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Abstract—Object detection has found extensive applications in
various tasks, but it is also susceptible to adversarial patch
attacks. The ideal defense should be effective, efficient, easy to
deploy, and capable of withstanding adaptive attacks. In this
paper, we adopt a counterattack strategy to propose a novel
and general methodology for defending adversarial attacks.
Two types of defensive patches, canary and woodpecker, are
specially-crafted and injected into the model input to proac-
tively probe or counteract potential adversarial patches. In this
manner, adversarial patch attacks can be effectively detected
by simply analyzing the model output, without the need to alter
the target model. Moreover, we employ randomized canary and
woodpecker injection patterns to defend against defense-aware
attacks. The effectiveness and practicality of the proposed
method are demonstrated through comprehensive experiments.
The results illustrate that canary and woodpecker achieve
high performance, even when confronted with unknown attack
methods, while incurring limited time overhead. Furthermore,
our method also exhibits sufficient robustness against defense-
aware attacks, as evidenced by adaptive attack experiments.

1. Introduction

In recent years, modern object detection models have
demonstrated exceptional performance and are widely uti-
lized in various physical-world tasks, such as pedestrian
detection [21], [24], [39] and autonomous driving [7], [68].
Unfortunately, they have been proven to be vulnerable to
adversarial patch attacks, involving hiding attacks [19], [50]
and misclassification attacks [18], [20]. Clearly, how to
safeguard object detectors against adversarial patch attacks
is an important and urgent problem.

Several defense methods [8], [12], [25], [33], [61], [63]
have been proposed. Unfortunately, the existing methods
often require modification of the target model, such as
introducing new net layers [8], [33], adding a new model
[61], or retraining [12]. In addition, the time overhead of
SOTA methods, such as [63], may increase significantly.
Furthermore, it is crucial to acknowledge that attackers
consistently maintain the upper hand relative to defenders.
In many cases, attackers can gain knowledge about the
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target model and defense techniques through means such
as reverse engineering, enabling them to launch defense-
aware attacks, as demonstrated in [28], [35], [52]. Attackers
can adjust their optimization objectives to generate adaptive
adversarial patches that can bypass the defense mechanisms.
Therefore, an effective defense method should possess high
detection capabilities, ideally without altering the target
model, low computational costs, and sufficient robustness
against defense-aware attacks.

In this study, we employ the same way of adversarial
attacks to counter them. Adversarial patches are essentially
additional elements introduced by attackers into the model
input to perturb target objects, resulting in their misidentifi-
cation or disappearance (Figure 1(a)). In a similar manner,
we can also proactively introduce specially designed ele-
ments, termed defensive patches, into the input to defend
against adversarial patch attacks (fight fire with fire).

In this paper, we propose two types of defensive patches,
canary and woodpecker. They are used to probe or coun-
teract potential adversarial patches, respectively. In this
way, potential attacks can be detected by examining or
differentially analyzing the model output after incorporating
defensive patches. Furthermore, the defensive patches can
naturally combine with randomized injection strategies to
resist defense-aware attacks.

Canary, as its name suggests, is a fragile object. It
is crafted to be easily perturbed by potential adversarial
patches, such that it cannot be correctly recognized in an
adversarial sample. Intuitively, the canary is preferably to be
placed proximal to the attacked object, where it is suscep-
tible to potential adversarial patches. However, determining
such a position beforehand is infeasible. Fortunately, we
have found that, as a localized attack, adversarial patches
cannot entirely erase all information about the target object
in the model output. In particular, while the bounding boxes
of the attacked object are suppressed by the adversarial
patches, making them disregarded by the model, they still
maintain observable objectness or class scores. We can
identify the suppressed bounding boxes from the output,
which are suspected to be related to the attacked object.
This allows us to place the canary near the boxes (around
or within them), making it more likely to be influenced by
the adversarial patches. As illustrated in Figure 1(b), we can
ascertain the presence of adversarial patches in the current
input by checking whether the model can detect the imported
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Figure 1: Basic idea of canary and woodpecker.

canary objects correctly. In this example, canaries are placed
to the left of the identified bounding boxes. If any injected
canary object is not correctly detected, it indicates that the
input is deemed an adversarial sample.

Woodpecker is designed to counteract the influence
of adversarial patches on the target object, enabling it to
be correctly detected once again. Essentially, adversarial
patches aim to subvert the semantics of the target object
to deceive object detectors. In response, woodpecker is
specifically trained to carry necessary information to re-
pair the compromised object semantics. In a similar way,
woodpecker is also placed near identified bounding boxes.
In Figure 1(c), we can determine the malicious nature of the
input by assessing whether any new objects of interest (e.g.,
a person) are present in the model output. Specifically, if the
woodpecker recovers an object that was misidentified in the
original input, the input will be classified as adversarial.

These two defensive patches can be trained and gener-
ated for an object class of interest using a limited number
of benign and adversarial samples. When applying canary
and woodpecker, the target model can remain unchanged.
Besides, adopting them does not involve complicated online
computation, and thus the overhead is limited.

More importantly, we also draw inspiration from the
Stack Cookie [2] and Address Space Layout Randomization
(ASLR) [14] techniques used in software security, and
enforce a randomization strategy when injecting canaries
and woodpeckers to enhance robustness. As an active de-
fense measure, defensive patches can combine with various
randomization patterns such as patch content and placement
positions. Taking canary as an example, as shown in Fig-
ure 2, we can generate multiple canary patches containing
different objects (e.g., zebra, elephant or giraffe) for each
potential canary placement position. For a given input, we
can randomly select a canary and place it at a random
position near the identified suppressed bounding box (e.g.,
placing a zebra canary in the lower-middle position), or even
place multiple canary patches randomly. As a result, even
if the attacker fully understands all details of the canary
mechanism, it would be difficult to optimize an adversarial
patch that can bypass all canary patterns. Theoretically, the
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Figure 2: Randomized canary patterns.

combination of canary objects and placement positions is
infinite. In other words, defense-aware attacks will become
exceedingly challenging, if not impossible.

The proposed method is evaluated with a comprehensive
test set generated from three public datasets [9], [13], [29]
and a physical-world one. We conducted experiments on
four adversarial patch attacks [18], [19], [20], [50] and
five object detectors [23], [41], [42], [55], [56]. It is worth
emphasizing that we only use one attack method, i.e., [50]
or [19], to generate some digital-world attack samples for
training canary and woodpecker. The other attacks are un-
known to the obtained canary and woodpecker. Results have
shown that our method can achieve a high F1 score and is
effective in defending against unknown attacks.

Comparison with existing defense techniques has also
shown that, our method can have comparable detection per-
formance in some scenarios and achieve better performance
in most scenarios. On benign samples, canary and wood-
pecker emit low false positive rates. Meanwhile, our method
also exhibits a low latency in detection, approximately 0.1
seconds per image.

We also conducted experiments to demonstrate the effec-
tiveness in defending against defense-aware attacks on 688
randomly sampled examples from four datasets. The results
show that attackers cannot generate adaptive adversarial
patches to completely bypass the defense even if only two
constrained randomization strategies are adopted.

Our work makes the following contributions.
• We present a novel and general methodology against

adversarial patch attacks. Two kinds of defensive
patches, canary and woodpecker, can be easily applied
to unmodified target object detection models, and can
effectively defend unknown attack methods.

• We propose a randomization-based defensive patch
deployment strategy. The robustness of canary and
woodpecker is guaranteed via enforcing randomized
patch injection patterns, effectively defending against
defense-aware attacks.

• We conduct a comprehensive experiment to evaluate
the proposed method, employing over ten thousand
digital and physical-world samples. It exhibits good
performance on both adversarial and benign examples.
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Figure 3: Adversarial patch attacks examples.

2. Background

2.1. Object Detection

The object detection task aims to identify and classify
each object in an input image by predicting a set of bounding
boxes. Taking YOLOv2 [41] as an example. A bounding box
is represented as box = {x, y, w, h, objscore, l}, where x,
y, w, h represent the coordinates and dimensions, objscore
represents the objectness score, and l denotes the class
probability distribution (object class and its score) of the
object in the bounding box. The bounding boxes with low
objectness will be filtered out, and then the non-maximum
suppression algorithm [37] is used to remove redundant
bounding boxes.

Faster R-CNN [42] and YOLO [41], [55], [56] are
commonly used object detection models. Despite slight dif-
ferences, the basic principles of these detectors are similar.
Faster R-CNN is a two-stage object detector that first gen-
erates a set of candidate regions, called proposals, which
may contain objects. These proposals are then filtered to ex-
clude background regions without objects, and the remaining
proposals undergo object classification and bounding-box
regression. YOLO is a one-stage object detector that predicts
object bounding boxes directly, allowing faster detection.

