 4. The reason
has been explained in Section 2.3. The comparison shows that
about 89.8 percent of return value bugs were missed without
abstracting return values and applying the kNN algorithm to
identify anomalies. Therefore, EAntMiner performs signifi-
cantly better than AntMiner in detecting bugs that return
incorrect values under certain decisive conditions.

EAntMiner versus AntMiner—In total, EAntMiner detected
38 misusages of bug-prone functions. AntMiner—detected
only 15 of them. That is, about 60.5 percent of bugs were
missed. For example, the bugs (IDs: 6 and 17) shown in Figs. 1
and 2b were detected by EAntMiner and AntMiner but were
missed byAntMiner– (the reason was explained in Section 2.1
and Section 2.2). Note that, theoretically, EAntMiner may fail
to report some bugs detected byAntMiner—if no proper criti-
cal operations can be extracted; however,we have not encoun-
tered such a case in the experiments. That means, all
(confirmed) bugs detected by AntMiner– were detected by
EAntMiner.

Without loss of generality, we selected the Linux v2.6.39
as the target to evaluate the effectiveness of EAntMiner on

TABLE 2
(Continued)

ID Bugzilla ID Function Critical Operation Kernel Version EAntMiner AntMiner AntMiner— Cov

78 188921 hid_post_reset() FN-kmalloc_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
79 188931 hfc4s8s_probe() FN-__request_region_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
80 188941 beiscsi_create_cqs() FN-pci_alloc_consistent_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
81 188951 beiscsi_create_eqs() FN-pci_alloc_consistent_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
82 188961 mvs_task_prep() FN-dma_pool_alloc_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
83 188971 irda_usb_probe() FN-kzalloc_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
84 188981 klsi_105_open() FN-usb_control_msg_0 < 0 v4.9-rc3 @ • NA NA
85 189011 meye_probe() FN-__request_region_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
86 189021 eni_do_init() FN-ioremap_nocache_0 ¼ ¼ 0 v4.9-rc3 @ @ NA NA
87 189031 mlx4_ib_query_device() FN-kzalloc_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
88 189041 qed_ll2_start_xmit() FN-dma_mapping_error_0 ! ¼ 0 v4.9-rc3 @ • NA NA
89 189071 toggle_ecc_err_reporting() �FN-zalloc_cpumask_var_0 ! ¼ 0 v4.9-rc3 @ • NA NA
90 189091 __wa_xfer_setup_segs() FN-kmalloc_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
91 189111 add_grefs() FN-alloc_pages_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
92 189121 wa_nep_queue() FN-kzalloc_0 ¼ ¼ 0 v4.9-rc3 @ • NA NA
93 189141 bnx2x_init_firmware() FN-kmalloc_0 ¼ ¼ 0 v4.9-rc3 @ @ NA NA

TABLE 3
Classification of Violations Detected in Linux-4.9-rc3

of total
violations: 96

69 (�72%) Confirmed as
unknown bugs.

Real bugs

6 (�6%) Regarded as
false positives.

False positives

21 (�22%) Waiting
for confirmation.

Unknown

TABLE 4
Number of Bugs Detected by Each Tool

Tool Linux-
v2.6.39

Linux-v4.9-
rc3

Total

fun ret fun ret

EAntMiner 18 6 20 49 93
AntMiner 18 6 20 5 49
AntMiner— 5 NA 10 NA 15
Cov 5 NA 8 NA 13

“fun” means misusages of bug-prone functions, and “ret” means return value
bugs. “NA”means the tool does not support this kind of bugs.

2. Bugzilla for the Linux kernel, https://bugzilla.kernel.org
3. The Linux kernel Patchwork, https://patchwork.kernel.org
4. Coccinelle, http://coccinelle.lip6.fr

996 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 10, OCTOBER 2019

https://bugzilla.kernel.org
https://patchwork.kernel.org
http://coccinelle.lip6.fr

reducing false alarms caused by irrelevant statements and
inconsistent implementations. We further analyzed the
mined rules for the 21 bug-prone functions for which there
are real bugs detected by EAntMiner. As shown in Table 5,
AntMiner– mined 2,159 rules related to these bug-prone
functions. For each bug-prone function, its top ranked rules
(at most 10) were manually verified to see whether they are
interesting. A rule is interesting if it should be followed,
and if violated, bugs may occur. For example, AntMiner–
mined 30 rules related to the bug-prone function
nla nest endðÞ. We inspected the top 10 of these 30 rules
manually, and found only one of them was an interesting
rule. In total, 149 rules were inspected, and only 18 of them
were confirmed to be interesting ones. The false positive
rate is up to 87.9 percent. In most cases, we found that ele-
ments of an uninteresting rule are irrelevant or weakly rele-
vant to each other. Violations to such rules are always false
alarms. From Table 5, we see that the false positive rate is
heavily reduced by applying our method, i.e., 24.5 percent.
At the same time, more correct rules were extracted by
EAntMiner (i.e., 80 vs. 18 by AntMiner–).

