
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. *, NO. *, MONTH 2022 1

Scalably Detecting Third-party Android Libraries
with Two-stage Bloom Filtering

Jianjun Huang, Bo Xue, Jiasheng Jiang, Wei You, Bin Liang, Jingzheng Wu, and Yanjun Wu

Abstract—Third-party library (TPL) detection is important for Android app security analysis nowadays. Unfortunately, the existing
techniques often suffer from poor scalability. In some situations, the detection time cost is even unacceptable. Although a few existing
methods run relatively fast, they cannot provide enough effectiveness, especially for non-structure-preserving obfuscated apps, e.g.,
repackaged and flattened. In this paper, we treat TPLs detection as a set inclusion problem to effectively and efficiently analyze
obfuscated apps, and develop a scalable two-stage detection approach, LIBLOOM. Specifically, the package and class signatures are
encoded into two levels of Bloom filters respectively. At the first stage, the package filters are used to identify a limited number of
candidate TPLs via set overlapping measurement to avoid unnecessary class-level set analysis. Subsequently, with the class filters, a
similarity score is computed between the query app and each candidate to detect the integrated TPLs, and a novel entropy-based
metric is presented to specially handle the repackaged and flattened apps. We have evaluated LIBLOOM on some large-scale
benchmarks involving tens of thousands of TPL instances. The experiment results demonstrate that LIBLOOM outperforms
state-of-the-art tools in both effectiveness and efficiency. Especially, the proposed two-stage method can run about ten times faster
than the straightforward class-level analysis on flattened apps, and without loss of accuracy.

Index Terms—Third-party Library, Non-structure-preserving Obfuscation, Set Inclusion, Bloom Filter, Entropy.

F

1 INTRODUCTION

S TUDIES have shown that most of Android apps contain
third-party libraries (TPLs) [1] and the resulting security

problems have attracted lots of concerns [2], [3]. Particularly,
an app may passively introduce security flaws when it
integrates a vulnerable TPL. Detecting TPLs in Android
apps has become an important task [4], [5]. In practice, the
analyst needs to identify the TPLs integrated in the app
of interest and their specific versions to effectively check
whether there is a reference to the vulnerable versions.

In the past few years, researchers have proposed var-
ious techniques to detect TPLs in Android apps and the
signature-based similarity measurement has proven to be
effective. Unfortunately, the existing techniques often suffer
from poor detection efficiency. A recent study [6] has re-
ported that some state-of-the-art approaches are not suitable
for large-scale TPL detection. For example, given a data set
of about 2,000 distinct library versions, LibID [7] requires
nearly one day per app and LibPecker [8] takes more than
five hours on average. Even worse, the time cost will be
totally unacceptable when the analyst faces a batch of apps,
e.g., emerging apps in an application market, and that the
target TPL database often consists of tens of thousands of
library instances, i.e., TPLs with different versions.

There exist some relatively fast TPL detection methods,

• J. Huang, B. Xue, J. Jiang, W. You and B. Liang are with the School of
Information, Renmin University of China, Beijing 100872, China; and
also with Key Laboratory of DEKE (Renmin University of China), MOE,
China. (e-mail: {hjj, xuebo2020, jjscool, youwei, liangb}@ruc.edu.cn).

• J. Wu and Y. Wu are with the Institute of Software, Chinese
Academy of Sciences, Beijing 100190, China. (e-mail: {jingzheng08,
yanjun}@iscas.ac.cn).

• Bin Liang (liangb@ruc.edu.cn) is the corresponding author.

but they cannot satisfy the demand of effectiveness. For
example, Ma et al. [9] present LibRadar, a learning-based
method, to check whether a given app potentially integrates
TPLs with a pretrained model about the TPL signatures.
LibRadar lacks the capability of telling the specific version
of a used TPL or even sometimes cannot identify its name.
In addition, the model needs to be frequently retrained
to cover new TPLs. Backes et al. [10] propose LibScout,
which relies on only structure-based hashes to measure
the similarity between app and library classes. However,
LibScout cannot effectively handle sophisticated code ob-
fuscations, e.g., unused method removal, class repackaging
and package flattening. We term such techniques the non-
structure-preserving obfuscation, indicating they will modify
the structures of classes or packages. It is worth noting that,
modifying the structures is a common obfuscation technique
that has been supported by popular obfuscators such as
ProGuard [11], Allatori [12] and DashO [13]. As a result,
LibScout cannot provide satisfiable detection performance
for obfuscated apps. As shown in [7], the detection rate
of LibScout never exceeds 15% when the non-structure-
preserving obfuscations are enabled using ProGuard. A
recent study by Zhan et al. [14] also points out that most
existing tools are not resilient to those sophisticated code
obfuscations.

An important question arises naturally as how to accu-
rately and scalably detect TPLs in Android apps. In this paper,
we abstract the TPL detection into a set inclusion problem to
effectively handle varying obfuscations, and propose a two-
stage retrieval technique to accelerate the problem solving.

Considering non-structure-preserving obfuscations have
been applied popularly, the elements of a class in the code
can be represented as a set of signatures. For a given app
A, if there is a class lc in a TPL L whose signature set is the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. *, NO. *, MONTH 2022 2

���������

�

	
������������

���������	
��

��������������������������

������������������������

���������	�
���������

�������	�
���������

�����������

����������

Fig. 1. Two-stage retrieval with Bloom filters.

subset of that of an A’s class, we will label that A may refer
to lc. And if most classes of L are labelled being referred
to in A, we believe A integrates L. By employing such a
robust statistical analysis, we can get an accurate detection
for obfuscated apps.

Solving the set inclusion problem is still a time-
consuming task when facing millions of classes. Thanks to
the nature of set operations, the task can easily speed up via
a high-level set overlapping measurement. In fact, the code
base in Android apps and libraries is arranged in a hierar-
chical structure, i.e., app/library → packages → classes. If
L are integrated in A, the related packages of L should be
included in A or approximately included in A when being
applied inter-class obfuscation, e.g., repackaging. Obviously,
we can first filter the candidate integrated TPLs from the
target collection via a package-level signature set analysis.
Namely, we can identify a candidate TPL for an app A by
checking whether the signature sets of its packages have a
large overlapping similarity with their counterparts in A.
Compared with a straightforward class-level analysis, the
two-stage schema can guarantee the scalability. Our experi-
ment shows that we can drop the number of candidate TPLs
from tens of thousands to dozens.

To get further acceleration and save storage space, we
leverage Bloom filter [15] to implement a TPL detection
approach, LIBLOOM. As illustrated in Figure 1, the signature
sets of packages and classes are encoded into two kinds
of Bloom filters, each compactly representing a set using a
bitmap. The signature set of a class consists of the fuzzy
signatures of its methods, fields and hierarchy; and the
signature set of a package combines all those of its inclusive
classes. During detection, the package-level Bloom filters
are first employed to measure the overlapping similarity
between the packages of the query app and all target
TPLs, and to identify the candidate TPLs. On this basis,
strict subset queries occur on the class-level Bloom filters,
and a similarity score is computed between the query app
and a specific candidate TPL instance. For repackaged and
flattened apps, we also present a novel entropy-based metric
to identify the apps and get a reasonable similarity score for

them purposefully. If the score is beyond a threshold, the
TPL and its version are reported.

We evaluate LIBLOOM on three benchmarks, one of
which contains more than ten thousand TPL instances.
LIBLOOM has been demonstrated to outperform state-of-
the-art tools regarding the effectiveness (1.6 times better
against non-structure-preserving obfuscations and at least
20% better for commercial off-the-shelf (COTS) apps) and
the efficiency (at least twice as fast). Furthermore, compared
to the straightforward class-level analysis, LIBLOOM runs
about ten times faster without loss of accuracy on flattened
apps.

This paper makes the following contributions.
• We abstract the TPL detection to a set inclusion query

problem, which leverages robust statistical analysis to
handle sophisticated code obfuscations and can achieve
high detection accuracy.

• We propose a two-stage retrieval technique and lever-
age Bloom filters to realize the approach named LI-
BLOOM, which can dramatically accelerate the TPL
detection and guarantee the scalability. Besides, we
present an entropy-based metric to identify potential
repackaging and flattening.

• We implement a prototype of LIBLOOM and evaluate
it on some large-scale benchmarks. The experiment
results demonstrate that LIBLOOM outperforms state-
of-the-art tools over effectiveness and efficiency.

• We build a special benchmark by applying three popu-
lar obfuscators and different non-structure-preserving
obfuscations on open-source apps. It can be lever-
aged by other researchers to verify their approaches
against those sophisticated obfuscations. It is available
at https://github.com/iser-mobile/LIBLOOM.

2 BACKGROUND

Obfuscators and non-structure-preserving obfuscations.
We have investigated three popular obfuscators, Pro-
Guard [11], Allatori [12] and DashO [13], which are com-
monly used to obfuscate open-source Android apps in exist-
ing studies such as Orlis [17], LibID [7] and Zhan et al. [6],
[18] and explicitly support the non-structure-preserving ob-
fuscations of interest, i.e., code shrinking, repackaging and
flattening. We take the TPL glide-4.11.0 in the open-source
app Wikipedia [16] as an example. Figure 2a shows part of
the packages and classes in the original library. Identifier
renaming (Figure 2b) is supported by all three obfuscators
and we discuss below their support of the following sophis-
ticated obfuscations.