2.2. Adversarial Patch Attack

Adversarial patch attacks [18], [19], [20], [50] aim to
deceive object detectors by attaching an adversarial patch
onto an object, causing it either to be missed or to be
misclassified. The attacker generates an adversarial patch by
attaching it to the training images and iteratively optimizing
it to evade detection by the target detector or be misclassified
as a specific category. Figure 3(a) illustrates the AdvPatch
attack [50], which makes the person carrying it undetected;
Figure 3(b) shows the UPC attack [20] that causes the person
to be wrongly identified as a “dog”.

2.3. Threat Model

In this study, we assume the attacker holds the initiative
in the game of attack and defense. The attacker is assumed

to have access to the code and data of the object detec-
tor and our defense method, understands all the algorithm
and deployment details of our method, and has all pre-
generated canaries and woodpeckers. In this scenario, we
believe the attacker is capable of launching defense-aware
attacks, generating adaptive adversarial patches against the
defense mechanism to bypass it. On the other hand, we
consider that the defender only has knowledge of one known
attack method (without loss of generality, AdvPatch [50]
or TC-EGA [19] in this study), to generate canaries and
woodpeckers, and is unaware of any other attack technique.
Clearly, developing attack-specific defense mechanisms is
impractical since the defender cannot guarantee prior knowl-
edge of the attack techniques. In other words, an effective
defense method must be able to withstand unknown and
defense-aware attacks.

Additionally, rebuilding and redeploying a mature model
is an expensive task, and we believe that modifying or
retraining object detection models for defense is not always
feasible.

3. Methodology

Generally, given an input image x and a target object
detector model O, the defensive patches take effect as
follows. We first determine the bounding boxes around target
objects of interest (TOIs) that are potentially suppressed by
adversarial patches from the model output O(x). Then a
canary c or a woodpecker w is placed near each identified
bounding box, forming augmented input x+c or x+w. If c
is not correctly detected in O(x+c) or any new TOI is found
in O(x+ w), the original input x is deemed adversarial.

Generating canary and woodpecker patches is done by
optimizing an initial object on a batch of adversarial and
benign images. In this study, we generate each defensive
patch for a target object class of interest, e.g., person. We
will employ different initial objects and placement positions,
to prepare corresponding canary and woodpecker objects for
enforcing various randomization-based deployment patterns.

3.1. Generating Canary

As shown in Figure 4, the workflow of generating a
canary consists of four steps.

❶ Preparing adversarial and benign samples. We gen-
erate adversarial patches (e.g., from [50]) and import them to
benign images. From the adversarial images that can attack
the target object detector, we choose a few dozen as the
adversarial set for training canary. The corresponding benign
images form the benign set.

❷ Determining canary positions. We place canary near
the bounding box that may contain a TOI but the TOI
is missed by target object detector. In Faster R-CNN and
early YOLO detectors, a low objectness score of a bounding
box (e.g., below 0.5 in YOLOv2 [41]) makes the possible
TOI not detected; in YOLOv8 [23], the objectness is dis-
carded and the class score is used to decide whether the
TOI cannot be detected (below 0.25). To locate potentially
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Figure 4: Canary generation. It is initialized as a specific class object (e.g., a zebra) and placed in determined positions.
The canary is generated via a joint optimization with the loss LCanary in Eq.1.

Input sample Canary positions

Figure 5: Determining canary positions. The undetected
person objects’ bounding boxes are used to get candidate
boxes (white solid). Canary will be placed at the positions
(white dashed) associated with the candidate boxes.

suppressed bounding boxes related to TOIs, We perform
an object detection on a given input, extract information
from the model output and identify the satisfactory boxes
as candidate boxes. To minimize the risk that the candidate
boxes do not contain TOIs, we require them to have an
objectness or class score above a certain threshold τ . For
example, our pilot experiment in §4.2 determined τ = 0.05
for YOLO detectors. We term it the candidate box threshold.

Note that, bounding boxes may overlap. We merge over-
lapping boxes to a larger candidate box if the merged has
a score exceeding the above threshold. In Figure 5, two
candidate boxes (white solid boxes) are finally identified
and the left box is obtained by merging two overlapping
ones.

Once candidate boxes are determined, we have the flex-
ibility to place the canary in numerous positions within or
close to the candidate box. Theoretically, the more positions
available, the greater the randomness introduced. Without
loss of generality, we opt to optimize canary in five posi-
tions: the center of the candidate box and an additional 30
pixels in each cardinal direction (up, down, left, and right).
The determined canary positions for the sample in Figure 5

(a) Initial canary (b) Trained canary

Figure 6: An example of initial and a trained canary.

are indicated by the white dashed boxes. In practice, if
needed, it can be easily extended to accommodate more
positions.

❸ Constructing training samples. Canary is introduced
into both benign and adversarial images, making pairwise
training samples. The initial canary is an image that contains
an object of a specific class, with a size determined based on
a pilot experiment (e.g., 60 pixels × 60 pixels for YOLOv2
in §4.2). Similarly, incorporating a greater variety of object
classes can bring higher levels of randomness. In practice,
we can choose object classes that are rarely encountered
in surveillance scenes as the initial canaries. For an initial
object, five canary patches can be iteratively optimized for
the five previously mentioned positions.

Note that in a benign image, candidate boxes may be
absent. We only select benign samples with candidate boxes
to construct canary-augmented benign training samples. In
addition, if the identified placement position extends beyond
the boundary of the sample, the initial canary will be shifted
to be fully included within the sample.

❹ Optimizing canary. We use pairwise training samples
to optimize the canary. Passing canary-augmented samples
to a target object detector, we expect the detector can find all
canaries in benign images but miss them in adversarial sam-
ples. Taking YOLOv2 as the target detector, the objective is
to minimize the loss function in Eq. 1.
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Figure 7: Woodpecker generation. The woodpecker is initialized with random noises and generated via an optimization with
the loss LWoodpecker in Eq. 4.

LCanary = λcLbenign − Ladv (1)
Lbenign = Lo(cx) + Lc(cx) + Lb(cx) (2)
Ladv = Lo(cx+p) + Lc(cx+p) + Lb(cx+p), (3)

where Lbenign (Eq. 2) corresponds to the probability loss of
all canary objects being correctly detected within benign
samples, and Ladv (Eq. 3) corresponds to the loss of all
canary objects being detected within adversarial samples. To
prevent the canary from being overly fragile and thus failing
to be correctly detected in benign samples, we set a weight
λc greater than 1.0 for Lbenign. The two losses consist of the
objectness loss Lo, class confidence loss Lc and bounding
box loss Lb of canary objects. For a canary c, cx denotes
the object of c within a benign sample x, and cx+p refers
to the object of c within an adversarial sample x+p, which
is formed by incorporating an adversarial patch p into x. In
YOLOv8, as the objectness is not predicted, we remove Lo

from the loss function.
For an initial object, at most 50 epochs are taken to

generate a desired canary. For the initial zebra shown in
Figure 6(a), we get a canary as presented in Figure 6(b).

3.2. Generating Woodpecker

Training a woodpecker consists of five steps, as depicted
in Figure 7. Three steps are similar to training a canary, in-
cluding (❶) original sample preparation, (❸) position deter-
mination and (❹) training sample construction. Optimizing
the woodpecker (❺) uses a different loss function and an
extra step (❷) is taken to collect objects’ information from
benign samples for optimization.

Collecting objects’ information for optimization (❷).
We use the detected objects in benign images as a ground
truth to guide the optimization of woodpecker. As some

objects may have been hidden or misidentified due to ad-
versarial patches in adversarial samples, we pre-collect the
bounding boxes and class for detectable objects from benign
samples.

Optimizing woodpecker (❺). Woodpecker is designed
for repairing the attacked TOIs in adversarial samples.
Hence the optimization objective is to make the detectable
objects in benign samples to be detected in corresponding
adversarial samples. Therefore, we aim to minimize the
loss of objects that should be detected on both benign and
adversarial samples. The relevant loss functions are shown
in Eq. 4 – 6. Note that, for YOLOv8, we exclude Lo from
the functions.

LWoodpecker = λwLbenign + Ladv (4)
Lbenign = Lo(tx+w) + Lc(tx+w) + Lb(tx+w) (5)
Ladv = Lo(tx+p+w) + Lc(tx+p+w) + Lb(tx+p+w), (6)

where tx+w refers to a TOI within a benign sample x +
w, which is produced by applying a woodpecker w into
the original sample x. On the other hand, tx+p+w denotes
the TOI within the corresponding adversarial sample x +
p + w that is created by introducing adversarial patch p
and woodpecker w in x. Similarly, we put a weight λw for
Lbenign. The obtained information in step ❷ is used in Eq. 6
to enforce the objects being detected.

The initial woodpecker is usually an image with random
pixels, as in Figure 8(a). A corresponding trained wood-
pecker is illustrated in Figure 8(b). Similar to generating
canary, we train a distinct woodpecker for each of the five
placement positions.