The comparison between EAntMiner and AntMiner–
shows that, by elaborately removing irrelevant statements
and normalizing semantics-equivalent statements as far as
possible, a large number of false positives and false nega-
tives can be reduced.

EAntMiner versus Cov. Cov can also automatically infer
implicit programming rules for unmodeled functions (e.g.,
alloc skbðÞ) to detect related bugs. For example, the NULL_
RETURNS checker can infer the rule “the return value of func-
tion alloc_skb() should be checked against NULL before
dereferencing” by scanning the code and computing how fre-
quently the return value of alloc skbðÞ is checked against
NULL. According to the rule, Cov can detect a real bug
(Bugzilla ID: 44431) in function st int recvðÞ. However,
because Cov directly infers programming rules from the
original source code, its precision is heavily interfered by
the noise statements (as discussed in Sections 2.1 and 2.2).
As a result, some interesting rules and related bugs may be
neglected. For example, it missed about 65.8 percent (25 out
of 38) real bugs caused by misusing bug-prone functions in
Linux kernel, which should have been detected by its corre-
sponding checkers (e.g., theNULL RETURNS checker).

EAntMiner versus Coccinelle. Coccinelle is a tool that
matches and transforms source code according to patterns
written in SmPL (Semantic Patch Language) [34]. It is widely
used by kernel developers andmaintainers to detect potential
bugs and to generate patches for the confirmed bugs. We ran
Coccinelle on the Linux kernel with the latest public available
rules for Linux (defined in the directory linux/scripts/cocci-
nelle). We manually reviewed the reports of Coccinelle and
found that none of the bugs in Table 2 is detected byCoccinelle
due to lack of rules.We thenmanually converted rulesmined

by EAntMiner that the bugs 1�18 (i.e., bugs in the Linux
v2.6.39 that misuse bug-prone functions) in Table 2 violate to
the form that Coccinelle can accept and ran Coccinelle again.
This time, Coccinelle successfully detected the above 18 bugs.
This experiment demonstrates that the bug detection ability
of pattern-based static analysis tools (e.g., Coccinelle) can be
improved by integrating rules extracted by EAntMiner.

4.3 Experiments on Other Targets

We applied EAntMiner to OpenSSL v1.1.0g, FFmpeg v3.4,
and PostgreSQL v10.1. Table 6 lists lines of C source code in
a system ðLoCÞ, the time overhead (Time) to scan it, and the
number of violations detected by EAntMiner (#All).

We manually audited the top ranked violations (see col-
umn #Audit) in each project as done in experiments on the
Linux kernel and found 16 suspected bugs in total. We
reported the suspected bugs to corresponding communities
for bug reports. Finally, 12 of them are confirmed to be real
bugs by developers or maintainers and have been fixed in
the latest versions (see column #True for more details). The
rest four suspected bugs are false positives when consider-
ing their contexts.

The 12 confirmed bugs are listed in Table 7, with the ref-
erence ID to retrieve the report of the bug, the name of the
function that contains the bug, and the corresponding critical
operation (a bug-prone function or a decisive condition). Six
out of the 12 bugs are caused by misusing some bug-prone
functions, and the other six result from returning incorrect
values under certain conditions.

4.4 Summary

The evaluation shows that the enhanced method EAntMiner
successfully found more than one hundred bugs from four
large-scale systems. The comparative analysis well demon-
strated that EAntMiner could detect a number of subtle
bugs that are difficult to be found by other tools, e.g., Cov.
In particular, the comparison with AntMiner shows that the
improvements significantly improves the effectiveness of
the approach presented in the preliminary version [28] of
this paper.

5 DISCUSSION

While the method proposed in this paper is effective in
revealing bugs that may be missed previously, there are still
some limitations that we need to consider in our future
studies.