Code shrinking. Obfuscators like ProGuard and DashO
can remove unused methods and classes, even fields, by de-
fault during obfuscation. Note that, Allatori supports very
weak code shrinking that can modify the class structure.
Allatori users can only choose to remove the toString
methods in classes to prevent potential information leak.

Repackaging. Renamed classes are moved into a single
given package (i.e., destination package). In ProGuard and
DashO, the default repackaging policy keeps the renamed
classes whose package is not completely renamed but moves
those with even partially renamed packages. Allatori sup-
port two kinds of repackaging and we denote them as

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. *, NO. *, MONTH 2022 3

com.bumptech.glide
gifdecoder

GifDecoder.class
GifFrame.class
…

module
RegisterComponents.class
AppGlideModule.class
LibraryGlideModule.class
…

…

(a) Original

com.bumptech.glide
a

a.class
b.class
…

module
RegisterComponents.class
c.class
d.class
…

…

com.bumptech.glide

com.bumptech.glide
module

RegisterComponents.class
c.class
d.class
…

…

z
a.class
b.class
…

com.bumptech.glide
module

RegisterComponents.class
…

z
a.class
b.class

…

c.class
d.class

(b) Renaming (c) Flattening

(d) Weak repackaging (e) Strong repackaging

module
RegisterComponents.class
c.class
d.class
…

…
z

a
a.class
b.class
…

(b) Renaming

com.bumptech.glide
a

a.class
b.class
…

module
RegisterComponents.class
c.class
d.class
…

…

com.bumptech.glide

com.bumptech.glide
module

RegisterComponents.class
c.class
d.class
…

…

z
a.class
b.class
…

com.bumptech.glide
module

RegisterComponents.class
…

z
a.class
b.class

…

c.class
d.class

(b) Renaming (c) Flattening

(d) Weak repackaging (e) Strong repackaging

module
RegisterComponents.class
c.class
d.class
…

…
z

a
a.class
b.class
…

(c) Weak repackaging

com.bumptech.glide
a

a.class
b.class
…

module
RegisterComponents.class
c.class
d.class
…

…

com.bumptech.glide

com.bumptech.glide
module

RegisterComponents.class
c.class
d.class
…

…

z
a.class
b.class
…

com.bumptech.glide
module

RegisterComponents.class
…

z
a.class
b.class

…

c.class
d.class

(b) Renaming (c) Flattening

(d) Weak repackaging (e) Strong repackaging

module
RegisterComponents.class
c.class
d.class
…

…
z

a
a.class
b.class
…

(d) Strong repackaging
com.bumptech.glide

a
a.class
b.class
…

module
RegisterComponents.class
c.class
d.class
…

…

com.bumptech.glide

com.bumptech.glide
module

RegisterComponents.class
c.class
d.class
…

…

z
a.class
b.class
…

com.bumptech.glide
module

RegisterComponents.class
…

z
a.class
b.class

…

c.class
d.class

(b) Renaming (c) Flattening

(d) Weak repackaging (e) Strong repackaging

module
RegisterComponents.class
c.class
d.class
…

…
z

a
a.class
b.class
…

(e) Flattening

Fig. 2. Obfuscation examples. [swapped with the next figure]

weak and strong. Weak repackaging moves only the renamed
classes whose package does not contain any unrenamed
classes (Figure 2c) while strong repackaging moves any
renamed classes no matter if their neighbors are unrenamed
(Figure 2d).

Flattening. Behaving similar with repackaging, flattening
moves obfuscated packages (“a” in Figure 2e) to a single
given package (“z”) and thus flattens the package hierarchy.
Allatori does not support flattening and generally, repack-
aging and flattening are exclusive in other obfuscators.
Bloom filter. Bloom filter [19] was devised to test the set
element membership with space efficiency. Using a bitmap
of size M to compactly represent a set, a Bloom filter sets k
random bits with one in the bitmap for each element. k is the
number of independent hash functions. Each hash function
generates an integer for an element and the integer indicates
an index in the bitmap, which is set to one. One important
property of Bloom filter based set element query is that there
may be false positives but no false negative. Namely, if an
element is in a set, the query to the corresponding Bloom
filter must succeed.

Take Figure 3 as an example, which shows a set S (Fig-
ure 3b) and the hashes for each element (Figure 3c). Using
k = 3 and M = 256 in the example, the corresponding
Bloom filter BFS is shown in Figure 3d.

Nowadays, Bloom filter is also widely used for sub-
set queries [20]. Formally, given two Bloom filters, if
∀i, BF1[i] ≤ BF2[i], we claim that the set for BFi holds a
subset of that for BF2. Goel et al. [20] have demonstrated the

TABLE 1
The detection result of the vulnerable retrofit-2.4.0 in Apod MD with the

state-of-the-art tools and the time cost (in seconds) in a large-scale
TPL data set.

Obfuscation LibScout Orlis LibPecker LibID
Code shrinking ×(82s) ×(168s)

√
(19054s)

√
(1963s)

Repackaging ×(79s) ×(162s) ×(20013s)
√

(2136s)
Flattening ×(83s) ×(172s) ×(19535s)

√
(3125s)

effectiveness and efficiency of subset queries using Bloom
filter. Take Figure 3 as an example again. We remove two
elements (boxed in Figure 3b) from S to get S′ and make a
Bloom filter BFS′ that keeps the same as the previous one
but zeros the red bits. Those bits are corresponding to the
removed elements. Obviously, the relation of BFS′ and BFS
satisfies the condition and S′ ⊆ S.

3 MOTIVATING EXAMPLE

An important downstream task of the TPL detection is to
identify vulnerable TPLs to reveal the potential risk of an
app. However, besides protecting the code security, the non-
structure-preserving obfuscation can hide the flawed TPLs,
which hinders the state-of-the-art detectors from detecting
TPLs. For instance, we seek an open source app Apod
MD [21] from F-Droid [22], which integrates a vulnerable
retrofit-2.4.0 (CVE-2018-1000850 [23]). We build the app and
obfuscate it with different techniques, i.e., code shrinking,
repackaging and flattening respectively. The detection is
carried out on a data set with 10k+ TPL instances, to ver-
ify if the four state-of-the-art detectors can effectively and
efficiently report retrofit-2.4.0 under different obfuscations
with ProGuard.

Table 1 shows the result. LibScout [10], Orlis [17] and
LibPecker [8] fail to detect the vulnerable TPL from the
repackaged and flattened apps. Though LibID [7] can detect
the TPL in all three scenarios, its low efficiency prevents the
scalability, which is also illustrated in [6]. In a large-scale
scenario of TPL detection, we believe that effectiveness and
scalability are equally important.

4 APPROACH

We abstract the TPL detection as a set inclusion problem
and propose a two-stage retrieval method to detect TPLs
in Android apps effectively and efficiently. Our approach,
LIBLOOM, extracts the signature sets from packages and
classes and encodes them into two types of Bloom filters.
As illustrated in Figure 1, package-level Bloom filters are
leveraged to compute the package overlapping similarity to
identify candidate TPLs. For candidate packages, LIBLOOM
further performs subset queries over the class-level Bloom
filters and computes a similarity score between the query
app and a candidate TPL to indicate the likelihood that
the TPL instance is integrated in the app. Note that, code
shrinking will be handled by the abstraction of set inclu-
sion, but two other obfuscations, i.e., class repackaging and
package flattening, pose a challenge to accurately label the
library packages and classes refer to their counterparts. To
address the challenge, we employ entropy-based heuristics
to identify potential repackaged and flattened apps, and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. *, NO. *, MONTH 2022 4

extends AtomicReference
implements CompletableObserver

Disposable
long serialVersionID
EmptyCompletableObserver()
void dispose()
boolean isDisposed()
boolean hasCustomOnError()
void onComplete()
void onError(Throwable)
void onSubscribe(Disposable)

(a) Original class structure.

extends:Ljava/util/concurrent/atomic/AtomicReference;
implements:X1;
implements:X2;
J1
<init>()V;1
(X;)V;1
(X;)Z;1
(X;)Z;2
(X;)V;2
(X;Ljava/lang/Throwable;)V;1
(X;X;)V;1

(b) Class signature set with removed signatures in red boxes.

246, 31, 204
134, 156, 78
27, 244, 205
125, 37, 51
55, 236, 241
191, 114, 219
99, 144, 67
148, 179, 210
221, 170, 119
195, 253, 67
30, 168, 50

(c) Hashes.