5



(a) Initial woodpecker (b) Trained woodpecker

Figure 8: An example initial and trained woodpecker.
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Figure 9: Examples of adopting canary alone (Mode #1) and
woodpecker alone (Mode #2).

3.3. Deployment and Detection

Canary and woodpecker are two independent defensive
patches that can be used individually or in combination.
Accordingly, we design three deployment modes (Mode #1-
#3).

Mode #1 utilizes canary alone. For the current input
image x, the positions for placing the canary are first de-
termined, as done in canary generation. The model output
O(x) is leveraged to identify the candidate box within x.
Then a trained canary c is placed at a fixed location relative
to the candidate box. For example, if a canary is trained
for the left position, it will consistently be placed to the
left of the identified candidate boxes in any given sample.
Subsequently, the canary-augmented input x+c is fed to the
detector. If c is not correctly spotted in the model output
O(x + c), an alert will be emitted, indicating a potential
attack. Note that there may be multiple candidate boxes
identified in x, and accordingly, multiple canaries are placed.
If any single canary is missed in the output, x will be
considered dangerous. Conversely, if no candidate bounding
boxes are identified in x, it is considered a benign sample
and no further action is taken. Figure 9(a) shows an example
of adopting canary to detect the attack in Figure 3(a). The
symbol ✗ indicates a non-detected canary and denotes an
adversarial patch attack.

Mode #2 utilizes woodpecker alone. We take the same
way to generate the woodpecker-augmented input x+w for
a given image x and a woodpecker w. The model outputs,
i.e., O(x) and O(x+w), are compared. If a TOI is detected
in O(x+w) but is not found in O(x), we report a potential
attack. Figure 9(b) shows an example. The Newly detected
person in the input is explicitly marked to indicate an attack.

Mode #3 combines canary and woodpecker. For an input
image x, we leverage O(x) to determine the placement
positions too. No suitable positions (i.e., no candidate boxes)
imply a benign input. When canary c can be properly
imported, we generate a canary-augmented image x+ c and
obtain the model output O(x + c). If c is not correctly
detected, we report a potential attack and terminate the
attack detection. Otherwise, we generate a woodpecker-
augmented input x+ w and compare O(x) with O(x+ w)
to determine whether an attack may have occurred.

Randomization. As mentioned earlier, when deploying
the canary and woodpecker, we can further raise the bar of
attacks by implementing a randomization strategy, particu-
larly for defense-aware attacks.

Specifically, for a given input x, we can randomly select
some positions associated with candidate boxes to place one
or multiple defensive patches. Moreover, there may exist
multiple available defensive patches for each position, thus
constituting a randomization space. For example, even if
we only choose one out of n positions to place just one
canary, with m distinct canaries available at each position,
we can get n × m canary injection patterns. The n × m
canaries, denoted as c1 to cm×n, can be pre-generated
offline. Accordingly, there will be n ×m potential canary-
augmented inputs, i.e., x+ c1 to x+ cn×m. As a result, in
order to completely evade our defense, the adversarial patch
must work effectively across all augmented inputs. It is very
difficult, if not impossible, to generate such an adversarial
patch, even for a defense-aware attacker.

Applying the randomization strategy does not introduce
additional overhead, and it has been proven necessary and
highly effective against defense-aware attacks (see §4.8).

A reasonable concern is that the imported defensive
patch might cover objects in benign samples, leading to
a decrease in model performance. However, apart from
false positives, our method will output O(x) rather than
O(x+c/w) for a benign sample x and does not compromise
the model performance. Our experiments have shown that
the false positives are limited.

4. Evaluation

In this section, we evaluate the proposed canary and
woodpecker by answering the following questions:
• Q1: Can our method effectively detect adversarial patch

attacks and achieve comparable performance with existing
methods (§4.3–§4.6)?

• Q2: Does our method significantly impact the speed of
object detection (§4.7)?

• Q3: Can our method effectively defend the defense-aware
attacks (§4.8)?

4.1. Experiment Setup

All experiments are conducted on a single RTX 3090
GPU with PyTorch 1.12 and CUDA 11.5.6.
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TABLE 1: Numbers of adversarial samples in the training
and validation sets.

Detector Attack Method #Training #Validation
Faster R-CNN TC-EGA 16 50

YOLOv2 AdvPatch 120 100
YOLOv4 AdvPatch 60 50
YOLOR AdvPatch 120 100
YOLOv8 AdvPatch 120 100

TABLE 2: Pilot experiment to determine threshold τ .

Detector τ=0 τ=0.025 τ=0.05 τ=0.075 τ=0.1
Faster R-CNN 72 102 110 114 109

YOLOv2 101 280 285 277 271
YOLOv4 67 128 136 131 126
YOLOR 132 281 289 279 265
YOLOv8 137 262 274 257 251

Target Adversarial Patch Attacks and Object Detec-
tors. In this study, we evaluate the proposed approach on de-
tecting four types of adversarial patch attacks, namely, Adv-
Patch [50], TC-EGA [19], Naturalistic [18], and UPC [20].
All the four attack methods can be directly applied to
YOLOv2 [41], and we have extended them to higher ver-
sions of YOLO, namely YOLOv4 [55], YOLOR [56], and
the latest YOLOv8 [23]. For another widely-used object
detector, Faster R-CNN [42], with the exception of Adv-
Patch which lacks support for attacking Faster R-CNN as
mentioned in [50], all other three attacks were successfully
adapted. The experiments are majorly evaluated on the
above five detectors and the default hyperparameter settings
of the attacks were adopted to generate the adversarial
patches. If not explicitly claimed, person is the attacked
object in the experiments.

Comparative Defense Methods. We conducted a com-
parative study with five state-of-the-art defense meth-
ods (§4.3–§4.5), namely Local Gradient Smoothing
(LGS) [36], Universal Defensive Frame (UDF) [66], Detec-
torGuard [61], ObjectSeeker [63], and Segment and Com-
plete (SAC) [33]. A non-computer vision (non-CV) defense
method, PercepGuard [34], is also compared (§4.6).

Datasets. We build the adversarial samples from three
public digital-world datasets and a private physical-world
dataset. The Digital-world datasets involve three widely
used datasets, i.e., VOC07 [13], COCO [29], and Inria-
person [9]. Each consists of a training set and a testing
set. The Physical-world dataset is gathered by ourselves.
We generate printable patches and then take photos to get
adversarial images (with a printed patch held by a person)
and benign (without patches) samples in 14 situations (see
Appendix A). Note that we did not deliberately ensure that
the training, validation and test sets had the same distribu-
tion. Additionally, we do not require the samples used to
train the detector to be the same as those used for training
defensive patches. We only need the training samples to
contain objects of interest.

4.2. Parameter Setting

We train canary and woodpecker objects targeting Faster
R-CNN/TC-EGA and YOLO/AdvPatch combinations on the
VOC07 dataset. A validation set is then constructed to de-
termine the three major parameters in this study. It includes
benign samples and their corresponding adversarial samples,
randomly selected from the VOC07 dataset and generated
using TC-EGA or AdvPatch. Table 1 shows the number of
adversarial samples in the two sets (same number for benign
samples).

Candidate Box Threshold. To determine an appropriate
τ used in §3.1, we conducted a pilot study using the valida-
tion set for each of the five object detectors. We determine
an appropriate τ based on the following three conditions.
(1) There exists a candidate box around an attacked person.
(2) There are no candidate boxes around a non-attacked
person. (3) For an attacked person, the Intersection over
Union (IoU) [65] between the identified candidate box and
the corresponding true box in the benign sample exceeds
0.5. For target detectors, the value greater than 0.5 indicates
that the two boxes mark the same object. Each validation
sample is then scored based on how many of the conditions
it meets and τ is selected with the highest scores. As shown
in Table 2, τ is determined as 0.075 for Faster R-CNN and
0.05 for YOLO detectors.

Defensive Patch Size. To determine a proper size of
defensive patches, we place five trained canaries at five de-
termined positions, respectively (refer to Figure 5), making
five variants for each sample. Each position is placed with a
distinct canary (i.e., zebra, cow, toaster, boat, and elephant).
Similarly, we respectively place five distinct woodpecker
objects at five positions in each sample. For each target
detector, we will explore patch sizes ranging from 20×20
to 200×200 with a 20-pixel step size. Averaged F1 score
for each scenario on the validation set is computed.

As presented in Table 3, the canary size is set as
120×120, 60×60, 60×60, 120×120 and 80×80 for Faster
R-CNN, YOLOv2, YOLOv4, YOLOR and YOLOv8, re-
spectively. The woodpecker size is the same as the canary
size, except that for YOLOR, it is 140×140.