Critical Operations. Currently, EAntMiner mainly con-
cerns two types of critical operations. However, other oper-
ations may also be critical to detecting bugs, such as reading
or overwriting some fields of a specific type structure. How
to cover such operations is an important problem that we

TABLE 5
Accuracy of Extracted Rules

Approach Related Rules Analyzed Rules Correct Rules False Positive Rate

EAntMiner 200 106 80 24.5%

AntMiner— 2,159 149 18 87.9%

TABLE 6
Experiments on Three Large-scale C Systems

System LoC Time Violations

#All #Audit #Suspected #True

OpenSSL 269,355 46 m 457 20 3 3
FFmpeg 851,191 30 m 439 40 8 7
PostgreSQL 864,530 41 m 1,331 20 5 2

BIAN ETAL.: DETECTING BUGS BY DISCOVERING EXPECTATIONS AND THEIR VIOLATIONS 997

need to address in the future. Intuitively, a direct solution is
to transform such operations into a special type of function
call. To this end, it may be helpful to introduce a little prior
knowledge to identify which (kinds of) operations are criti-
cal ones, as done in [16], [46].

Data Mining Algorithms. In this study, we adopt the fre-
quent itemset mining algorithm to extract programming
rules considering its scalability. For some types of program-
ming patterns, other mining algorithms may be more suit-
able. Programming logics can be represented in forms of
sequences [14], [54], [55], or even graphs [10], [25], [62], [63].
Note that our approach is compatiblewith othermining algo-
rithms. Applying them on a refined mining database will
produce better results. Thiswill be one of our futureworks.

Normalization. In theory, even for a simple expression,
completely recognizing all semantics-equivalent forms of it
is not a trivial task. In this study, EAntMiner can handle
some most common semantics-equivalent representations.
In fact, more bugs can be found if more semantics-equiva-
lent representations are covered. In the future, we plan to
employ deeper semantics analysis [53] to normalize compli-
cated semantics-equivalent representations that cannot be
handled in the current version of EAntMiner.

Types of Bugs. EAntMiner mainly focus on detecting bugs
that misuse some bug-prone functions or return incorrect
values in certain contexts. We will extend our method to
cover more types of interesting bugs, such as concurrency
bugs that miss locks when performing critical operations in
multithreaded programs [8], [9], [31]. There are two main
obstacles to finding concurrency bugs statically. First, it is
difficult to statically determine concurrent codes. Second,
prior knowledge about locks are not always available. We
will try to address above issues from the perspective of
code mining in our future work.

6 RELATED WORK

6.1 Mining Rules for Bug Detection

Engler et al. [14] proposed a method to detect programming
bugs by employing statistical analysis to infer temporal rules
from rule templates such as “<a> must be paired with
”. They have developed six checkers and detected

hundreds of bugs in real systems. The study proposes a prom-
ising direction to detect bugs without specifying concrete
rules. Kremenek et al. [25] proposed a more general method
that uses factor graphs to infer specification from programs
by incorporating disparate sources of information. While
these two approaches are inspiring, the types of inferred rules
are restricted to predetermined templates. This requires users
to specify some specific knowledge about the target.

Various data mining algorithms are introduced to extract
more general rules from real large systems [1], [5], [10], [26],
[27], [29], [30], [31], [38], [44], [48], [54], [55], [63]. All mining
based methods along with those statistical-based methods
[14], [25], [51], [65] accept the reasonable assumption: in a
practical system, programs are correct in most cases, while
on the opposite, a small number of anomalies are likely to
be bugs. These methods first infer frequently appeared pat-
terns from the source code. Such patterns specify the
(implicit) rules that should be followed in coding. Then,
programs that violate the rules are detected and regarded
as potential bugs.

Code mining methods can be categorized into three
groups. (1) Frequent pattern based methods represent a rule
as a frequent pattern (e.g., frequent sub-itemset [27], [31],
[48], frequent sub-sequence [1], [30], [31], [39], [54], [55], or
frequent sub-graph [10], [62], [63]). The relatively small
number of violations are considered as potential bugs. (2)
Template-based methods [38], [44] adapt the mined rules to
templates provided by traditional static analysis tools (e.g.,
Klocwork), and then utilize these tools to detect bugs. And
(3) instance-based methods [61], [63] employ the neighbors
of a function under consideration to identify anomalies. A
function behaves different with its neighbors may be defec-
tive [63], and neighbors of a known vulnerability are likely
to contain similar vulnerabilities [61]. In this study, EAnt-
Miner employs the frequent sub-itemset mining methods to
mine rules for bug-prone functions due to its scalability,
and utilizes the kNN technique to identify functions that
return incorrect values under certain decisive conditions.