� � � � � � � � � 	 �� �� �� �� �� �� �� �� �� �	 �� �� �� �� �� �� �� �� �� �	 �� ��

�

�

�

�

�

�

�

�

� 1 � � 1 1

� � � � � 1 � � � � � � � � � � � � 1 1 � � � 1 � � � � � � � �

� � � 1 � � � � � � � � � � 1 � � � � � � � � � � � � � � � � �

� � � 1 � � � � � � � � � � � � � � 1 � � � � 1 � � � � � 1 � �

� � � � � � 1 � � � � � � � � � 1 � � � 1 � � � � � � � 1 � � �

� � � � � � � � 1 � 1 � � � � � � � � 1 � � � � � � � � � � � 1

� � � 1 � � � � � � � � 1 1 � � � � 1 � � � � � � � � 1 � 1 � �

� � � � � � � � � � � � 1 � � � � 1 � � 1 � 1 � � � � � � 1 � �

(d) Bloom filter with k = 3 and M = 256. Bits in red boxes are reset to zero for the shrinked class, corresponding to the
removed field and method.

Fig. 3. An example showing the structure, signature set and the corresponding Bloom filter of EmptyCompletableObserver in rxjava-3.0.4
integrated in app Wikipedia [16].

compute the similarity for them in a suitable granularity
respectively.

In the below sections, we will discuss the details of
LIBLOOM.

4.1 Structure-based Signature Set

In this paper, we aim to extract the signatures of classes
and inspect if a library class can refer to an app class
based on their signatures. When enough library classes can
be mapped to app classes, we can claim that the library
instance is integrated to the app. Such signature-based TPL
detection has proven to be effective [10]. To preserve the
efficiency and effectiveness of the detection, we build a
signature set for each class and perform set inclusion analy-
sis between classes to measure their relation. Specifically,
a signature set consists of the following three kinds of
structure-based signatures.
• Methods. Methods substantially illustrate the function

of a class and should be naturally considered. To avoid
the side effect of identifier renaming, we use the fuzzy
method descriptors, i.e., keeping any framework type
name as is and replacing non-framework types with
X. Meanwhile, the primitive data types are replaced
with one-character identifiers by the underlying anal-
ysis framework WALA [24], i.e., void, boolean, int, short,
long, float and double are denoted by V, Z, I, S, J, F
and D, respectively. Different from existing approaches
like LibScout [10], we keep the method names for those
methods that will never be renamed, e.g., the construc-
tor method <init>. Note that, we also append a se-
quence number to each fuzzy descriptor, to differentiate
the methods with the same fuzzy descriptors. Similar
trick is used for the following two types of signatures.

• Fields. Fields denote the data processed by a class and
can be a significant indicator to differentiate classes. We

reserve the field types and eliminate variable names to
generate the field signatures. We include the numbered
fuzzy types of the fields in the related signature sets.

• Hierarchy. Inheriting a base class or implementing a
specific interface points out the hierarchical position
of a class in a bunch of function-dependent classes.
We prepend extends or implements to the fuzzy type of
the base class or interface, respectively, to make up the
hierarchy signatures.

The signatures in a class form its signature set and all
signature sets of the inclusive classes in a package constitute
the package’s signature set. Figure 3b shows an example of a
signature set associated with the class structure in Figure 3a.

Class signature set is the basic analysis unit in our work.
The obfuscation technique with the most significant impact
on the class signature set is code shrinking, which can
remove methods or fields from classes. In other words, a
shrunk TPL class owns a subset of signatures compared
with the original one. When we represent each class as a
signature set, it is naturally to leverage set inclusion to deal
with code shrinking. Take as an example a class that comes
from rxjava-3.0.4 in Wikipedia [16] with ProGuard as the
obfuscator. The original class structure is shown in Figure 3a
and the signature set is in Figure 3b. When the library is
compiled into the app, one field and one method is removed
(corresponding to the boxed line). As a consequence, the
shrunk signature set with nine signatures is a strict subset
of the original signature set (11 signatures). By this means,
the affected classes by code shrinking can be effectively
matched to their origin. In this study, we utilize Bloom filter
to efficiently solve the set inclusion problem and perform
TPL detection.

4.2 Bloom Filter Construction
We build two kinds of Bloom filters. A class-level Bloom
filter BFc of size Mc is constructed for a class c by applying

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. *, NO. *, MONTH 2022 5

k independent hash functions to every signature element in
c’s signature set. Each hash operation generates an integer
as a bit position in BFc. The position is set to one in the
Bloom filter. For each package, we similarly build a Bloom
filter BFp of size Mp.

We use murmur3 128 in Guava [25] to simulate the k
independent hash functions [26]. The optimal number of
hash functions and the size of Bloom filter are computed by
Eq. 1 and Eq. 2 [15].

k = − ln fpp

ln 2
(1)

M =
k · n
ln 2

(2)

in which, the false positive probability fpp indicates how
likely an element not belonging to a set is reported to be in
the set and n is the maximum degree of the signature set.
Figure 3d presents the class-level Bloom filter corresponding
to the signature set in Figure 3b, with k = 3 and Mc = 256.
We will show in Section 5.2 how to empirically determine
the proper k, Mc and Mp for LIBLOOM.

4.3 Package-level Overlapping Measurement
The first stage of LIBLOOM focuses on screening candidate
TPL packages via package-level set overlapping measure-
ment, to accelerate the TPL detection especially in large-
scale scenarios. Given two Bloom filters, BFlp and BFap,
respectively for a library package lp and an app package ap,
the overlapping is measured as Eq. 3.

overlap ratio(lp, ap) =
BFlp ·BFap

min (|BFlp|, |BFap|)
(3)

where “·” means the dot production of two Bloom filters
and “|BF |” counts the number of ones in the Bloom filter.
To cover the obfuscated packages in which a large number
of classes have been removed from their library counter-
parts, we compute the overlapping ratio of the overlapped
elements to the smaller signature set.

When the ratio reaches a threshold, we label <lp, ap>
as a candidate package pair for further class-level analy-
sis. Otherwise, the pair is considered unmatched and thus
discarded. If the candidate packages of a TPL instance
cannot potentially indicate the use of that library in the
query app, the TPL instance is thrown away. In practice,
an app can integrate very few libraries and most TPLs are
unrelated and can be excluded by the ratio. By this means,
we can effectively reduce the number of packages for the
subsequent analysis and the number of TPLs in large-scale
detection, and boost the efficiency.

Obviously, the threshold can affect the efficiency and
detection rate. A small threshold can hardly eliminate un-
matched package pairs or TPL instances. In other words,
most packages are left to class-level analysis and nearly all
TPLs are kept as candidates, making little contribution to
detection efficiency. A too large threshold can emit more
accurate package pairs and candidate TPLs to dramatically
accelerate the detection. However, many packages may be
missed, e.g., the ones with partially repackaged classes,
resulting in a low detection rate. To trade off the efficiency

lc1

lc2

lc3

lc4

ac1

ac2

ac3

ac4

ac5

0.812
0.026

1.000

0.143
0.714

1.0

0.167

0.833

Fig. 4. Partial pairwise class inclusion scores for some classes in the
library gson used in the app Wikipedia [16]. Circles with the same patten
are the library class (left) and corresponding app class (right).

and detection rate, we conduct a pilot study to determine a
proper overlapping threshold, 0.8 as shown in Section 5.2.3.

4.4 Class-level Subset Query

Strict subset queries are applied to the class-level Bloom fil-
ters. Pairwise query takes place between any library class lc
and app class ac for each candidate package pair <lp, ap>.
Given two Bloom filters BFlc and BFac, we say ac holds a
subset of lc’s signature set if Eq. 4 satisfies.

BFac & BFlc = BFac (4)

Note that, in the subset query scenario, even if we
have done the best to distinguish uncorrelated classes with
multifactorial structure-based signatures, it is still possible
for multiple app classes matching one library class and one
app class containing the subset of more than one library
class. Figure 4 presents a pairwise matching result among
four library classes and five obfuscated classes. A link means
the subset query succeeds between the obfuscated app class
and the linked library class.

Obviously, the query result is not suitable to directly
determine the number of potentially matched classes for
app-library similarity computation. We aim to further obtain
a confident one-to-one mapping and design a class-level
inclusion score for the candidate class pair <lc, ac> as Eq. 5.

class inclusion score(lc, ac) =
|BFac|
|BFlc|

(5)

Consequently, if an obfuscated class has nothing (or very
little) removed from its original version, the inclusion score
is definitely (or approaches) one. A very small score typically
means heavy code shrinking during obfuscation or a small
app class is indeed unrelated to the mapped library class. In
Figure 4, for example, lc1 has a score of only 0.026 with ac2,
while the score reaches 0.812 between lc1 and its counterpart
ac1.

Finally, according to the score, we perform a maximum
matching on the classes to generate a confident mapping
between classes in lp and ap. The Kuhn-Munkres algo-
rithm [27] is employed, which can effectively exclude the
unmatched query results and produce a satisfied mapping,
as the bold lines in Figure 4 shows.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. *, NO. *, MONTH 2022 6

4.5 Similarity Computation & TPL Detection
On the basis of the class-level set analysis, we compute a
similarity score between the query app and a TPL instance.
A TPL instance can be claimed to be integrated into a query
app if their similarity score reaches a given threshold. Fur-
thermore, we employ entropy-based heuristics to compute
the similarity score specially for potential repackaging and
flattening.

4.5.1 Similarity computation

In practice, the Android code in both apps and libraries
is organized in packages. Naturally, based on the class-
level inclusion analysis result and taking the package as the
measurement unit, we compute a similarity score between
the query app and a TPL instance.