Weights for Lbenign. In this study, we have adopted a
balanced strategy to determine the weights λc and λw used
in Eq. 1 and Eq. 4, respectively. We aim for the resulting
canary and woodpecker to have good detection performance
while also not causing too many false positives. Using a
method similar to the above, λc is set to 2.0 and λw is 1.0.

4.3. Effectiveness

Preparation. We systematically generated adversarial
patches for 19 combinations of attack methods and target
object detectors, using the training set from the Inria dataset.
These patches were then strategically integrated into the
testing samples of public datasets or printed for the purpose
of creating physical adversarial examples. To obtain as many
adversarial samples as possible, the positions, the sizes and
the angles of the patches are adjusted carefully. Eventually,
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TABLE 3: Pilot experiment to determine defensive patches size (“CA” for canary and “WD” for woodpecker).

Detector Defensive
Patch

Patch size
20×20 40×40 60×60 80×80 100×100 120×120 140×140 160×160 180×180 200×200

Faster
R-CNN

CA 0.788 0.780 0.774 0.803 0.849 0.883 0.794 0.258 0.480 0.303
WD 0.271 0.548 0.568 0.694 0.749 0.848 0.772 0.745 0.745 0.620

YOLOv2 CA 0.897 0.936 0.962 0.938 0.931 0.931 0.926 0.930 0.917 0.905
WD 0.485 0.704 0.906 0.866 0.854 0.854 0.852 0.889 0.852 0.832

YOLOv4 CA 0.885 0.853 0.888 0.830 0.805 0.039 0.262 0.148 0.113 0.295
WD 0.786 0.803 0.841 0.805 0.814 0.800 0.750 0.667 0.529 0.438

YOLOR CA 0.935 0.939 0.939 0.943 0.932 0.949 0.906 0.845 0.927 0.924
WD 0.504 0.616 0.786 0.844 0.917 0.944 0.954 0.951 0.921 0.927

YOLOv8 CA 0.880 0.948 0.961 0.986 0.976 0.925 0.888 0.852 0.802 0.715
WD 0.726 0.755 0.817 0.873 0.856 0.865 0.859 0.852 0.852 0.846

TABLE 4: Detection performance (F1 Score) on different object detectors targeting various adversarial patch attacks. The
bold red F1 score denotes our method outperforms all compared methods. FSRCNN is short of Faster R-CNN.

Attack
Type

Attack
Method Detector Dataset #Adv LGS UDF DetectorGuard ObjectSeeker SAC Mode #1 Mode #2 Mode #3

Known
Attacks

AdvPatch

YOLOv2 Digital 1242 0.585 0.519 0.305 0.720 0.952 0.954 0.882 0.951
YOLOv2 Physical 280 0.841 0.809 0.328 0.929 0.000 0.995 0.993 0.998
YOLOv4 Digital 147 0.790 0.767 0.251 0.737 0.487 0.797 0.931 0.945
YOLOR Digital 550 0.803 0.757 0.137 0.916 0.697 0.927 0.939 0.952
YOLOv8 Digital 819 0.493 0.783 0.292 0.841 0.996 0.974 0.885 0.971

TC-EGA FSRCNN Digital 87 0.235 0.475 0.231 0.702 0.311 0.821 0.609 0.828
FSRCNN Physical 280 0.188 0.782 0.336 0.993 0.560 1.000 0.831 1.000

Summary 3405 0.610 0.689 0.278 0.814 0.828 0.953 0.895 0.961

Unknown
Attacks

TC-EGA

YOLOv2 Digital 1023 0.582 0.661 0.329 0.636 0.023 0.951 0.879 0.949
YOLOv2 Physical 280 0.803 0.819 0.323 0.873 0.000 0.972 0.987 1.000
YOLOv4 Digital 25 0.537 0.706 0.267 0.711 0.267 0.732 0.864 0.960
YOLOR Digital 57 0.646 0.610 0.222 0.796 0.000 0.812 0.659 0.899
YOLOv8 Digital 183 0.776 0.776 0.171 0.793 0.063 0.807 0.811 0.900

Naturalistic

FSRCNN Digital 152 0.164 0.447 0.389 0.718 0.061 0.865 0.778 0.873
FSRCNN Physical 280 0.545 0.873 0.409 0.958 0.000 0.995 0.796 0.995
YOLOv2 Digital 587 0.665 0.850 0.519 0.653 0.030 0.932 0.878 0.934
YOLOv2 Physical 280 0.181 0.843 0.431 0.903 0.000 0.993 0.927 0.996
YOLOv4 Digital 114 0.682 0.670 0.201 0.711 0.314 0.764 0.840 0.894
YOLOR Digital 75 0.496 0.619 0.294 0.746 0.000 0.803 0.707 0.887
YOLOv8 Digital 424 0.532 0.661 0.846 0.566 0.055 0.871 0.850 0.911

UPC

FSRCNN Digital 65 0.263 0.432 0.800 0.719 0.086 0.855 0.725 0.864
FSRCNN Physical 280 0.586 0.750 0.341 0.937 0.000 0.998 0.850 0.998
YOLOv2 Digital 807 0.679 0.827 0.724 0.603 0.007 0.915 0.889 0.938
YOLOv2 Physical 280 0.761 0.965 0.589 0.800 0.000 0.989 0.941 0.998
YOLOv4 Digital 91 0.711 0.756 0.675 0.734 0.333 0.779 0.910 0.950
YOLOR Digital 201 0.661 0.809 0.745 0.866 0.000 0.855 0.846 0.934
YOLOv8 Digital 151 0.731 0.781 0.644 0.664 0.064 0.936 0.886 0.950

Summary 5355 0.617 0.769 0.527 0.716 0.037 0.926 0.873 0.947
Total 8760 0.622 0.749 0.458 0.807 0.445 0.948 0.885 0.964

we dedicated hundreds of hours to obtain a total of 6,800
digital-world and 1,960 physical-world adversarial samples,
with their 6,071 distinct original counterparts serving as
benign samples.

We take the same training set as in §4.2 to generate the
defensive patches and deploy three defense modes (see §3.3)
to detect adversarial patch attacks on five object detectors.
In theory, a random defensive patch can be placed at a
random position. Without loss of generality, we place a fixed
defensive patch (zebra) at the determined center position in
the experiment. In this study, we have chosen to utilize F1
Score as the evaluation metric, as it considers both precision
and recall, offering a more comprehensive assessment of the
model performance.

Results. In Table 4, the AdvPatch-related and TC-
EGA/Faster R-CNN-related rows (a total of 7 rows) present
the performance of detecting known attacks (where the
attack methods are known to canary and woodpecker genera-

tion). To ensure a fair comparison, we retrained SAC using
adversarial patches generated by AdvPatch and TC-EGA.
Overall, our method outperforms the five compared methods
across all three deployment modes: Mode #1 (canary only),
Mode #2 (woodpecker only), and Mode #3 (combining
canary and woodpecker).

Notably, SAC outperformed our method in two specific
scenarios (AdvPatch/YOLOv2 and AdvPatch/YOLOv8),
even in Mode #3. This performance advantage stems from
SAC’s ability to train a segmenter that identifies the adver-
sarial patches, effectively masking the corresponding pix-
els. When faced with previously seen adversarial patches,
the segmenter may leverage the learned features, leading
to strong detection performance. However, SAC shows
poor generalization when confronted with unknown attacks.
Furthermore, as described in §4.5, for unseen adversarial
patches generated from known attacks (AdvPatch), SAC also
performs poorly.
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TABLE 5: False positive rates targeting various adversarial patch attacks.

Attack Type Attack Method #Distinct Benign LGS UDF DetectorGuard ObjectSeeker SAC Mode #1 Mode #2 Mode #3

Known
Attacks

AdvPatch 3038 0.066 0.065 0.161 0.320 0.002 0.057 0.017 0.066
TC-EGA 367 0.008 0.022 0.292 0.134 0.000 0.033 0.005 0.033
Summary 3405 0.060 0.060 0.175 0.300 0.001 0.054 0.016 0.062

Unknown
Attacks

TC-EGA 1519 0.047 0.047 0.333 0.409 0.002 0.066 0.018 0.076
Naturalistic 1305 0.084 0.070 0.314 0.359 0.005 0.067 0.024 0.078

UPC 1372 0.058 0.060 0.324 0.388 0.007 0.069 0.017 0.077
Summary 2855 0.067 0.060 0.373 0.368 0.005 0.063 0.019 0.072

Total 6071 0.058 0.053 0.155 0.282 0.004 0.049 0.014 0.055

TABLE 6: The performance in detecting object-specific attacks.