In theory, mining based methods can detect many types
of bugs. However, in practical, two types of bugs are often
detected: (1) one or more necessary function calls [1], [27],
[30], [38], [54], [55] are missed, and (2) some prerequisite

TABLE 7
Bugs in Three Systems Detected by EAntMiner

System Reference ID Function Critical Operation

OpenSSL
4800 CMS_SignerInfo_verify() EVP_DigestVerifyInit()
4807 dtls_construct_change_cipher_spec() FN-WPACKET_put_bytes__0 ¼ ¼ 0
4808 file_lshift() FN-test_ptr_0 ¼ ¼ 0

FFmpeg

6381 read_ffserver_streams() avformat_open_input()
6382 rtp_mpegts_write_header() avformat_write_header()
6383 process_output_surface() FN-av_mallocz_0 ¼ ¼ 0
6386 mov_read_cmov() FN-uncompress_0 ! ¼ 0
6387 mov_read_custom() FN-av_malloc_0 ¼ ¼ 0
6400 sami_paragraph_to_ass() av_strtok()
6405 ff_mpeg_ref_picture() FN-av_buffer_ref_0 ¼ ¼ 0

PostgreSQL
14927 heap_drop_with_catalog() ReleaseSysCache()
14928 ATExecDetachPartition() heap_freetuple()

A Reference ID can be used to retrieve the corresponding bug. An OpenSSL bug report, say 4800, can be accessed at site https://github.com/openssl/openssl/
issues/4800. A FFmpeg bug report, say 6381, can be accessed at site https://patchwork.ffmpeg.org/patch/6381. A bug report for PostgreSQL can be accessed via
searching the corresponding reference ID at the site https:// www.postgresql.org/list/pgsql-bugs.

998 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 10, OCTOBER 2019

https://github.com/openssl/openssl/issues/4800
https://github.com/openssl/openssl/issues/4800
https://patchwork.ffmpeg.org/patch/6381
www.postgresql.org/list/pgsql-bugs

conditions are neglected [10], [39], [46], [48], [62], [63]. EAnt-
Miner can detect both of them.

If some domain knowledge can be introduced when min-
ing rules, better results may be produced. Some approaches
have been specially designed to infer rules for critical APIs
[1], [38], [48], [54], [55] or security-sensitive functions [46],
[63], and have gained great results. EAntMiner also mines
implicit programming rules for specific operations. However,
it does not require users to specify the interested operations,
which are automatically extracted from the source code.

It is noticed that code mining can be applied to not only
the source code but also other forms of software engineering
data. Rules can be mined from revision histories [29], execu-
tion paths [30], [36], [37], program comments [45], [47], or
even documentations written in natural language [57], [66].
The natural language processing (NLP) technique is employed
to extract rules from comments and documentations. NLP
is also helpful for methods mining rules from source code
[14], [63]. We will leverage NLP to discover the semantic
information behind the names of program elements (e.g.,
variables, functions). The information can be used to
improve the statements normalization.

6.2 Detecting Return Value Bugs

In the studies of Gunawi et al. [19] and Rubio-Gonz�alez et al.
[40], they found that error codes are often incorrectly propa-
gated in file systems, and such bugs are very hard to detect
both statically and dynamically. Jana et al. [23] proposed a
method EPEx to detect error-handling bugs by introducing
some error specifications. EPEx explores error paths and
uses under-constrained symbolic execution to decide
whether the error is correctly handled (e.g., logging error
message or propagating the error value upstream). Kang
et al. [24] developed a method APEx to automatically infer
error specifications of API functions, which can then be used
in EPEx. Different with EPEx, EAntMiner detects such bugs
by checking inconsistencies between the real return values
and the expected ones. Without any prior knowledge, the
expected return values can be inferred from contexts that are
most similar to the one under identification.

6.3 Supervised Learning in Bug Detection

Supervised learning techniques such as classification can be
used to predict whether a software component is vulnerable
or not [32], [35], [41], [49]. Arzt et al. [6] developed a tool
SuSi to identify sources and sinks in Android applications.
Two major challenges for supervised learning methods are
features selection and training data acquisition. Deep learn-
ing provides a good solution to automatically extract fea-
tures [18], [52], [64]. Perl et al. [35] proposed a smart
method to label which commit is vulnerable. Some unsuper-
vised idea can also be used to help find bugs. Yamaguchi
et al. [61] identified functions that have very similar imple-
mentations with that contains a known vulnerability. These
functions probably contain similar vulnerabilities.