In general, package names are often renamed and we
have the following observations. First, the package hierar-
chy levels are often not changed. In other words, a three-
level library package a.b.c is more likely to be renamed
to o.p.q instead of a two-level package x.y. Second, the
sub-packages keep the hierarchy relation with their parent
packages in obfuscated apps. In the above example, a.b.c.d
can refer to o.p.q.r, instead of o.p.m.r.

Based on the observations, as done in [10], we generate
an optimal association A among packages in the query
app and TPL instance. We then count the number of max-
matched classes in these packages and compute a ratio of it
to the number of classes in the TPL instance, as in Eq. 6. The
ratio is treated as the similarity score between the query app
and the library instance.

sim score(lib, app) =

∑
(lp,ap)∈A

|max match(lp, ap)|

#classes in lib
(6)

where max match outputs a set of mapped classes between
lp and ap by the algorithm.

4.5.2 Similarity for repackaging and flattening

Though the above hierarchy-based approach is effec-
tively for a large number of obfuscated apps, some TPLs
may be missed to be reported, i.e., the similarity score is
lower than 0.6. Such cases often involve class repackaging
or package flattening, which can dramatically modify the
package hierarchy and make obfuscated app packages and
their original versions owning different hierarchy levels
or unmatched parent/sub-package relations, as shown in
Figure 2.

A straightforward and effective solution is to identify
the destination package of repackaging or flattening and
design special similarity computation methods accordingly.
We notice that, repackaging and flattening moves classes
or packages from different sources to a single parent pack-
age, and inevitably mixes diverse data operation logics
together. Naturally, the uncertainty of the referred types
associated with the destination package obviously increases.
In contrast, the original packages, organized with correlated
classes in general, usually posses more cohesive type ref-
erences and relatively low uncertainty. To this end, we can

measure the uncertainty of referred types in an app package
and employ entropy [28] to distinguish the two kinds of
packages from normal packages.

Our observation has also shown that the package with
the largest entropy is most probably the destination package
of repackaging or flattening. To further differentiate the two
exclusive obfuscations, we propose two kinds of entropy
computation based on their organization characteristics.

Repackaging-oriented entropy. Repackaging produces a
large single package with many direct classes that come
from different packages. To differentiate the packages from
other normal packages, we need to compute the entropy for
each package based on the direct classes. Given a package
and its inclusive classes P r = {c1, c2, . . . , cn}, we collect the
app-defined types referred to in methods, fields and class
hierarchy to form a type reference sequence of a class ci, i.e.,
ci = {ti1, . . . , tix}. All such sequences are united to form a set
of types, say RSr = {t1, . . . , ty}. The entropy is computed
as Eq. 7.

Hr =
∑

t∈RSr

p(t) log
1

p(t)
, where p(t) =

∑
ci

count(t ∈ ci)∑
ci

|ci|
(7)

Flattening-oriented entropy. Different from repackaging,
the destination package of flattening involves many sub-
packages that originally reside in different parent packages.
The sub-packages, after being flattened, will not contain any
further sub-packages. We formally denote a package and
its satisfied sub-packages as P f = {sp1, sp2, . . . , spn} and
∀i, spi = {ci1, ci2, . . . , cim}. Besides, cij = {tij1 , . . . , tijz }.
The merged type set is represented by RSf and we compute
the entropy via Eq. 8.

Hf =
∑

t∈RSf

p(t) log
1

p(t)
, where p(t) =

∑
spi

∑
cij

count(t ∈ cij)∑
spi

∑
cij

|cij |

(8)
By computing and ranking the entropy for the app pack-

ages, we obtain two kinds of largest entropy and the cor-
responding packages, denoted by (Hr, apr) and (Hf , apf),
respectively. Empirically, we can effectively identify the des-
tination package of repackaged apps (Hr > Hf) or flattened
apps (Hr < Hf).

In addition, to reduce the influence of popular libraries,
we exclude the supporting packages with prefixes ”android”,
”androidx”, ”kotlin” and ”kotlinx” during the entropy com-
putation. We also exclude the packages with extremely long
names, which are usually not generated by the two kinds of
obfuscations.

Below we describe how to compute the similarity score
for the identified repackaged or flattened apps. We break
the association for every <lp, ap> in A unless lp and ap
have the same unobfuscated package name. Package level
similarity scores are computed for each lp ∈ lib and apr (for
repackaged apps) or between lp and the satisfied candidate
sub-packages in apf (for flattened apps). Therefore, we can
build an association R between library packages and apr
or F for potentially flattened packages. To simplify the
detection, we assume that one library package can at most

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. *, NO. *, MONTH 2022 7

TABLE 2
The data sets used in the evaluation.

Open- Closed- Large-
source source [30] scale

#Apps 100 × 7 221 2,552
#Distinct TPLs 349 59 515
#TPL Instances 551 2,144 11,648

refer to one app package with the maximum similarity. As a
result, the similarity score for repackaged or flattened apps
is computed by Eq. 9, in which C can be either R or F ,
respectively, for one kind of identified obfuscation.

sim score(lib, app, C) =∑
max

(
|max match

(lp,ap)∈C
(lp, ap)|, |max match

lp
name
= ap

(lp, ap)|
)

#classes in lib
(9)

4.5.3 TPL detection

Given a query app and a TPL instance, LIBLOOM first
computes a package hierarchy-based app/library similarity
score using Eq. 6. If the score reaches a predefined threshold,
the TPL instance is reported to be used in the app. We
choose 0.6 as the threshold, the same as in [10], which means
that only when at least 60% of the TPL classes can refer to
app classes, can we determine the use of TPL instance in the
app.

If the similarity is lower than 0.6, we apply entropy-
based heuristics to identify potential repackaging or flatten-
ing. The corresponding similarity is computed via Eq. 9 and
the TPL instance will be reported if the similarity satisfies
the threshold requirement.

5 EVALUATION

In this section, we will evaluate LIBLOOM and compare it
with state-of-the-art detection tools over the following two
aspects.

• Effectiveness. We evaluate LIBLOOM and other tools on
two data sets to assess the detection effectiveness of
LIBLOOM. Besides, we also measure the effectiveness of
the proposed entropy-based metric.

• Efficiency/Scalability. We compare the detection time of
LIBLOOM with the other tools and particularly run it on
a large-scale data set to show the scalability of our two-
stage retrieval method.

We perform a comparative analysis with four state-of-
the-art TPL detectors, LibID [29], LibPecker [8], Orlis [17]
and LibScout [10], which can report the specific versions
of integrated TPLs. The similarity threshold for the tools,
if applicable, is fixed to 0.6 as done in LibScout [10]. All
experiments are carried out on a Ubuntu 20.04 machine with
Intel Xeon Scalable Silver 4110 CPU and 208GB memory.

���	��
����
�����

����������

�����������

���
������
����

������
	����
��
��

������������

�������������

���
�����
���

Fig. 5. Statistics of the signature sets for the 70 apps.

5.1 Benchmarks
We have collected three benchmarks for evaluation. Table 2
shows their statistics.

First, measuring the effectiveness requires the ground
truth. To this end, we build a special benchmark mainly for
detectors to evaluate their detection effectiveness against
non-structure-preserving obfuscations. One hundred open-
source apps are downloaded from the F-Droid reposi-
tory [22]. For each app, we build seven APKs with its
default obfuscation policy by ProGuard (code shrinking is
enabled) and six repackaging/flattening policies (plus code
shrinking if applicable) using three obfuscators. According
to the apps’ build configurations, we collect their dependent
TPL instances from repositories like Maven [31]. The total
number of distinct TPLs is 349 and the instances accumulate
to 551. In addition, we reuse the benchmark constructed by
Zhan et al. [6]. It includes 221 closed-source Android apps
and only 59 TPLs with totally 2144 versions.

Second, though we have already used an existing closed-
source benchmark, we want to particularly evaluate the
efficiency and scalability with much more apps and TPLs. To
this end, we randomly collect 2,552 apps from the Xiaomi
App Store [32] in China and download 11,648 instances
of 515 popular TPLs from Maven to form a large-scale
benchmark. To the best of our knowledge, it has the largest
available TPL data set among related studies.

5.2 Parameter Tuning
Parameter tuning is inevitable to trade off between accuracy
and efficiency or between false positives and false nega-
tives [10], [8], [7]. To avoid the unacceptable performance
resulting from intuitive parameter settings, we perform a
comprehensive study to tune the parameters.

Specifically, other than the parameters that are directly
employed from existing tools, e.g., 0.6 from [10], in our
work, there are four particular parameters, i.e., the number
of hash functions (k) to build Bloom filters, the sizes of
class-level Bloom filters (Mc) and package-level filters (Mp),
and the overlapping threshold. To reduce the impact of
package overlapping measurement, we implement a tool
named Libloom-p to tune the first two parameters. Libloom-
p implements the straightforward class-level set analysis,
without considering the package filtering. After k and Mc

are determined, we use LIBLOOM to tune the other two
parameters.