Target Dataset #Adv LGS UDF DetectorGuard ObjectSeeker SAC Mode #1 Mode #2 Mode #3
Car BDD100K 100 0.529 0.652 0.164 0.802 0.496 0.954 0.920 0.965

Bicycle VOC07 64 0.361 0.590 0.517 0.673 0.476 0.920 0.852 0.920
Dog VOC07 96 0.107 0.256 0.317 0.540 0.769 0.839 0.606 0.830
Train VOC07 78 0.245 0.255 0.261 0.685 0.836 0.846 0.683 0.870

Total 338 0.337 0.467 0.307 0.693 0.667 0.888 0.772 0.893

TABLE 7: The performance in detecting sample-specific attacks.

Dataset #Adv LGS UDF DetectorGuard ObjectSeeker SAC Mode #1 Mode #2 Mode #3
VOC07 25 0.880 1.000 0.400 0.898 0.438 1.000 1.000 1.000
COCO 25 0.941 0.962 0.323 0.857 0.077 1.000 1.000 1.000
Inria 25 0.936 0.960 0.375 0.939 0.387 1.000 0.980 1.000

Physical 25 0.936 0.980 0.077 0.885 0.438 1.000 1.000 1.000
Total 100 0.923 0.975 0.306 0.894 0.347 1.000 0.995 1.000

Table 4 also shows the performance of detecting un-
known attacks (where the attack methods are unknown to
canary and woodpecker generation). In fact, either canary
or woodpecker is trained targeting one kind of adversarial
attack (see §4.1) and we directly apply the defensive patch
to detect the other kinds of attacks. In this situation, our pro-
posed method still works well. All three deployment modes
outperform every compared method. We intuitively think
that although different attack methods generate adversarial
patches in various ways, the obtained patches might perturb
the target object in similar ways, allowing defensive patches
to exhibit transferability.

On the whole, across the entire testing set, all three
modes of our method outperform the compared methods in
terms F1 scores, as indicated by the last row in Table 4.

We further inspected the false positives (FPs). The re-
sults are shown in Table 5. Canary and woodpecker incor-
rectly report 4.9% and 1.4% of benign images as adversarial,
respectively. Both are better than LGS (5.8%), UDF (5.3%),
DetectorGuard (15.5%) and ObjectSeeker (28.2%). SAC
exhibited a very low false positive rate; however, its F1 score
is only 0.445.

We have also investigated the impact of different initial
classes and placement positions. The detection performance
is not largely affected by the categories or positions. The
results can be found in Table 10 of Appendix C.

4.4. Detecting Attacks Targeting Different Types of
Objects

The proposed method is not limited to defending the
attacks targeting the person object. It can protect other
object types as well. We take four other types of objects,

()

Detected by Canary Detected by Woodpecker

Newly
detected

Figure 10: Detecting the adversarial attacks targeting cars.

i.e., car, bicycle, dog and train, as an example to illus-
trate the versatility of our method. We employed a newer
version of YOLO (i.e., YOLOv8), as the target model,
and employed AdvPatch to generate as many adversarial
samples as possible. The experimental results are presented
in Table 6. Both Mode #1 and Mode #3 outperform the five
comparative methods in all scenarios, achieving the highest
F1 scores. Mode #2 does not perform the best for dog and
train, but achieves better overall performance than the other
five methods. It is demonstrated that our method can be
applicable to other types of protected objects. Figure 10
shows an example, in which the adversarial samples target
the car object can be effectively detected with our defensive
patches.

4.5. Detecting Sample-Specific Attacks

Attackers can create adversarial patches specifically de-
signed for individual samples. We evaluated the ability of
our method to detect such sample-specific attacks. Note that
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TABLE 8: Efficiency (time unit: milliseconds/image; “A” for adversarial samples and “B” for benign samples).

Detector Dataset LGS UDF DetectorGuard ObjectSeeker SAC Mode #1 Mode #2 Mode #3
A B A B A B A B A B A B A B A B

VOC07 34.38 34.16 42.33 42.05 244.67 243.31 3711.02 3704.55 41.47 36.95 62.44 45.49 52.92 45.49 98.81 53.63
COCO 29.79 39.74 37.54 35.25 216.32 214.32 4144.83 4223.96 49.67 52.77 61.70 52.54 56.21 52.58 82.07 77.10
Inria 50.76 45.81 44.59 35.32 212.29 264.60 3789.28 3774.82 58.98 51.85 62.99 54.14 64.25 52.57 94.93 93.16

Indoor 46.17 45.78 38.36 38.06 227.43 247.56 4262.78 5037.56 55.16 55.34 73.55 41.18 63.46 42.47 75.88 59.40

Faster
R-CNN

Outdoor 36.18 45.78 38.92 38.61 261.55 248.17 4306.34 4282.34 46.69 44.79 79.11 46.47 67.56 46.24 84.23 50.42
VOC07 44.60 44.46 48.48 40.16 373.79 372.55 3825.37 3845.85 61.97 50.77 103.73 61.05 97.47 58.04 116.62 92.42
COCO 39.60 40.19 41.33 43.67 375.21 372.91 3731.84 3569.69 68.47 72.67 123.76 75.82 101.21 75.47 135.79 86.28
Inria 44.95 45.45 39.66 39.49 386.01 389.60 3736.74 3704.29 116.78 110.07 107.07 70.03 107.07 49.88 120.99 84.96

Indoor 53.75 52.41 44.28 44.34 380.37 374.70 3975.72 3910.25 79.91 79.29 70.03 47.42 92.42 46.99 93.63 84.25
YOLOv2

Outdoor 54.11 54.84 45.91 46.30 366.70 377.12 3996.66 3942.15 83.20 77.94 95.60 45.91 96.43 44.31 134.41 81.70
VOC07 57.88 48.63 47.43 43.00 177.01 176.11 4274.52 4285.10 52.94 41.07 110.21 86.73 114.59 85.91 143.49 81.94
COCO 43.03 40.06 43.97 49.57 179.57 178.19 4214.07 4244.60 41.26 46.36 113.51 62.93 112.10 62.66 133.61 76.01YOLOv4
Inria 47.28 49.25 40.48 42.76 194.06 183.18 4121.41 4191.12 59.67 63.14 114.05 68.97 112.98 69.16 138.89 88.53

VOC07 78.29 77.39 95.74 86.79 1262.27 1259.97 3999.51 4062.69 142.37 151.65 119.24 74.18 116.01 72.89 126.06 106.50
COCO 86.00 87.76 88.66 90.55 1260.52 1274.97 4103.94 4116.97 159.35 161.02 124.47 79.05 120.26 78.06 128.57 109.77YOLOR
Inria 91.60 93.10 88.34 94.13 1270.56 1254.00 4098.86 4142.22 303.32 288.21 125.29 100.60 124.74 98.62 123.91 114.03

VOC07 72.87 50.29 61.76 59.92 190.37 187.89 1374.46 1378.66 77.74 67.45 77.90 74.01 75.80 73.12 79.95 75.13
COCO 73.69 54.14 42.07 62.41 189.71 188.31 1400.48 1409.79 71.72 74.10 72.38 69.39 72.55 69.47 76.47 71.23YOLOv8
Inria 86.55 79.56 70.11 60.14 191.41 194.92 1420.11 1433.25 109.82 102.25 72.85 66.46 73.02 66.44 77.24 68.45

generating sample-specific adversarial patches can be time-
consuming. Without loss of generality, we randomly selected
25 samples from each of the four datasets and employed Ad-
vPatch to generate 100 sample-specific adversarial examples
targeting YOLOv8.

Surprisingly, the experiments have demonstrated that our
method performs even better in detecting sample-specific
attacks compared to universal ones. As shown in Table 7, the
proposed method achieves perfect F1 scores (1.0) on most
datasets, outperforming the five comparative methods. It is
worth mentioning that we did not generate sample-specific
canaries and woodpeckers during the experiments; instead,
we directly employed the defensive patches generated for
universal attacks (§4.3). This indicates that our method can
effectively counter sample-specific attacks without the need
for any adjustments.

4.6. Comparison with Non-CV Defense Method

Apart from employing various CV techniques for de-
fending adversarial attacks, Man et al. [34] introduced a
novel non-CV approach called PercepGuard. As a SOTA
method, PercepGuard leverages the spatiotemporal prop-
erties of the detected object and constructs a RNN-based
sequence classifier. The classifier is used to identify the class
of the target object based on its bounding box sequence, e.g.,
determining whether it is a car or a pedestrian. PercepGuard
can detect misclassification attacks targeting autonomous
systems by cross-checking the consistency between the ob-
ject track and class predictions.

We conducted a comparative experiment with Percep-
Guard. Regrettably, generating test object sequences is not
a trivial task. We made every effort to construct 147 adver-
sarial object sequences targeting YOLOv3 on the BDD100K
dataset, intentionally causing misclassification of cars as
pedestrians, following the settings of PercepGuard. The ex-
perimental results show that the three modes (Mode #1∼#3)
of our method achieved F1 scores of 0.812, 0.831, and
0.834, respectively, all comparable to PercepGuard (0.781).