6.4 Program Slicing and Its Applications

Program slicing was originally proposed byWeiser [56], and
Chen andCheung [11] extended it tomake the slicing process
effective in some circumstances, known as dynamic program

slicing. Program slicing is mainly used to help debugging
or simplifying testing [2], [21]. Agrawal et al. [2] applied
program slicing to locate known faults. Pradel and Gross
[37] developed a method to automatically infer specifica-
tions from runtime traces. They also adopted the slicing
idea to divide large traces into small ones that consist of
related objects and method calls. Pradel et al. [36] proposed
a framework to compare effectiveness of different mining
approaches, and found that a mining algorithm can
achieve a higher precision on traces that contain less irrele-
vant classes. In this paper, we employ the static program
slicing to identify statements that are relevant to a specific
critical operation.

7 CONCLUSION

This paper presents EAntMiner, a novel solution to improve
the effectiveness of code mining by elaborately reducing
noise introduced by irrelevant statements and semantics-
equivalent but form-different representations. EAntMiner
applies a divide-and-conquer approach to excluding state-
ments that are irrelevant to certain critical operations, trans-
forms various representations of the same logic into a
canonical form as far as possible, and utilizes an instance-
based learning method to reduce the interferences of return
statements that are form identical but semantics different.
We implement EAntMiner and evaluate it on four large-
scale systems, especially the Linux kernel. The evaluation
results show that our approach greatly improves the effec-
tiveness of code mining, and can detect a large number of
subtle bugs that have been missed previously.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their insightful comments on the preliminary version of
this paper. The work is supported by National Natural Sci-
ence Foundation of China (NSFC) under grants 91418206,
61170240, 61472429, and 61502465, National 973 program of
China under grant 2014CB340702, National Science and
Technology Major Project of China under grant
2012ZX01039-004, and Youth Innovation Promotion Associ-
ation of the Chinese Academy of Sciences (YICAS) under
grant 2017151.

REFERENCES

[1] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API patterns as par-
tial orders from source code: From usage scenarios to specifica-
tions,” in Proc. 11th Eur. Softw. Eng. Conf. Held Jointly 15th ACM
SIGSOFT Int. Symp. Found. Softw. Eng., 2007, pp. 163–173.

[2] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong, “Fault
localization using execution slices and dataflow tests,” in Proc. Int.
Symp. Softw. Rel. Eng., 1995, pp. 143–151.

[3] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techni-
ques, and Tools. Boston, MA, USA: Addison Wesley, pp. 434–438,
1986.

[4] N. S. Altman, “An introduction to kernel and nearest neighbor
nonparametric regression,” J. Amer. Statistician, vol. 46, no. 3,
pp. 175–185, 1992.

[5] G. Ammons, R. Bodik, and J. R. Larus, “Mining specifications,” in
Proc. 29th ACM SIGPLAN-SIGACT Symp. Principles Program. Lan-
guages, 2002, pp. 4–16.

[6] S. Arzt, S. Rasthofer, and E. Bodden, “Susi: A tool for the fully
automated classification and categorization of android sources
and sinks,” University of Darmstadt, Karolinenpl, Darmstadt,
Tech. Rep. TUDCS-2013-0114, 2013.

BIAN ETAL.: DETECTING BUGS BY DISCOVERING EXPECTATIONS AND THEIR VIOLATIONS 999

[7] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval,
New York, NY, USA: ACM Press, 1999.

[8] Y. Cai and L. Cao, “Effective and precise dynamic detection of
hidden races for java programs,” in Proc. 10th Joint Meeting Found.
Softw. Eng., 2015, pp. 450–461.

[9] Y. Cai and W. K. Chan, “Magiclock: Scalable detection of potential
deadlocks in large-scale multithreaded programs,” J. IEEE Trans.
Softw. Eng., vol. 40, no. 3, pp. 266–281, 2014.

[10] R-Y. Chang, A. Podgurski, and J. Yang, “Finding what’s not there:
A new approach to revealing neglected conditions in software,”
in Proc. Int. Symp. Softw. Testing Anal., 2007, pp. 163–173.

[11] T. Y. Chen and Y. Y. Cheung, “Dynamic program dicing,” in Proc.
Softw. Maintenance, 1993, pp. 378–385.

[12] B. Chess and G. McGraw, “Static analysis for security,” J. IEEE
Security Privacy, vol. 2 no. 6, pp. 76–79, Nov./Dec. 2004.

[13] B. Martin, M. Brown, A. Paller, D. Kirby, and S. Christey, “2011
CWE/SANS top 25 most dangerous software errors,” [Online].
Available: http://cwe.mitre.org/top25, 2011.

[14] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as
deviant behavior: A general approach to inferring errors in sys-
tems code,” in Proc. 18th ACM Symp. Operating Syst. Principles,
2001, pp. 57–72.