In this section, we randomly select ten apps (each with
seven variants in total) from the open-source benchmark
and measure the effect of different parameter values. We
show the statistics of the signature sets in Figure 5. Among

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. *, NO. *, MONTH 2022 8

TABLE 3
Preliminary experiment with different false positive probabilities on the

70 apps, with n = 1, 666.

fpp = 0.1 fpp = 0.01 fpp = 0.001
k 3 7 10

Precision/Recall/F1 69.40% / 66.36% / 66.24%
Avg. Time (seconds) 103.4 205.7 258.7

the 70 apps, the class-level signature set contains at most
1,666 signatures and the maximum number of the package-
level signatures in a set reaches 159,690. Despite the ex-
tremely large ones, 96.35% of the class-level signature sets
have no more than 50 signatures and 96.59% of the package-
level sets own at most 1,000 signatures.

5.2.1 Number of hash functions

According to Eq. 1, the number of hash functions, k, de-
pends on the false positive probability fpp. Empirically, we
select three kinds of sufficiently low probability, as shown in
Table 3 and choose the maximum number of the class-level
signatures, i.e., n = 1, 666, to build class-level Bloom filters.
We apply Libloom-p to the 70 apps. The result is presented in
Table 3. All parameter settings produce the same detection
result but a smaller k means smaller time overhead. The
reason of the same detection result for different fpp is that
fpp indicates how likely an element is falsely identified in
a set via a Bloom filter-based query. In the context of the
subset query, the probability that a set is falsely identified to
be a subset of another set is much lower than the proposed
fpps. In addition, a TPL is reported when a large portion
of the library classes are matched, which further reduces
the impact of a few class mismatches. Therefore, fpp shows
little impact in precision/recall/F1. We choose k = 3 for all
subsequent experiments.

5.2.2 Class filter size

With k = 3, we tune the size of class-level Bloom filters.
Note that, though we can use the maximum number for Mc,
the huge size of Bloom filters can increase the time cost of
set inclusion analysis, when most signature sets are actually
small, according to Figure 5. We aim to find an appropriate
size of Bloom filters, which achieves the best efficiency but
does not affect the effectiveness.

We use Libloom-p again to determine Mc. Based on the
breakdown of the class-level signature sets, we conduct
experiments for three different n, i.e., 50, 100 and 1,666. The
result is shown in Figure 6. When n = 50, the average time
cost is reduced by 4.8% ∼ 71.5% with a negligible drop of F1
(0.2%). We consider it reasonable to trade the accuracy loss
off with the apparent acceleration. Consequently, n = 50
and Mc = 256, by rounding up to a multiple of eight, are
used afterwards.

5.2.3 Package filter size and overlapping threshold

Fixing k = 3 and Mc = 256, we combine different sizes
of package signature sets and the overlapping thresholds
and apply LIBLOOM to the 70 apps. According to Figure 5,

���������
�

�	

	�

�	

���

��	 ����

�����

��������� ������ ��
	��

��

���

���

��

����

�
�
��

�
��
��

��
�

��
��

�
��

�

��
��

��
��

�
��

�

��
��

��	�
�����
����

Fig. 6. Experiment result for the 70 apps when k = 3 using Libloom-p.

�
����
	���

���

���

��������������

��� ��� ��� �� ��� ���
���

���

��
�����

��������

����
����
���������

Fig. 7. Preliminary results for the 70 apps with different combinations of
n and overlapping threshold (x-axis).

we choose three n, i.e., 1k, 5k and 159,690. In addition, the
overlapping threshold ranges from 0.5 to 1.0.

The results of time cost and detection performance (F1
scores) are described in Figure 7. From the upper figure, we
are surprised to see that n = 5k, other than 1k, makes the
fastest detection speed under each threshold setting. In the
lower figure, the F1 score on the solid line (n = 5k) reaches
the peak when the threshold is 0.8. For all subsequent
experiments, we use Mp = 21,640 (corresponding to n = 5k)
and the overlapping threshold as 0.8. Other combinations
can also be selected, relying on specific purposes, e.g., (5k,
1.0) for extremely high efficiency (290 seconds) but lower
effectiveness.

5.3 Effectiveness
We use two benchmarks to evaluate the effectiveness of TPL
detection. To demonstrate the effectiveness of the entropy-
based metric for identifying the destination packages of
repackaged and flattened apps, we also carry out a further
study.

5.3.1 Detecting open-source benchmark

To assess the detection ability against non-structure-
preserving obfuscations, we evaluate LIBLOOM, Libloom-
p and four state-of-the-art detectors on the specially built
open-source benchmark. Table 4 shows the results. There are
some notable findings in Table 4. Libloom-p generally con-
tributes slightly higher recall than LIBLOOM but lower preci-
sion because some packages are kept as candidates without
the overlapping measurement. LibID gets a higher recall for
ProGuard (rpkg1) data set but the precision is much lower
than others. Orlis achieves the best precision (100%) over
all tools for DashO (flt) but it recognizes the fewest TPLs
(0.25%) in the data set. In addition, Allatori with strong

1. We use rpkg for repackaging and flt for flattening.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. *, NO. *, MONTH 2022 9

TABLE 4
Detection result on the open-source benchmark and comparison with

other tools.

LIBLOOM Libloom-p LibID LibPecker Orlis LibScout

PGD
P 97.30% 75.63% 35.20% 57.41% 61.75% 67.29%
R 49.02% 49.75% 45.65% 28.19% 11.91% 15.06%
F1 65.19% 60.02% 39.75% 37.81% 19.97% 24.61%

PGR
P 91.59% 59.81% 14.83% 45.96% 60.50% 89.08%
R 36.29% 39.40% 39.39% 16.34% 10.41% 7.98%
F1 51.98% 47.51% 21.55% 24.11% 17.76% 14.65%

PGF
P 88.42% 54.35% 29.33% 48.83% 60.53% 85.16%
R 45.73% 45.96% 34.37% 18.03% 10.99% 9.12%
F1 60.28% 49.80% 31.65% 26.34% 18.60% 16.48%

ALW
P 91.04% 79.50% 16.67% 49.79% 72.04% 48.79%
R 89.75% 90.67% 83.39% 42.94% 13.22% 10.55%
F1 90.39% 84.72% 27.79% 46.11% 22.34% 17.35%

ALS
P 73.06% 59.20% 11.33% 0.00% - 0.00%
R 90.73% 91.31% 27.57% 0.00% 0.00% 0.00%
F1 80.94% 71.83% 16.06% - - -

DOR
P 87.62% 58.00% 12.96% 42.09% - 26.67%
R 33.64% 35.86% 0.45% 11.96% 0.00% 0.52%
F1 48.62% 44.32% 0.87% 18.63% - 1.02%

DOF
P 90.37% 49.79% 14.71% 45.21% 100.0% 22.22%
R 46.02% 46.35% 0.47% 12.46% 0.25% 0.65%
F1 60.98% 48.01% 0.91% 19.54% 0.50% 1.26%

Avg. F1 65.48% 58.03% 19.80% 24.65% 11.31% 10.70%
PGD: ProGuard (default); PGR: ProGuard (rpkg); PGF: Pro-
Guard (flt); ALW: Allatori (weak); ALS: Allatori (strong); DOR:
DashO (rpkg); DOF: DashO (flt). P: precision; R: recall; “-”: non-
applicable, e.g., no report for <Orlis, DashO (rpkg)>.

repackaging and DashO with repackaging/flattening make
the obfuscated apps difficult to analyze. Some tools even
cannot emit any useful result in certain cases.

LIBLOOM, on the other hand, outperforms all other tools
on the TPL detection against non-structure-preserving ob-
fuscations. It obtains the highest F1 scores for all scenarios,
at least 1.6 times higher than state-of-the-art tools. For the
apps obfuscated by Allatori, LIBLOOM achieves remarkable
results because Allatori does not heavily shrink the code
and our entropy-based heuristics can effectively identify the
destination packages (see Section 5.3.3 for more details),
making class-level analysis more accurate. Facing heavy
code shrinking by ProGuard and DashO, LIBLOOM pro-
duces satisfied results as well.

To further verify if the same thresholds can work on the
other open-source benchmarks, we conduct a detection on
the one released with Orlis [17], which contains 162 × 3
obfuscated apps by using ProGuard, Allatori and DashO.
LIBLOOM achieves F1 scores of 90.31%, 89.46% and 82.75%,
respectively for the three different obfuscators. As a com-
parison, the corresponding highest F1 scores achieved by
the other tools are 79.53% (LibScout), 76.13% (LibPecker)
and 41.40% (LibScout). This experiment has demonstrated
the chosen thresholds also work well on other open-source
benchmarks.

5.3.2 Detecting closed-source benchmark

LIBLOOM is evaluated on the closed-source benchmark
and we directly reuse the data in [6] for the other tools. The
detection result is presented in Figure 8. Though LIBLOOM
has slightly lower precision than LibPecker and LibScout, it
gains the highest detection rate and F1 score. In fact, none

������� ��������� ���� �������� � ��! ������#"
��

���

���

	��

���

���� ������ �	�		� ������
������

�
����

�
����

	
���� 		����

���
��
�	����

�����

������

��	�
���
�

������
������

�	����

	�����

� ���!���
������
��

Fig. 8. Detection result on the closed-source benchmark.