4.7. Efficiency

Efficiency is a crucial consideration for the practical
application of defenses. We present the average run time
of our method with other comparative methods in Table 8.
Most of the detection can be finished within 0.1 seconds
on average, except that DetectorGuard takes more than 0.1
seconds and ObjectSeeker takes more than 2.2 seconds for
adversarial images and 2.0 seconds for benign ones. Our
method shows higher time cost than LGS, UDF and SAC
in some cases. However, considering that our method has
a better detection performance (see §4.3) and the detection
costs only about 0.1 seconds or less, the time overhead is
limited. In fact, our method can sustain a video frame rate
of about ten fps. It is acceptable in real-world scenarios of
detecting adversarial patch attacks.

It is worth noting that the combination of canary and
woodpecker does not result in a doubling of the time cost.
The causes can be three fold. First, positioning the defensive
patches is done only once for an input image; second, many
benign samples do not have any candidate boxes, making
canary and woodpecker checks skipped; and third, most
adversarial samples will be reported by the canary check
and only a few will be passed to the woodpecker check.

4.8. Detecting Defense-aware Attacks

Attackers may launch an adaptive attack when they
possess knowledge of the defense. To further evaluate the
proposed method, we employ an enhanced AdvPatch tech-
nique to train adaptive adversarial patches. Expectation Over
Transformation (EOT) [1] is leveraged in the patch training.
EOT has been proven to be effective in generating robust
adversarial samples against various defense techniques [52],
and has been partially supported in AdvPatch. We imple-
ment the unsupported EOT features (e.g., translation) to
generate stronger patches. We apply the unchanged defense
method to detect the attacks for demonstrating the effective-
ness of our method in detecting such defense-aware attacks.

Note that, the cost is high to generate adaptive attack
patch for each input image targeting each detector. We

10



TABLE 9: Defense performance and time cost for adaptive attacks.

Dataset Number of samples successfully bypassing defense methods Time cost for generating adaptive attack patches (in hours)#Adv Dep #1 Dep #2 Dep #3 Dep #4 UDF Dep #1 Dep #2 Dep #3 Dep #4 UDF
VOC07 105 71 0 62 0 90 79.75 200.27 70.25 86.91 23.92
COCO 128 87 0 71 0 87 100.67 234.43 88.10 118.67 21.77
Inria 135 93 0 71 0 87 102.94 241.13 93.98 124.79 30.16

Physical 120 87 0 24 0 93 97.76 230.61 80.64 103.19 28.80
Total 488 338 0 228 0 357 381.12 906.44 332.97 433.56 104.65

concentrate only on YOLOv8 and try our utmost to generate
adaptive adversarial patches for 488 images, as shown in
the #Adv column in Table 9. Implementing AdvPatch on
YOLOv8 takes Eq. 7 as the loss function.

LAdvPatch = αLnps + βLtv + Lcls, (7)

where α and β denote the weights specifically assigned in
AdvPatch, Lnps represents the non-printability score of the
patch, Ltv denotes its total color variation, and Lcls is the
maximum class score of the attacked class in the image.
Among them, Lcls is used for hiding the target object.

An ideal adaptive adversarial patch apc targeting ca-
naries should ensure that the introduced canary can be
detected in the presence of apc, while also being able to
hide the target person. We use the loss function Lac shown
in Eq. 8 to generate such adversarial patches. In Lac, C is the
set of canaries equipped in the defense. For a given canary c,
cx+apc refers to the object of c within the sample x+ apc,
which is formed by incorporating apc into the image x.
Ladv(·) is the loss of c being detected (presented in Eq. 3),
which is introduced to enable the detection of canary c in
samples where the adversarial patch apc is present.

Lac =
∑
c∈C

[LAdvPatch + Ladv(cx+apc)] (8)

Similarly, an adaptive adversarial patch apw targeting
woodpeckers should be able to hide the target person even
in the presence of woodpeckers, which is generated with the
loss function Law in Eq. 9. In Law, W is the set of equipped
woodpeckers, and x + apw + w refers to the input that is
created by adding apw and a woodpecker w in the image
x. Namely, apw is trained using the woodpecker-augmented
inputs rather than the original one.

Law =
∑
w∈W

[αLnps + βLtv + Lcls(x+ apw + w)] (9)

Given the adaptive attack patches, though we can ran-
domly place the defensive patches, here we evaluate the
effectiveness of our method in one case that could provide
very limited capability of randomization, i.e., the placement
of the defensive patches is fixed to two positions. We
propose four deployment strategies (Dep #1 ∼ #4). Dep
#1 deploys a giraffe canary at the left side of the candidate
box. Dep #2 randomly places a canary at the left or right
sides. There are three fixed choices of canary objects, i.e.,
giraffe, elephant and zebra. Dep #3 deploys a woodpecker

at the left side. And Dep #4 randomly places a woodpecker
at the left or right side.

We choose UDF [66], which shows a fast speed and
good detection performance in previous experiments, as the
comparison baseline. We follow its paper to train a shielding
frame s. Similarly to the generation of apw, we use the loss
Lau in Eq. 10 to train the adaptive adversarial patch apu
targeting UDF.

Lau = αLnps + βLtv + Lcls(x+ apu+ s) (10)

The result is shown in Table 9. Facing a single defensive
patch, either a canary (Dep #1) or a woodpecker (Dep
#3), the adaptive attack can bypass the detection in 338
and 228 samples, respectively. It illustrates the high risk
of this kind of deployment. However, none of the samples
protected by Dep #2 or Dep #4 can be bypassed, even though
their patterns and positions are very limited. Furthermore,
from Table 9, we can also see that generating the patches
for Dep #2 and Dep #4 consumes more than 37 and 18
days, respectively. However, even after spending so much
time, we were unable to successfully generate an effective
adaptive adversarial patch. The results strongly demonstrate
the robustness of the proposed method enhanced with the
randomization strategies.

We observe that 357 (73.2%) adaptive samples can
compromise UDF. The poor robustness might result from
the fixed deployment pattern, as in Dep #1 and #3. Even
if the shielding frame imposes a powerful disturbance, an
adaptive attack can learn to cope with the perturbations.

In addition, we employ the unseen attack method Nat-
uralistic to conduct adaptive attack experiments, which has
not been used in training defensive patches. Similarly, we
modify its loss function to generate adaptive adversarial
patches. We spent approximately two weeks generating
200 adversarial samples across the four datasets, 50 for
each datasets. The experimental results demonstrate that
our method remains robust against unseen adaptive defense-
aware attacks, with none of the attack samples successfully
bypassing either Dep #2 or Dep #4.

4.9. Hiding Candidate Boxes

In our method, we need to identify candidate bounding
boxes for placing defensive patches. One potential evasion
is to hide the bounding boxes related to the hidden object
as well. This can be achieved by using the adversarial patch
to reduce the objectness score or class score of the boxes
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Target object
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Figure 11: An adversarial patch to conceal candidate boxes.

below the threshold τ (0.05). However, we found that doing
so would result in a significant increase in the size of the
adversarial patch, heavily compromising its utility.

Specifically, we use a modified AdvPatch to generate
adversarial patches targeting YOLOv8, with the optimiza-
tion objective of minimizing the class score of the target
bounding box. The loss function was adapted as follows to
not only hide the target object but also to reduce its class
score to below τ :

L = αLnps + βLtv + λ[max(class score) − τ ] (11)

The initial size of the adversarial patch was consistent
with the settings in AdvPatch. Optimization was terminated
if the learning rate fell below 1e-7 or if the iteration count
reached 10,000. If the generated adversarial patch did not
meet the requirements, the patch size was increased by 10%
and optimization was restarted.

Results from 40 randomly selected samples revealed that
significantly enlarging the adversarial patch is necessary
to reduce the class score below the threshold. Compared
to patches without concealed bounding boxes, the average
patch size increases from 11,275 to 53,913 pixels and the
ratio to the target object area increases from 0.218 to 1.050
(3.82 times larger). Obviously, such large patches are im-
practical in real-world scenarios.

For example, for the child object in Figure 11, with an
area of 33,617 pixels, the class score of its bounding box
decreases below the threshold only when the adversarial
patch is expanded to 27,198 pixels. At this point, the ratio of
their areas is 0.809, nearly the same size of the target object.
In other words, the adversarial patch needs to cover a signif-
icant portion of the target object to effectively conceal the
associated bounding boxes. Using such a large adversarial
patch would be too conspicuous and impractical for real-
world attacks. In contrast, the patches in Figures 9 and 10

are smaller, with the area ratio of the patch to the target
object of 0.425 and 0.482, respectively. They cover a small
portion of the target object, resulting in better integration
and increased practicality in real-world applications.

In summary, concealing candidate boxes while ensuring
the utility of adversarial patches is extremely challenging.
Our method exhibits considerable robustness in this aspect.