[15] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” J. ACM Trans. Pro-
gram. Languages Syst., vol. 9, no. 3, pp 319–349, 1987.

[16] V. Ganapathy, D. King, T. Jaeger, and S. Jha, “Mining security-
sensitive operations in legacy code using concept analysis,” in
Proc. 29th Int. Conf. Softw. Eng., 2007, pp. 458–467.

[17] G. Grahne and J. Zhu, “Efficiently using prefix-trees in mining fre-
quent itemsets,” in Proc. Workshop Frequent Itemset Mining Imple-
mentations, 2003, pp. 123–132.

[18] X. Gu, H. Zhang, D. Zhang, and S. Kim. “Deep API learning,” in
Proc. 24th ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2016,
pp. 631–642.

[19] H. S. Gunawi, C. Rubio-Gonz�alez, A. C. Arpaci-Dusseau, R. H.
Arpaci-Dusseau, and B. Liblit, “EIO: Error handling is occasion-
ally correct,” in Proc. 6th USENIX Conf. File Storage Technol., pp. 1–
16, 2008.

[20] S. Hallem, B. Chelf, Y. Xie, and D. Engler, “A system and language
for building system-specific, static analysis,” inProc. ACMSIGPLAN
Conf. Program. LanguageDes. Implementation, 2002, pp. 69–82.

[21] M. Harman and S. Danicic, “Using program slicing to simplify
testing,” J. Softw. Testing Verification Rel., vol. 5 no. 3, pp. 143–162,
1995.

[22] S. Horwitz, H. Reps, and D. Binkley, “Interprocedural slicing
using dependence graphs,” J. ACM Trans. Program. Languages
Syst., vol. 12, no. 1, pp 26–60, 1990.

[23] S. Jana, Y. Kang, S. Roth, and B. Ray, “Automatically detecting
error handling bugs using error specifications,” in Proc. USENIX
Security Symp., 2016, pp. 345–362.

[24] Y. Kang, B. Ray, and S. Jana, “APEx: Automated inference of error
specifications for C APIs,” in Proc. 31st IEEE/ACM Int. Conf.
Autom. Softw. Eng., 2016, pp. 472–482.

[25] T. Kremenek, P. Twohey, G. Back, A. Y. Ng, and D. Engler, “From
uncertainty to belief: Inferring the specification within,” in Proc.
7th Symp. Operating Syst. Des. Implementation, 2006, pp. 161–176.

[26] Z. Li, S. Lu, S.Myagmar, andY. Zhou, “CP-Miner: A tool for finding
copy-paste and related bugs in operating system code,” in Proc. 21st
ACMSIGOPS Symp. Operating Syst. Principles, 2007, pp. 145–158.

[27] Z. Li and Y. Zhou, “PR-Miner: Automatically extracting implicit
programming rules and detecting violations in large software
code,” in Proc. 10th Eur. Softw. Eng. Conf. Held Jointly 13th ACM
SIGSOFT Int. Symp. Found. Softw. Eng., 2005, pp. 306–315.

[28] B. Liang, P. Bian, Y. Zhang, W. Shi, W. You, and Y. Cai,
“AntMiner: Mining more bugs by reducing noise interference,” in
Proc. 38th Int. Conf. Softw. Eng., 2016, pp. 333–344.

[29] B. Livshits and T. Zimmermann, “DynaMine: Finding common
error patterns by mining software revision histories,” Proc. 10th
Eur. Softw. Eng. Conf. Held Jointly 13th ACM SIGSOFT Int. Symp.
Found. Softw. Eng., 2005, pp. 296–305.

[30] D. Lo, S-C. Khoo, and C. Liu, “Mining past-time temporal rules
from execution traces,” in Proc. Int. Workshop Dynamic Anal., 2008,
pp. 50–56.

[31] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and
Y. Zhou, “MUVI: Automatically inferring multi-variable access
correlations and detecting related semantic and concurrency
bugs,” in Proc. 21st ACM SIGOPS Symp. Operating Syst. Principles,
2007, pp. 103–116.

[32] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in Proc. 14th ACM Conf. Com-
put. Commun. Security, 2007, pp. 529–540.

[33] K. J. Ottenstein and L. M. Ottenstein, “The program dependence
graph in a software develop environment,” in Proc. ACM SIG-
SOFT/SIGPLAN Softw. Eng. Symp. Practical Softw. Develop. Environ-
ments, 1984, pp. 177–184.

[34] Y. Padioleau, J. L. Lawall, and G. Muller, “SmPL: A domain-spe-
cific language for specifying collateral evolutions in linux device
drivers,” Electron. Notes Theoretical Comput. Sci., vol. 166, pp. 47–
62, 2007.