TABLE 5
Result for 30 repackaged/flattened apps in the closed-source

benchmark.

LIBLOOM LibPecker LibScout

Precision 87.69% 90.38% 100.0%
Recall 34.20% 19.09% 23.48%
F1 49.21% 31.52% 38.03%

of the other tools can detect more than half of the TPLs
used by the apps, but LIBLOOM achieves a recall of 67.28%,
contributing 37.2% more TPLs than LibScout and seven
times of Orlis. The evaluation also demonstrates LIBLOOM
does not lose accuracy for detecting arbitrary COTS apps
compared to Libloom-p.

In practice, most real-world Android apps with sophis-
ticated obfuscations are closed-source and the adopted ob-
fuscation techniques are unknown. To further demonstrate
LIBLOOM’s ability, we manually identify 30 such apps from
the closed-source benchmark. They are obfuscated with
repackaging or flattening in addition to code shrinking
which is generally a default option in popular obfuscators.
We compare LIBLOOM with the other four tools but LibID
and Orlis fail to run on the apps. From the result in Table 5,
we can see that even for the real-world obfuscated apps,
LIBLOOM outperforms LibPecker and LibScout by detecting
more TPLs and achieves the highest F1 score.

5.3.3 Identifying repackaging/flattening

In this section, we measure the effectiveness of the
entropy-based metric for distinguishing the obfuscation
types and destination packages for repackaged or flat-
tened apps. The numbers of identified packages in the
six repackaging/flattening-enabled data sets are used in
the measurement. Since each kind of obfuscation has exact

����"���
������

����"���
���!�

����!���
�#����

����!���
� !�����

� ��
������

� ��
���!�

��

	�

�

��

��� �
�

�

�
�

��

	
�

	�

�
�

���

�
�

��

�
�

��

�������������
������!$��
���"��!�

Fig. 9. The result of identified destination packages of repackag-
ing/flattening.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. *, NO. *, MONTH 2022 10

�#!�&�#�
�����&�%�

�#!�&�#�
�#"���

�#!�&�#�
���%�

����%!#�
�'����

����%!#�
�$%#! ��

��$��
�#"���

��$��
���%�

��

���

	��

���

��

����

	�����
������

	
����

���
� ������

����	�
	�����

������ ��	��

������

	����

����� ������

����!!�
����!!���

Fig. 10. Comparison of detection rate between LIBLOOM and Libloom-e.

TABLE 6
Total detection time (in seconds if not specified) on the open-source

benchmark.

LIBLOOM Libloom-p LibID LibPecker Orlis LibScout

PGD 99 676 217h 66h 42h 611
PGR 637 1591 24h 67h 16h 612
PGF 140 1508 233h 66h 25h 610
ALW 405 1080 185h 70h 32.7h 539

ALS 4124 5430 75h 69h
Recall:0%

290
Recall:0%

548
Recall:0%

DOR 690 1745 2037 41h 1717
Recall:0%

837

DOF 146 1644 132h 10h 1684 988

100 apps, we can easily determine the effectiveness of the
entropy-based metric via Figure 9. We split the identification
results into three categories, i.e., accurate, wrong-type and
wrong-package. The second means to report a repackaged
app as flattened, or vice versa. The last indicates a cor-
rect obfuscation type report but the destination package is
incorrectly recognized. The false identifications are caused
by sophisticated packages that originally contain lots of
classes or sub-packages. The resultant large entropy can
mislead our tool. However, LIBLOOM accurately identifies
93.3% of the destination packages. Even though only 75 are
accurately identified on Allatori(weak), there is very limited
influence on the detection effectiveness because the weak
repackaging breaks the hierarchy of only a small quantity
of classes. As a result, many TPLs are detected, as shown in
Table 4.

To further show the advantage of identifying repack-
aging/flattening correctly, we implement Libloom-e, a tool
without handling repackaging/flattening at all, and com-
pare it with LIBLOOM. Figure 10 depicts the comparison. Ex-
cept for ProGuard (default), LIBLOOM reports 28% ∼ 2,100%
more TPLs, illustrating the effectiveness of our method.

5.4 Efficiency/Scalability

In this section, we measure the efficiency and scalability of
LIBLOOM. We will compare LIBLOOM with state-of-the-art
tools and Libloom-p. Especially, we will show the dramatic
acceleration resulting from the package filtering.

5.4.1 Efficiency on heavily obfuscated apps

The time cost for the open-source benchmark is shown in
Table 6. In general, LIBLOOM and LibScout show better per-
formance than the other tools. Especially, LIBLOOM has an
extremely fast detection speed for ProGuard (default), and

��������
���������

��������
������

��������
�����

�������
�!����

�������
��������

�����
������

�����
�����

��

���

���

���

	��

����
��

 ��
�"

Fig. 11. The effect of package filtering on the seven data sets in open-
source benchmark.

two flattening-enabled data sets (< 150 seconds). We can see
that, repackaging often has a noticeable impact on LIBLOOM,
but it still achieves comparable (and sometimes the best)
performance in three scenarios. LIBLOOM takes about 1.15
hours to analyze the Allatori (strong) data set while Orlis
and LibScout require less than ten minutes. However, Orlis
and LibScout report nothing on this data set (see Table 4),
making the fast detection absolutely meaningless. Excluding
Allatori (strong), LIBLOOM achieves a speed at 3.53 seconds
per app, about twice as fast as LibScout (7 seconds/app).

Compared with the straightforward class-level analysis
approach, Libloom-p, the two-stage filtering of LIBLOOM
shows a tenfold improvement on the flattened apps, i.e.,
ProGuard (flt) and DashO (flt), and nearly seven times as
fast on ProGuard (default). Besides, on ProGuard (rpkg),
Allatori (weak) and DashO (rpkg), LIBLOOM requires only
40% of the time needed by Libloom-p. Figure 11 can explain
the time cost of LIBLOOM compared to Libloom-p, which
shows the min/max/average percentages of TPLs that are
excluded by package filtering. Some apps have more than
95% of TPLs filtered out before class-level analysis and some
have quite a few (less than 5%). On average, more than 60%
of TPLs are excluded in three cases, resulting in the high
speed. Three types of repackaging show lower exclusion
rate because a huge destination package may overlap many
irrelevant TPL package. Allatori (strong) makes the situation
even worse, leaving about 98% of the instances to class-level
analysis and thus significantly slowing down the detection.

According to Section 5.2.3, the speed can be further
boosted by trading off with the detection accuracy. We apply
the overlapping threshold of 1.0 to Allatori (strong) and
finish the analysis in only 672 seconds, an 83.7% drop. At the
meantime, we get 79.85%, 30.97% and 44.36% for precision,
recall and F1, respectively, better than the other tools for
Allatori (strong).

5.4.2 Large-scale evaluation

We evaluate the scalability of LIBLOOM, using the closed-
source and large-scale benchmarks. Due to inefficiency of
LibID, LibPecker and Orlis (refer to [6] and Table 6), we
compare LIBLOOM only with Libloom-p and LibScout.

LIBLOOM takes 2.44 hours to complete the detection on
the closed-source benchmark. In contrast, Libloom-p and
LibScout use 10.41 and 4.98 hours, respectively. On the
large-scale benchmark, 50.6, 215.5 and 98.7 hours are re-
quired by LIBLOOM, Libloom-p and LibScout. Figure 12 (left)
shows the average time cost. In general, LIBLOOM runs two

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. *, NO. *, MONTH 2022 11

� ��� ��� ���

�����
�����

�����
������

���

���

�����

�	��

�����

����
�������
���������
��������

� �� ��� �	� ���
����

�	���
�����

����

������

� 	�� ��
	 ���� ����
����

�����

�����

����

�
�

������

Fig. 12. Average time cost in seconds (left) and sorted TPL exclusion
rates (right) on two benchmarks.

times as fast as LibScout and three times faster than Libloom-
p.

We have also investigated the effect of package filtering
and present the TPL exclusion rate for each app in Figure 12
(right). On the closed-source benchmark, LIBLOOM can only
exclude less than 36.8% of the TPLs for half of the apps and
the average is 40.8% (877/2114). On the large-scale bench-
mark, the median and average exclusion rates are 77.7%
and 70.4% (8292/11648), respectively. The phenomenon is
caused by the fact that the TPLs in the closed-source bench-
mark are all related to the apps and each TPL has around
40 instances, whereas the large-scale benchmark involves
potentially unrelated TPLs, each with fewer instances. Such
a difference makes the increment of the time cost nonlinear
to that of the TPL collection.

5.5 Vulnerable TPL detection

We further evaluate LIBLOOM’s effectiveness of detecting
vulnerable TPLs on the large-scale data set.

First, we inspect the top 10 most popular TPLs identified
in the APPs. There are four vulnerable libraries, i.e., retrofit
(from 2.0 to 2.4.0, CVE-2018-1000850 [23]), okhttp (2.x before
2.7.4, and 3.x before 3.1.2, CVE-2016-2402 [33]), gson (before
2.8.9, CVE-2022-25647 [34]) and fastjson (before 1.2.83, CVE-
2022-25845 [35]). In contrast, LibScout reports only retrofit,
okhttp and gson in its top 10 TPLs.