5. Discussion and Limitations

Overlap with Adversarial Patches. The overlap of
woodpecker and attack patches is not a key factor for
defending adversarial patch attacks. We conduct experiments
with other types of content, e.g., blank, black, gray and
noise blocks, to demonstrate that simply overlapping with
attack patches is ineffective in recovering the victim object.
The result is shown in Figure 12. Only the woodpecker
counteracts the attack patch and recovers the person. All
other block patches do not impact the effect of adversarial
patches. Furthermore, woodpecker can achieve the same
defense effectiveness by covering only a tiny part or even
without any overlap of the attack patch, as shown in Fig-
ure 13(a) and (b), respectively. In summary, the specially
crafted content of woodpecker makes it effective in detecting
adversarial patch attacks regardless of whether it overlaps
with the adversarial patches or not.

False Positives and False Negatives. Canary, as a frag-
ile object, may not be accurately detected in scenarios with
complex background, resulting in false positives. In some
other scenarios, the perturbation effect of the adversarial
patch may be not enough to affect the canary, causing
false negatives (FNs). For woodpecker, if the attacked target
is inherently difficult to recognize and has been heavily
compromised by the adversarial patch, the woodpecker may
fail to recover it (FN); and if a nearby area is identified to
possibly include a target object by the detector, woodpecker
may augment the information and lead to a FP. Fortunately,
in many cases, canaries and woodpeckers can complement
each other effectively. Additionally, we believe that using
a more comprehensive training set to generate canaries and
woodpeckers will further reduce FPs and FNs. Appendix B
presents a few examples of FPs and FNs.

Effect of Training Dataset. To some extent, our method
is independent of the training dataset. However, in theory,
it can achieve better performance to train the patches using
the samples closely related to the usage scenario, which
may further improve the performance compared with the
usage in the paper. Such a training is feasible in some cases,
e.g., defending against attacks for a specific surveillance
camera. We have demonstrated it in our physical-world
dataset. For each indoor or outdoor scenario, we randomly
choose 20 samples and generate corresponding adversarial
samples for the four attacks targeting YOLOv2. All the three
detection modes (canary only, woodpecker only, canary +
woodpecker) achieve 100% precision for all cases and the
third mode even achieves an F1 of 100%.

Threshold τ . To enable the detection of unknown at-
tacks, we aim for the threshold τ to be independent of
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Figure 12: Comparisons between woodpecker (b) and other types of content blocks. Woodpecker can make victim objects
re-detected while the other kinds of content are incapable to recover the attacked objects.

(a) Minimal Overlap (b) No Overlap

Newly
detected Newly

detected

Figure 13: Woodpecker recovers the attacked object even in
cases with minimal or no overlap with the adversarial patch.

the attack methods. We generated 100 validation samples
for each of the four attack methods (AdvPatch, TC-EGA,
Naturalistic, and UPC) and conducted experiments using
YOLOv2 to validate this. The results indicate that for all
four attack methods, the suitable τ is consistently 0.05. This
suggests that for YOLOv2, the threshold remains indepen-
dent of the attack methods.

Candidate Box around Non-Attacked Objects. It is
theoretically unavoidable to find candidate box around a
non-attacked object, but such scenarios do not cause serious
FPs. For inconspicuous objects in the input that are not
detected by target detection models, such as a small, blurry
part of a person, the objectness score is typically very low,
which can result in the detection of a candidate box. To
this end, we conducted a dedicated statistical analysis. It
is shown that out of 6,071 experimental samples, 15.5%
contained candidate boxes for non-attacked objects, only
resulting in a small number of FPs (4.9% and 1.4% for
canary and woodpecker, respectively).

Adaptive Parameters. As a learning-based approach,
our method is sensitive to parameter tuning. Ideally, al-
though challenging, it would be advantageous for the key
parameters to be adaptive. This represents a valuable avenue
for future research. We conducted preliminary experiments
that adjusted the size of the woodpecker based on the size
of the candidate boxes. Experiments targeting the AdvPatch
attack showed that applying a larger woodpecker to larger
candidate boxes can further enhance performance, resulting
in an approximate 2% increase in the F1 score. The intu-
ition behind this is that larger concealed objects require a
correspondingly larger woodpecker for effective recovery.

Multiple Adversarial Patches. We have studied how

resilient of our approach to multiple adversarial patches. 150
adversarial samples have been tested, with 3 to 8 adversarial
patches. The result shows that, our approach can effectively
detect adversarial attacks in 149 the samples, outperforming
the five comparative methods.

Transferability. We conduct experiments on the trans-
ferability of defense patches across three object types: per-
son, car and bicycle. The results indicate that the defensive
patches exhibit good transferability in some scenarios. For
example, the car-specific defense patches can detect adver-
sarial samples that conceal persons, achieving performance
almost equivalent to that of the person-specific canary and
woodpecker. However, in some cases, performance signif-
icantly declined. For example, when applying a person-
specific canary to bicycle samples, the F1 score decreased
from 0.920 to 0.786. Furthermore, we perform joint opti-
mization using samples from the three object types, resulting
in defensive patches that led to F1 score decreases of 0.029
(Mode #1), 0.006 (Mode #2), and 0.043 (Mode #3) com-
pared to the object-specific defense patches. These experi-
ments suggest that object-specific defense patches possess a
certain degree of transferability, but it is insufficient. Joint
optimization shows promise for providing defensive patches
with improved transferability. In practice, we recommend
using object-specific defense patches when the types of
protected object are fixed.

Higher Randomness. Although our experiments have
demonstrated that limited randomness is effective enough in
countering adaptive attacks, e.g., three different canaries for
two positions (see §4.8). Future endeavors would involve
enhancing the level of randomness if feasible in terms
of resources and time. This would encompass introducing
additional random positions and initial objects, as well as
conducting experiments on a larger scale. Additionally, we
intend to explore other factors of randomness, such as the
shape of defensive patches. We firmly believe that incorpo-
rating more randomness will further enhance the robustness
of our defense mechanism.

Efficiency. To reduce the time cost, one feasible solution
is to use random sampling to reduce the number of im-
ages that need to be processed. In monitoring surveillance,
images are continuously collected, but not every frame
requires to be detected. We can improve the system’s overall
efficiency by randomly selecting a subset of frames for
detection.
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Adversarial Attacks for 3D Object Detection. Ad-
versarial attacks for 3D object detection involve placing
a physically realizable adversarial object that can make
some objects undetected by a 3D object detector. This type
of attack shares similar principles with adversarial patch
attacks for 2D object detection. Theoretically, our defensive
patches can also be adapted to detect adversarial attacks for
3D object detection. We can construct a brittle 3D object
and import it into the input data. Then we check the state
of the imported brittle 3D objects to determine whether there
has been an adversarial attack on the 3D detector. We leave
the adaptation of our approach for 3D object detection as a
future research direction.

6. Related Work

An increasing number of researchers have explored secu-
rity attacks [10], [11], [16], [22], [34], [40], [43], [46], [47],
[48], [49], [54], [57], [67], [70], [71] in machine learning
models and proposed various defense methods [15], [38],
[44], [45], [51], [58], [60], [69]. The following studies are
closely related to the subject of this paper,

Attacking Image Classification. Adversarial attacks
can easily fool DNN-based models. Most adversarial attacks
introduce a global perturbation into the input image, which
may mislead a wrong prediction. Brown et al. [3] proposed
the first adversarial patch attack method to attack image
classifier models, which makes adversarial patch attacks
used in the physical world by applying the patch to the
victim object. Road sign recognition plays an important role
in self-driving. Adversarial attacks on road signs may cause
property damage or user casualties. Some researches [11],
[27], [30], [31], [67] studied a range of adversarial patch
attack methods with various threat models.

Attacking 2D Object Detection. Since the predicted
content of the object detection task is more complex, patch
attacks against object detectors are more challenging than
image classifiers. The attacker can distort the pixels in a
bounded region and use different objective optimization
to accomplish attack effects such as hiding attacks [19],
[50]and misclassification attacks [18] [20]. Thys et al. [50]
proposed a printable adversarial patch to make a person
can evade detection. Huang et al. [20] present a Universal
Physical Camouflage Attack to make objects misclassified.
They masquerade the victim object with texture patterns for
attacking object detectors. Hu et al. [18] used the manifold
of generative adversarial networks (GANs) to make the ad-
versarial patches more realistic and natural-looking. Hu et al.
[19] proposed TC-EGA significantly lowered the detection
performance of object detectors.