[35] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck,
S. Fahl, and Y. Acar, “Vccfinder: Finding potential vulnerabilities
in open-source projects to assist code audits,” in Proc. 22nd ACM
SIGSAC Conf. Comput. Commun. Security, 2015, pp 426–437.

[36] M. Pradel, P. Bichsel, and T. R. Gross, “A framework for the evalu-
ation of specification miners based on finite state machines,” Proc.
IEEE Int. Conf. Softw. Maintenance, 2010, pp. 1–10.

[37] M. Pradel and T. R. Gross, “Automatic generation of object usage
specifications from large method traces,” Proc. IEEE/ACM Int.
Conf. Autom. Softw. Eng., 2009, pp. 317–382.

[38] M. Pradel, C. Jaspan, J. Aldrich, and T. R. Gross, “Statically check-
ing API protocol conformance with mined multi-object specifica-
tions,” in Proc. 34th Int. Conf. Softw. Eng., 2012, pp. 521–530.

[39] M. K. Ramanathan, A. Grama, and S. Jagannathan, “Static specifi-
cation inference using predicate mining,” Proc. ACM SIGPLAN
Conf. Program. Language Des. Implementation, 2007, pp. 123–134.

[40] C. Rubio-Gonz�alez and B. Liblit, “Defective error/pointer interac-
tions in the linux kernel,” Proc. Int.Symp. Softw. Testing Anal., 2011,
pp. 111–121.

[41] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen,
“Predicting vulnerable software components via text mining,” J.
IEEE Trans. Softw. Eng., vol. 40, no. 10, pp. 993–1006, Oct. 2014.

[42] R. M. Stallman and the GCC Developer Community, “GNU com-
piler collection internals (for GCC version 4.5.0)” [Online]. Avail-
able: http://gcc.gnu.org/onlinedocs/gcc-4.5.0/gccint.ps.gz, 2010,
pp. 217–250.

[43] Synopsys Inc., “Synopsys static analysis (Coverity) coverage for
Common Weakness Enumeration (CWE)” [Online]. Available:
https://www.synopsys.com/content/dam/synopsys/sig-
assets/datasheets/coverity-cwe-coverage.pdf, p. 8, Mar. 2017.

[44] B. Sun, G. Shu, A. Podgurski, and B. Robinson, “Extending static
analysis by mining project-specific rules,” in Proc. 34th Int. Conf.
Softw. Eng., 2012, pp. 1054–1063.

[45] L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/� iComment: Bugs or
bad comments? �/,” in Proc. 21st ACM Symp. Operating Syst. Prin-
ciples, 2007, pp. 145–158.

[46] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou, “AutoISES: Auto-
matically inferring security specifications and detecting viola-
tions,” in Proc. USENIX Security Symp., 2008, pp. 379–394.

[47] L. Tan, Y. Zhou, and Y. Padioleau, “aComment: Mining annota-
tions from comments and code to detect interrupt related concur-
rency bugs,” in Proc. 33rd Int. Conf. Softw. Eng., 2011, pp. 11–20.

[48] S. Thummalapenta and T. Xie, “Alattin: Mining alternative pat-
terns for detecting neglected conditions,” in Proc. 24th IEEE/ACM
Int. Conf. Autom. Softw. Eng., 2009, pp. 283–294.

[49] O. Vandecruys, D. Martens, B. Baesens, C. Muesb, M. D. Backera,
and R. Haesena, “Mining software repositories for comprehensi-
ble software fault prediction models,” J. Syst. Softw., vol. 81, no. 5,
pp. 823–839, 2008.

[50] W. Visser, J. Geldenhuys, and M. B. Dwyer, “Green: Reducing,
reusing and recycling constraints in program analysis,” Proc.
ACM SIGSOFT 20th Int. Symp. Foun. Softw. Eng., 2012, Art. no. 58.

[51] S. Wang, D. Chollak, D. Movshovitz-Attias, and L. Tan, “Bugram:
Bug detection with n-gram language models,” in Proc. 31st IEEE/
ACM Int. Conf. Autom. Softw. Eng., 2016, pp. 708–719.

[52] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic fea-
tures for defect prediction,” in Proc. 38th Int. Conf. Softw. Eng.,
2016, pp. 297–308.

[53] T.Wang,K.Wang,X. Su, andP.Ma, “Detection of semantically simi-
lar code,” J. Frontiers Comput. Sci., vol. 8, no. 6, pp. 996–1011, 2014.