Next, we count the number of apps that integrate the
above vulnerable TPLs. The number of the apps reported
by LIBLOOM with the vulnerable retrofit, okhttp, gson and
fastjson are 392, 33, 997 and 514, higher than the number
reported by LibScout (359, 33, 899 and 481). We manually
check the result and find that LIBLOOM reports more true
vulnerable apps than LibScout. Specifically, LIBLOOM dis-
covers 28 apps with vulnerable okhttp while the number
for LibScout is 26. For those including vulnerable gson and
fastjson, LIBLOOM detects 98 and 33 more true positives,
respectively.

Furthermore, we use LIBLOOM to detect the motivating
examples in Section 3 on the large-scale TPL data set. The
three obfuscated apps can be found to integrate the vulner-
able retrofit in 27, 74 and 34 seconds, respectively, much less
than that for LibID, the only tool that succeeds in detecting
the vulnerable TPL in three apps.

5.6 Summary
The two-stage approach has been demonstrated to be effec-
tive and efficient, outperforming state-of-the-art TPL detec-
tion tools. Moreover, the entropy-based metric has proven
to be effective on identifying the destination packages of
repackaged and flattened apps. Further studies have also
illustrated that our approach provides a scalable detection
in large-scale scenarios.

6 DISCUSSION

LIBLOOM relies on only coarse-grained signatures (i.e., the
class structures) to detect TPLs. Fine-grained signatures
involve the code implementation and can be significantly
influenced by heavy code obfuscations like string encryp-
tion and control flow randomization. Our approach is robust
against those obfuscations that are posed to the code im-
plementation and the experiments have demonstrated the
effectiveness.

We make a trade-off between the accuracy and efficiency.
While the speed is acceptable in our two-stage approach,
it can be further improved by paralleling the detection or
utilizing proper hardware (e.g., TCAM) to accelerate the
subset queries [20] for industrial use.

Depending on counting the classes, LIBLOOM suffers
from severe unused class removal, which can inevitably
degrade the detection rate. Many state-of-the-art tools en-
counter the same problem. A possible solution would be
to introduce multidimensional signatures as far as possible,
identify appropriate code clusters and detect the integration
of TPLs based on the clusters instead of the whole library
code base.

LIBLOOM can report a specific version of a target TPL
or a limited range of possible versions if multiple TPL
instances have shown the same similarity with the one used
in an app. Reporting the versions can help analysts identify
if vulnerable TPL instances are integrated and we have
shown the usefulness in Section 5.5.

Other than the investigated obfuscators that shrink
code by default, we notice that a black-box obfuscator,
Obfuscapk [36], bloats the apps by obfuscation. Obfus-
capk can insert wrapper methods (CallIndirection), create
abundant overloaded methods (MethodOverload) and add
random fields (FieldRename, undocumented). These obfus-
cations modify the class structure and can threaten our
approach that leverages set inclusion to purposefully deal
with code shrinking. To examine how far class bloating can
affect LIBLOOM’s performance, we apply Obfuscapk to the
unobfuscated open-source apps and run LIBLOOM on them.
The apps are obfuscated with as many obfuscation options
as possible. LIBLOOM achieves a precision of 79.66% and a
recall of 71.86%, with a time cost of 315 seconds. Bloating-
based obfuscation is beyond the scope of this work, but the
result is acceptable. We find that those bloating operations
affect only a small portion of classes and thus leave a
majority of TPLs detected. We will explore an effective and
scalable solution in the future to address the bloating-based
obfuscation.

Note that, there are some techniques that may threaten
the proposed detection though they are not widely adopted.
First, the package name of a TPL can be designed the same

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. *, NO. *, MONTH 2022 12

as the target app. In this case, the filtering step may exclude
the TPL for further analysis due to a low package-level
similarity. However, we can add the equivalent package
name as a heuristic rule and directly apply class-level
analysis, which can improve the detection rate in such a
scenario. Second, the target app may be packed. To this end,
unpacking techniques such as PackerGrind [37] can be first
employed, before performing TPL detection with LIBLOOM.
Third, new-generation structural attacks such as HRAT [38]
may insert methods to classes. This kind of bloating-based
technique is beyond the scope of this work. We leave it as
the future work to detect TPLs in this case.

7 RELATED WORK

In this section, we will briefly discuss related work in two
aspects, set inclusion query related studies and third-party
library detections.

Goel et al. [20] store Bloom filters in TCAM to solve the
subset query problem with a single lookup, which can be
utilized in TPL detection for acceleration. Charikar et al. [39]
investigated new algorithms for subset query with Bloom
filter. Zhang et al. [40] provide an analog Bloom filter for
multi-bit simultaneous query in wireless network. Adle et
al. [41] conduct research on measuring the similarity among
sets, even if they are not in a relationship of containment.
Our approach is inspired by these studies and we may
leverage these ideas in the future to further improve our
approach.

Detecting third-party libraries has been carried out over
the years. Tang et al. [42] utilize the basic code features
and function embeddings to filter the candidates and then
leverage the call graph information to determine the TPLs in
binary code. Kim et al. [43] create a whitelist of libraries in
the apps, to further identify Android malware. Ma et al. [9]
cluster millions of Android apps and extract the features for
potential third-party libraries, with which they can detect
TPLs without the libraries present. Li et al. [44] utilizes
the internal code dependencies, i.e., inclusion, inheritance
and call, to build the code features. Wang et al. [17] extract
the call relations as the signatures of methods, classes and
packages and leverage locality sensitive hash functions to
measure the signature similarity. Glanz et al. [45] abstract
the low level implementations to denote the code signatures,
based on which they measure the similarity for library
detection. Zhan et al. [46] leverage control flow graphs to
roughly match possible libraries and then use basic block
information to pinpoint the exact version. Zhang et al. [8]
use the dependency information of class inheritance and
field/method declaration to generate strict class signatures.
Backes et al. [10] use the high level class structure infor-
mation as strict signatures for library detection. Our ap-
proach abstracts the detection as a set inclusion problem
and proposed package-level filtering to speed up the detec-
tion, which has shown the resilience against non-structure-
preserving obfuscations and remarkable efficiency.

8 CONCLUSION

In this paper, we propose a novel approach to detecting
third-party libraries in Android apps with a two-stage

Bloom filtering method. Our approach, LIBLOOM, extracts
three class structure-based signatures and forms class-level
and package-level signature sets, which are encoded into
Bloom filters. Package-level Bloom filters are employed to
measure the package overlapping so as to keep potential
candidate packages and then TPLs for further analysis. By
this means, a significant amount of TPLs will be excluded
and the detection speed is dramatically improved. Class-
level Bloom filters are then leveraged in set inclusion analy-
sis between candidate package pairs. The success of a subset
query between two classes indicates that the app class may
refer to the library class. If sufficient library classes can
be referred to by the classes in a query app, we claim the
library of specific version is integrated into the app. To par-
ticularly handle sophisticated obfuscations like repackaging
and flattening, we design an entropy-based metric to the
identify potential obfuscation types and the corresponding
destination package of repackaging/flattening. The experi-
ments have demonstrated that LIBLOOM outperforms state-
of-the-art detectors in both effectiveness and efficiency and
is suitable for large-scale detection.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful
comments. This work was supported in part by the National
Natural Science Foundation of China (NSFC) under Grants
U1836209, 62272465, and 62002361, and in part by the CCF-
Huawei Populus euphratica Innovation Research Funding.

REFERENCES

[1] N. Viennot, E. Garcia, and J. Nieh, “A measurement study
of google play,” SIGMETRICS Perform. Eval. Rev., vol. 42,
no. 1, p. 221–233, Jun. 2014. [Online]. Available: https:
//doi.org/10.1145/2637364.2592003

[2] S. Wisseman, “Third-party libraries are one of the most insecure
parts of an application,” https://techbeacon.com/security/
third-party-libraries-are-one-most-insecure-parts-application,
2017.

[3] Y. Wang, B. Chen, K. Huang, B. Shi, C. Xu, X. Peng, Y. Wu,
and Y. Liu, “An empirical study of usages, updates and risks of
third-party libraries in java projects,” in 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2020,
pp. 35–45.

[4] X. Zhan, T. Zhang, and Y. Tang, “A comparative study of android
repackaged apps detection techniques,” in 2019 IEEE 26th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER), 2019, pp. 321–331.

[5] L. Li, T. F. Bissyandé, J. Klein, and Y. Le Traon, “An investigation
into the use of common libraries in android apps,” in 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol. 1, 2016, pp. 403–414.

[6] X. Zhan, L. Fan, T. Liu, S. Chen, L. Li, H. Wang, Y. Xu, X. Luo,
and Y. Liu, “Automated third-party library detection for android
applications: Are we there yet?” in 2020 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), 2020, pp.
919–930.