Attacking 3D Object Detection. DNNs have made a
massive progress in 3D object detection, which is vital,
especially in autonomous driving scenarios. Several stud-
ies [6], [53], [62]have demonstrated that LiDAR detectors
can be attacked by introducing 3D adversarial objects or
modifying the point cloud sensory data, which leads to a
threat to self-driving. Xiang et al. [62] proved that models
taking point cloud data as input can be attacked. Tu et

al. [53] place an adversarial object on the roof of victim
vehicles to escape from the LiDAR detectors. Cao et al. [6]
generated robust physical adversarial objects to successfully
attack the Baidu Apollo system. They also presented an
effective adversarial sensor perturbation attack [5] and lever-
aged laser-based spoofing techniques to physically remove
selected 3D point clouds to hide an object of interest [4].
Liu et al. [32] presented an attack method SlowLiDAR to
maximize LiDAR detection runtime.

Defending Against Patch Attacks for Image Classi-
fication. Most existing defenses [17], [26], [36], [59], [60],
[64] are designed for image classification tasks. Among
them, PatchCleanser [60] defends attacks by introducing
supplementary information into the input. Its fundamental
principle involves applying a mask (a grey block) at different
positions in the input to obtain multiple (at least nine)
masked samples. Subsequently, a differential analysis of
their classification results is conducted to detect potential
adversarial attacks, which can lead to inconsistent outputs.
PatchCleanser can effectively neutralize the effect of adver-
sarial patches and detect attacks against image classifiers.
However, it introduces at least nine times the time overhead.
In contrast to simple pixel masks, canary and woodpecker
consist of pixels with specific purposes, thereby eliminating
the need for excessive differential comparisons and resulting
in limited time overhead. Additionally, canary provides pas-
sive means of probing adversarial patches, offering a more
comprehensive detection and effectively raising the bar for
attacks.

Defending Against Patch Attacks for Object Detec-
tion. Some defense methods aim to mitigate adversarial
patch attacks by minimizing the perturbations associated
with potential adversarial patches. For instance, SAC [33]
trains an additional segmentation network to identify and
mask potential adversarial patch areas in the input samples,
thereby enhancing its defense against attacks. Similarly,
APM [8] also employs an extra network to recognize and
mask adversarial patches present in the input. In contrast,
APE [25] masks features of potential areas in the input
image based on the feature energy distribution within the
convolutional layers. These mask-based approaches heavily
rely on the characteristics of known samples and do not
adequately address the potential for unseen attack methods.
As demonstrated in §4.3, SAC experiences a significant
drop in performance when confronted with unknown attack
techniques. LGS [36] is also used to protect object detec-
tors by treating adversarial patches as noise and mitigating
their impact through input regularization gradients. How-
ever, based on our observations, certain adversarial patches,
such as Naturalistic patches, cannot simply be regarded
as noise, which leads to poor detection performance (see
§4.3). ObjectSeeker [63] achieves correct identification of
hidden target objects by cropping the input into multi-
ple segments, ensuring that some segments either do not
contain adversarial patches or only partially include them.
ObjectSeeker does not require training and can be applied
independently; however, aimlessly cropping input image and
integrating scattered objection results significantly increase
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object detection time (see §4.7).
Unlike the direct removal of perturbations caused by

adversarial patches, DetectorGuard [61] utilizes differential
analysis of outputs from multiple models to detect attacks. It
introduces an additional model named Objectness Predictor,
which generates an objectness map that highlights potential
targets in the input image. If this map fails to “explain” the
output of the protected detector, i.e., if there are no detected
objects corresponding to the objectness map, an attack is re-
ported. The performance of DetectorGuard relies on Object-
ness Predictor, which can potentially be bypassed through
targeted attacks. To explore the weakness, we conducted
experiments to jointly optimize and train adversarial patches
capable of simultaneously targeting both the detector and
Objectness Predictor. The results indicate that generating
adversarial patches that compromise the effectiveness of
DetectorGuard is not a difficult task.

UDF [66] trains a defensive framework that is incor-
porated into the input to actively interfere with adversarial
patches, enabling the detector to produce correct outputs.
Our approach also employs an active defense strategy. While
woodpecker shares a similar philosophy with UDF, canary
adopts a completely different strategy by probing the pres-
ence of adversarial patches, which allows for more compre-
hensive detection. More importantly, our method introduces
randomness, which significantly outperforms UDF when
confronted with adaptive attacks (see §4.8).

7. Conclusion

This paper proposes a novel defense method for detect-
ing adversarial patch attacks with defensive patches. Two
types of defensive patches, named canary and woodpecker,
are imported into the input image to proactively probe
or counteract potential adversarial patches. The proposed
method provides an effective and efficient solution for ad-
versarial patch attacks in a completely new way. A com-
prehensive experiment demonstrated that our method can
achieve high performance and outperform existing defense
methods, even facing unknown attack methods. The time
overhead is also limited. Furthermore, we design random-
ized canary and woodpecker injection patterns to defend
against defense-aware attacks. The experiment demonstrated
that the proposed method is capable of withstanding adaptive
attacks. We believe that our method can be applied to various
object detectors, and is practical in real-world scenarios.

Availability

The source code and dataset are available at https://gi
thub.com/1j4j1230/Fight Fire with Fire.
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lance cameras: adversarial patches to attack person detection,” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition workshops, 2019.

16

https://github.com/ultralytics/ultralytics


[51] F. Tramer, “Detecting adversarial examples is (Nearly) as hard as clas-
sifying them,” in Proceedings of the 39th International Conference
on Machine Learning, vol. 162, 2022, pp. 21 692–21 702.
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Appendix

A. Physical-world Dataset

We applied the four attack methods to generate adversar-
ial patches and printed them out. As shown in Figure 14, we
then took photos to get physical-world adversarial images
(with a printed patch held by a person) and benign samples
(without patches) in 14 situations. Each situation was further
composed of the same number of indoor and outdoor sce-
narios. In total, we got 1,960 adversarial samples and 1,960
benign samples for the evaluation of effectiveness (§4.3).

B. False Negative and False Positive Cases.

Figure 15(a) shows an example where the introduced
canary is detected in an adversarial image, i.e., the ad-
versarial patch attack is not detected, as the perturbation
effect of the adversarial patch may be not enough to affect
the canary, resulting an FN. Similarly, in Figure 15(c), we
fail to report the attack with only the woodpecker patch,
when the woodpecker may occasionally fail to influence the
adversarial patch. Fortunately, complementing the defense
with the other technique will solve the problem. Applying
woodpecker as in Figure 15(b) helps alert the attack, and
the canary in Figure 15(d) is disrupted by the adversarial
patch.

Figure 16 shows two examples that canary and wood-
pecker produce FPs. In Figure 16(a), the introduced canary
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Figure 14: Various situations for collecting physical-world benign and adversarial samples.
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Figure 15: False negatives using (a) canary and (c) woodpecker in adversarial examples. Note that, applying the other kind
of defensive patch can effectively detect the attacks, i.e., (b) and (d).

()

(a) Detected by Canary (b) Detected by Woodpecker

Newly
detected

Figure 16: False positives using canary and woodpecker in
benign samples.

is not identified accurately due to the complex background
in a benign sample, leading to a false alarm about a non-
existent attack. Woodpecker may occasionally misidentify
the content near the image borders as attacked targets.
In Figure 16(b), a small portion near the border of the
image was incorrectly identified as the attacked target af-
ter introducing woodpecker. We believe that using a more
diverse training set to generate canaries and woodpeckers
can effectively reduce false positives.

C. Effectiveness of Different Initial Classes and
Placement Positions

We investigated how the object classes and positions
of the initial defensive patches may affect the performance

of defensive patches, targeting AdvPatch on YOLOv8 in
the three public datasets. Three different initial categories
(elephant, zebra and giraffe) were selected and trained to
generate five canaries for each class, corresponding to five
positions. In addition, for each of the five positions, we
generate a woodpecker. The results are shown in Table 10.
It can be seen that the initial classes or placement positions
do not have great impact on the detection performance.
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D. Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

D.1. Summary. This paper introduces a new defense
method against adversarial patch attacks. This method in-
jects defensive patches, consisting of canary and wood-
pecker objects, that are meant to probe and counteract poten-
tial adversarial patches. By detecting the presence of these
patches near the bounding boxes of potential adversarial
patches, the defender can detect if an attack has occurred in
the region.

D.2. Scientific Contributions.
• Addresses a Long-Known Issue.
• Creates a New Tool to Enable Future Science.
• Provides a Valuable Step Forward in an Established

Field.

D.3. Reasons for Acceptance.
1) A long-known issue is addressed and a valuable step

forward is made in an established field. Machine learn-
ing models have been repeatedly demonstrated to be
vulnerable to a plethora of trustworthiness and security
issues. This paper aims to defend vulnerable models
and achieves competitive results even against adaptive
attacks.

2) This paper creates a new tool to enable future science.
The authors introduce a defense method that does not
require additional retraining or modification of model
weights. Given the significant burden on time that
training machine learning models requires, a defense
method that works with out of the box models is more
likely to be implemented.
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