[54] A. Wasylkowski and A. Zeller, “Mining temporal specifications
from object usage,” in Proc. 24th IEEE/ACM Int. Conf. Autom.
Softw. Eng., 2009, pp. 263–292.

[55] W. Weimer and G. C. Necula, “Mining temporal specifications for
error detection,” in Proc. 11th Int. Conf. Tools Algorithms Construc-
tion Anal. Syst., 2005, pp. 461–476.

1000 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 10, OCTOBER 2019

http://cwe.mitre.org/top25
http://gcc.gnu.org/onlinedocs/gcc-4.5.0/gccint.ps.gz
https://www.synopsys.com/content/dam/synopsys/sig-assets/datasheets/coverity-cwe-coverage.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/datasheets/coverity-cwe-coverage.pdf

[56] M. Weiser. “Program slicing,” in Proc. 5th Int. Conf. Softw. Eng.,
1981, pp. 439–449.

[57] X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie, “Automated
extraction of security policies from natural-language software
documents,” Proc. ACM SIGSOFT 20th Int. Symp. Found. Softw.
Eng., 2012, Art. no. 12.

[58] S. Xu and Y.S. Chee, “Transformation-based diagnosis of student
programs for programming tutoring systems,” J. IEEE Trans.
Softw. Eng., vol. 29, no. 4, pp. 360–384, 2003.

[59] Z. Xu, J. Zhang, and Z. Xu, “Melton: A practical and precise mem-
ory leak detection tool for C programs,” J. Frontiers Comput. Sci.,
vol. 9, no. 1, pp. 34–54, 2015.

[60] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and dis-
covering vulnerabilities with code property graphs,” in Proc. IEEE
Symp. Security Privacy, 2014, pp. 590–604.

[61] F. Yamaguchi, M. Lottmann, and K. Rieck, “Generalized vulnera-
bility extrapolation using abstract syntax trees,” in Proc. 28th
Annu. Comput. Security Appl. Conf., 2012, pp. 359–268.

[62] F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck, “Automatic
inference of search patterns for taint-style vulnerabilities,” in Proc.
IEEE Symp. Security Privacy, 2015, pp. 797–812.

[63] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck,
“Chucky: Exposing missing checks in source code for vulnerabil-
ity discovery,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secu-
rity, 2013, pp. 499–510.

[64] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learning for
just-in-time defect prediction,” in Proc. Softw. Quality Rel. Security,
2015, pp. 17–26.

[65] I. Yun, C. Min, X. Si, Y. Jang, T. Kim, and M. Naik, “APISan: Sani-
tizing API usages through semantic cross-checking,” in Proc. 25th
USENIX Security Symp., 2016, pp. 363–378.

[66] H. Zhong, L. Zhang, T. Xie, and M. Hong, “Inferring resource
specifications from natural language API documentation,” in
Proc. IEEE/ACM Int. Conf. Autom. Softw. Eng., 2009, pp. 307–318.

Pan Bian received the MS degree in computer
science from the School of Information, Renmin
University of China, where he is currently working
toward the PhD degree in information security.
His research interest focuses on program static
analysis.

Bin Liang received the PhD degree in computer
science from the Institute of Software, Chinese
Academy of Sciences. He is currently a Professor
with the School of Information, Renmin University
of China. His research interests include program
analysis, vulnerability detection, and web security.

Yan Zhang received the MS degree in computer
science from the School of Information, Renmin
University of China. She is currently a Junior
Researcher with the Pangu Team. Her research
interests include program static analysis and mal-
ware detection in Android applications.

Chaoqun Yang received the BS degree in net-
work engineering from the School of Information,
Beijing Forestry University. She is currently work-
ing toward the MS degree in software engineering
at the School of Information, Renmin University of
China. Her research interest focuses on data
mining.

Wenchang Shi received the PhD degree in com-
puter science from the Institute of Software, Chi-
nese Academy of Sciences. He is currently a
Professor with the School of Information, Renmin
University of China. His research interests
include trusted computing, cloud computing, and
computer forensics.

Yan Cai received the PhD degree from the City
University of Hong Kong, Hong Kong, in 2014. He
is currently an Associate Research Professor
with the State Key Laboratory of Computer Sci-
ence, Institute of Software, Chinese Academy of
Sciences. His current research interests include
concurrency bugs, such as detection, reproduc-
tion, and fixing, especially in large-scale multi-
threaded programs.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BIAN ETAL.: DETECTING BUGS BY DISCOVERING EXPECTATIONS AND THEIR VIOLATIONS 1001

	08952832
	08318656

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