[7] J. Zhang, A. R. Beresford, and S. A. Kollmann, “Libid: Reliable
identification of obfuscated third-party android libraries,” in
Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA 2019. New York,
NY, USA: Association for Computing Machinery, 2019, p. 55–65.
[Online]. Available: https://doi.org/10.1145/3293882.3330563

[8] Y. Zhang, J. Dai, X. Zhang, S. Huang, Z. Yang, M. Yang, and
H. Chen, “Detecting third-party libraries in android applications
with high precision and recall,” in 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
2018, pp. 141–152.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. *, NO. *, MONTH 2022 13

[9] Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: Fast and
accurate detection of third-party libraries in android apps,”
in Proceedings of the 38th International Conference on Software
Engineering Companion, ser. ICSE ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 653–656. [Online].
Available: https://doi.org/10.1145/2889160.2889178

[10] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party
library detection in android and its security applications,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 356–367. [Online].
Available: https://doi.org/10.1145/2976749.2978333

[11] “ProGuard: Java obfuscator and Android app optimizer,” https:
//www.guardsquare.com/proguard, 2021.

[12] “Allatori,” https://www.allatori.com/, 2021.
[13] “Dasho,” https://www.preemptive.com/products/dasho, 2021.
[14] X. Zhan, T. Liu, L. Fan, L. Li, S. Chen, X. Luo, and Y. Liu,

“Research on third-party libraries in android apps: A taxonomy
and systematic literature review,” IEEE Transactions on Software
Engineering, pp. 1–1, 2021.

[15] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, p. 422–426, Jul. 1970.

[16] “Wikipedia: Official feature-rich viewer of the free online encyclo-
pedia,” https://f-droid.org/en/packages/org.wikipedia/, 2021.

[17] Y. Wang, H. Wu, H. Zhang, and A. Rountev, “Orlis: Obfuscation-
resilient library detection for android,” in Proceedings of the
5th International Conference on Mobile Software Engineering and
Systems, ser. MOBILESoft ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 13–23. [Online]. Available:
https://doi.org/10.1145/3197231.3197248

[18] X. Zhan, T. Liu, Y. Liu, Y. Liu, L. Li, H. Wang, and X. Luo, “A
systematic assessment on android third-party library detection
tools,” IEEE Transactions on Software Engineering, pp. 1–1, 2021.

[19] “Bloom filter,” https://en.wikipedia.org/wiki/Bloom\ filter,
2021.

[20] A. Goel and P. Gupta, “Small subset queries and bloom fil-
ters using ternary associative memories, with applications,” in
Proceedings of the ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, ser. SIGMETRICS
’10. New York, NY, USA: Association for Computing Machinery,
2010, p. 143–154.

[21] “An open source project using a vulnerable TPL,” https://f-droid.
org/zh Hans/packages/com.jvillalba.apod.md/, 2018.

[22] “F-Droid,” https://f-droid.org/, 2021.
[23] “CVE-2018-1000850,” https://nvd.nist.gov/vuln/detail/

CVE-2018-1000850, 2018.
[24] “WALA: T.J. Watson Libraries for Analysis,” http://wala.

sourceforge.net, 2021.
[25] “Guava: Google Core Libraries for Java,” https://github.com/

google/guava, 2021.
[26] A. Kirsch and M. Mitzenmacher, “Less hashing, same perfor-

mance: Building a better bloom filter,” Random Struct. Algorithms,
vol. 33, no. 2, p. 187–218, Sep. 2008.

[27] “Hungarian algorithm,” https://en.wikipedia.org/wiki/
Hungarian algorithm, 2021.

[28] S. Ce, “The mathematical theory of communication.” M.D. com-
puting : computers in medical practice, vol. 14, no. 4, pp. 306–317,
1963.

[29] “LibID,” https://github.com/MIchicho/LibID, 2021.
[30] “Benchmarks for TPLs detection,” https://sites.google.com/

view/libdetect/, 2020.
[31] “MvnRepository,” https://mvnrepository.com/, 2021.
[32] “Xiaomi APP Store,” https://app.mi.com/, 2021.
[33] “CVE-2016-2402,” https://nvd.nist.gov/vuln/detail/

CVE-2016-2402, 2016.
[34] “CVE-2022-25647,” https://nvd.nist.gov/vuln/detail/

CVE-2022-25647, 2022.
[35] “CVE-2022-25845,” https://nvd.nist.gov/vuln/detail/

CVE-2022-25845, 2022.
[36] S. Aonzo, G. C. Georgiu, L. Verderame, and A. Merlo, “Obfuscapk:

An open-source black-box obfuscation tool for android apps,”
SoftwareX, vol. 11, p. 100403, 2020.

[37] L. Xue, H. Zhou, X. Luo, L. Yu, D. Wu, Y. Zhou, and X. Ma,
“Packergrind: An adaptive unpacking system for android apps,”
IEEE Transactions on Software Engineering, vol. 48, no. 2, pp. 551–
570, 2022.

[38] K. Zhao, H. Zhou, Y. Zhu, X. Zhan, K. Zhou, J. Li, L. Yu, W. Yuan,
and X. Luo, “Structural attack against graph based android mal-
ware detection,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’21. New York,
NY, USA: Association for Computing Machinery, 2021, pp. 3218–
3235.

[39] M. Charikar, P. Indyk, and R. Panigrahy, “New algorithms for sub-
set query, partial match, orthogonal range searching, and related
problems,” in Automata, Languages and Programming, P. Widmayer,
S. Eidenbenz, F. Triguero, R. Morales, R. Conejo, and M. Hennessy,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp.
451–462.

[40] Z. Zhang, “Analog bloom filter and contention-free multi-bit si-
multaneous query for centralized wireless networks,” IEEE/ACM
Trans. Netw., vol. 25, no. 5, p. 2916–2929, Oct. 2017.

[41] T. D. Ahle and J. B. T. Knudsen, “Subsets and supermajorities:
Optimal hashing-based set similarity search,” in 2020 IEEE 61st
Annual Symposium on Foundations of Computer Science (FOCS), 2020,
pp. 728–739.

[42] W. Tang, Y. Wang, H. Zhang, S. Han, P. Luo, and D. Zhang,
“Libdb: An effective and efficient framework for detecting third-
party libraries in binaries,” in 2022 IEEE/ACM 19th International
Conference on Mining Software Repositories (MSR), 2022, pp. 423–
434.

[43] K. Kim, J. Lee, S. Lee, and J. Hong, “Whitelist for
analyzing android malware,” in Proceedings of the International
Conference on Research in Adaptive and Convergent Systems,
ser. RACS ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 222–227. [Online]. Available:
https://doi.org/10.1145/3129676.3129726

[44] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu,
R. Xue, and W. Huo, “Libd: Scalable and precise third-
party library detection in android markets,” in Proceedings of
the 39th International Conference on Software Engineering, ser.
ICSE ’17. IEEE Press, 2017, p. 335–346. [Online]. Available:
https://doi.org/10.1109/ICSE.2017.38

[45] L. Glanz, S. Amann, M. Eichberg, M. Reif, B. Hermann,
J. Lerch, and M. Mezini, “Codematch: Obfuscation won’t
conceal your repackaged app,” in Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2017. New York, NY, USA: Association for
Computing Machinery, 2017, p. 638–648. [Online]. Available:
https://doi.org/10.1145/3106237.3106305

[46] X. Zhan, L. Fan, S. Chen, F. We, T. Liu, X. Luo, and Y. Liu,
“Atvhunter: Reliable version detection of third-party libraries
for vulnerability identification in android applications,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), 2021, pp. 1695–1707.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. *, NO. *, MONTH 2022 14

Jianjun Huang received the Ph.D. degree in
Computer Science from Purdue University. He
is currently an assistant professor at School of
Information, Renmin University of China. His re-
search interests focus on program analysis, vul-
nerability detection, and mobile security.

Bo Xue is a Ph.D. student in Information Se-
curity from Renmin University of China. His re-
search interests focus on moblie application se-
curity and code security analysis.

Jiasheng Jiang received the M.S. degree
in Information Security from Renmin Univer-
sity of China. His research interests focus on
blockchain security.

Wei You received the Ph.D. degree in Com-
puter Science from School of Information, Ren-
min University of China. He is currently an asso-
ciate professor at School of Information, Renmin
University of China. His research interests focus
on program analysis, mobile security and Web
security.

Bin Liang received the Ph.D. degree in Com-
puter Science from Institute of Software, Chi-
nese Academy of Sciences. He is currently a
professor at School of Information, Renmin Uni-
versity of China. His research interests focus on
program analysis, vulnerability detection, mobile
security and AI security.

Jingzheng Wu received his Ph.D. degree in
computer software and theory from the Insti-
tute of Software, Chinese Academy of Sciences,
Beijing, in 2012. He is a research professor at
the Institute of Software, Chinese Academy of
Sciences, Beijing. His primary research interests
include system security, vulnerability detection
and covert channels.

Yanjun Wu received his Ph.D. degree in com-
puter software and theory from the Institute of
Software, Chinese Academy of Sciences, Bei-
jing, in 2006. He is a research professor at the
Institute of Software, Chinese Academy of Sci-
ences, Beijing. His primary research interests
include operating system and system security.

